emanuelaboros
commited on
Commit
·
8d73145
1
Parent(s):
5d1e7ad
Initial commit of the trained NER model with code
Browse files- config.json +25 -0
- model.safetensors +3 -0
- models.py +128 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../experiments_final/model_dbmdz_bert_medium_historic_multilingual_cased_max_sequence_length_512_epochs_5_run_extended_suffix_baseline/checkpoint-450",
|
3 |
+
"architectures": [
|
4 |
+
"ExtendedMultitaskModelForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 512,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 2048,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 8,
|
17 |
+
"num_hidden_layers": 8,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.40.0.dev0",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 32000
|
25 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03a807b124debff782406c816eacb7ced1f2e25b9a5198b27e1616a41faa0662
|
3 |
+
size 193971960
|
models.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.modeling_outputs import TokenClassifierOutput
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from transformers import PreTrainedModel, AutoModel, AutoConfig
|
5 |
+
from torch.nn import CrossEntropyLoss
|
6 |
+
from typing import Optional, Tuple, Union
|
7 |
+
import logging
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class ExtendedMultitaskModelForTokenClassification(PreTrainedModel):
|
13 |
+
|
14 |
+
config_class = AutoConfig
|
15 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
16 |
+
|
17 |
+
def __init__(self, config, num_token_labels_dict):
|
18 |
+
super().__init__(config)
|
19 |
+
self.num_token_labels_dict = num_token_labels_dict
|
20 |
+
self.config = config
|
21 |
+
|
22 |
+
# self.bert = AutoModel.from_config(config)
|
23 |
+
self.bert = AutoModel.from_pretrained(config.name_or_path, config=config)
|
24 |
+
if "classifier_dropout" not in config.__dict__:
|
25 |
+
classifier_dropout = 0.1
|
26 |
+
else:
|
27 |
+
classifier_dropout = (
|
28 |
+
config.classifier_dropout
|
29 |
+
if config.classifier_dropout is not None
|
30 |
+
else config.hidden_dropout_prob
|
31 |
+
)
|
32 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
33 |
+
|
34 |
+
# Additional transformer layers
|
35 |
+
self.transformer_encoder = nn.TransformerEncoder(
|
36 |
+
nn.TransformerEncoderLayer(
|
37 |
+
d_model=config.hidden_size, nhead=config.num_attention_heads
|
38 |
+
),
|
39 |
+
num_layers=2,
|
40 |
+
)
|
41 |
+
|
42 |
+
# For token classification, create a classifier for each task
|
43 |
+
self.token_classifiers = nn.ModuleDict(
|
44 |
+
{
|
45 |
+
task: nn.Linear(config.hidden_size, num_labels)
|
46 |
+
for task, num_labels in num_token_labels_dict.items()
|
47 |
+
}
|
48 |
+
)
|
49 |
+
|
50 |
+
# Initialize weights and apply final processing
|
51 |
+
self.post_init()
|
52 |
+
|
53 |
+
def forward(
|
54 |
+
self,
|
55 |
+
input_ids: Optional[torch.Tensor] = None,
|
56 |
+
attention_mask: Optional[torch.Tensor] = None,
|
57 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
58 |
+
position_ids: Optional[torch.Tensor] = None,
|
59 |
+
head_mask: Optional[torch.Tensor] = None,
|
60 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
61 |
+
labels: Optional[torch.Tensor] = None,
|
62 |
+
token_labels: Optional[dict] = None,
|
63 |
+
output_attentions: Optional[bool] = None,
|
64 |
+
output_hidden_states: Optional[bool] = None,
|
65 |
+
return_dict: Optional[bool] = None,
|
66 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
67 |
+
r"""
|
68 |
+
token_labels (`dict` of `torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*):
|
69 |
+
Labels for computing the token classification loss. Keys should match the tasks.
|
70 |
+
"""
|
71 |
+
return_dict = (
|
72 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
73 |
+
)
|
74 |
+
|
75 |
+
bert_kwargs = {
|
76 |
+
"input_ids": input_ids,
|
77 |
+
"attention_mask": attention_mask,
|
78 |
+
"token_type_ids": token_type_ids,
|
79 |
+
"position_ids": position_ids,
|
80 |
+
"head_mask": head_mask,
|
81 |
+
"inputs_embeds": inputs_embeds,
|
82 |
+
"output_attentions": output_attentions,
|
83 |
+
"output_hidden_states": output_hidden_states,
|
84 |
+
"return_dict": return_dict,
|
85 |
+
}
|
86 |
+
|
87 |
+
if any(
|
88 |
+
keyword in self.config.name_or_path.lower()
|
89 |
+
for keyword in ["llama", "deberta"]
|
90 |
+
):
|
91 |
+
bert_kwargs.pop("token_type_ids")
|
92 |
+
bert_kwargs.pop("head_mask")
|
93 |
+
|
94 |
+
outputs = self.bert(**bert_kwargs)
|
95 |
+
|
96 |
+
# For token classification
|
97 |
+
token_output = outputs[0]
|
98 |
+
token_output = self.dropout(token_output)
|
99 |
+
|
100 |
+
# Pass through additional transformer layers
|
101 |
+
token_output = self.transformer_encoder(token_output.transpose(0, 1)).transpose(
|
102 |
+
0, 1
|
103 |
+
)
|
104 |
+
|
105 |
+
# Collect the logits and compute the loss for each task
|
106 |
+
task_logits = {}
|
107 |
+
total_loss = 0
|
108 |
+
for task, classifier in self.token_classifiers.items():
|
109 |
+
logits = classifier(token_output)
|
110 |
+
task_logits[task] = logits
|
111 |
+
if token_labels and task in token_labels:
|
112 |
+
loss_fct = CrossEntropyLoss()
|
113 |
+
loss = loss_fct(
|
114 |
+
logits.view(-1, self.num_token_labels_dict[task]),
|
115 |
+
token_labels[task].view(-1),
|
116 |
+
)
|
117 |
+
total_loss += loss
|
118 |
+
|
119 |
+
if not return_dict:
|
120 |
+
output = (task_logits,) + outputs[2:]
|
121 |
+
return ((total_loss,) + output) if total_loss != 0 else output
|
122 |
+
|
123 |
+
return TokenClassifierOutput(
|
124 |
+
loss=total_loss,
|
125 |
+
logits=task_logits,
|
126 |
+
hidden_states=outputs.hidden_states,
|
127 |
+
attentions=outputs.attentions,
|
128 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_len": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": false,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|