Update generic_ner.py
Browse files- generic_ner.py +1 -30
generic_ner.py
CHANGED
@@ -111,7 +111,7 @@ def get_entities(tokens, tags, confidences, text):
|
|
111 |
"score": np.average(confidences[idx : idx + len(subtree)])
|
112 |
* 100,
|
113 |
"index": (idx, idx + len(subtree)),
|
114 |
-
"word": original_string,
|
115 |
"start": entity_start_position,
|
116 |
"end": entity_end_position,
|
117 |
}
|
@@ -242,35 +242,6 @@ class MultitaskTokenClassificationPipeline(Pipeline):
|
|
242 |
outputs = self.model(input_ids, attention_mask)
|
243 |
return outputs, text_sentences, text
|
244 |
|
245 |
-
# def _forward(self, inputs):
|
246 |
-
# inputs, text_sentences, text = inputs
|
247 |
-
# all_logits = {}
|
248 |
-
#
|
249 |
-
# for i in range(len(text_sentences)):
|
250 |
-
# print(inputs["input_ids"][i].shape)
|
251 |
-
# input_ids = torch.tensor([inputs["input_ids"][i]], dtype=torch.long).to(
|
252 |
-
# self.model.device
|
253 |
-
# )
|
254 |
-
# attention_mask = torch.tensor(
|
255 |
-
# [inputs["attention_mask"][i]], dtype=torch.long
|
256 |
-
# ).to(self.model.device)
|
257 |
-
#
|
258 |
-
# with torch.no_grad():
|
259 |
-
# outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
|
260 |
-
#
|
261 |
-
# # Accumulate logits for each task
|
262 |
-
# if not all_logits:
|
263 |
-
# all_logits = {task: logits for task, logits in outputs.logits.items()}
|
264 |
-
# else:
|
265 |
-
# for task in all_logits:
|
266 |
-
# all_logits[task] = torch.cat(
|
267 |
-
# (all_logits[task], outputs.logits[task]), dim=1
|
268 |
-
# )
|
269 |
-
#
|
270 |
-
# # Replace outputs.logits with accumulated logits
|
271 |
-
# outputs.logits = all_logits
|
272 |
-
#
|
273 |
-
# return outputs, text_sentences, text
|
274 |
|
275 |
def postprocess(self, outputs, **kwargs):
|
276 |
"""
|
|
|
111 |
"score": np.average(confidences[idx : idx + len(subtree)])
|
112 |
* 100,
|
113 |
"index": (idx, idx + len(subtree)),
|
114 |
+
"word": text[entity_start_position:entity_end_position], #original_string,
|
115 |
"start": entity_start_position,
|
116 |
"end": entity_end_position,
|
117 |
}
|
|
|
242 |
outputs = self.model(input_ids, attention_mask)
|
243 |
return outputs, text_sentences, text
|
244 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
def postprocess(self, outputs, **kwargs):
|
247 |
"""
|