File size: 6,860 Bytes
f6b8a39
 
 
 
 
61e4faf
4dbb2ab
f6b8a39
 
 
 
 
 
 
 
2b8bf11
1aedbd3
842a565
1aedbd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b8bf11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aedbd3
f6b8a39
61e4faf
f6b8a39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
842a565
 
 
 
 
f6b8a39
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- private
base_model: t5-large
model-index:
- name: ner-news-t5-large
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# T5-Encoder(T5-large model) fine-tuned on very small dataset for token classification

Simple experimental model that was trained in 3 epochs on very small dataset

## Usage

```python
from transformers import AutoTokenizer, AutoModelForTokenClassification, NerPipeline

model = AutoModelForTokenClassification.from_pretrained("imvladikon/t5-english-ner", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("imvladikon/t5-english-ner", trust_remote_code=True)

pipe = NerPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max")
print(pipe("London is the capital city of England and the United Kingdom"))
"""
[{'entity_group': 'LOCATION',
  'score': 0.84536326,
  'word': 'London',
  'start': 0,
  'end': 6},
 {'entity_group': 'LOCATION',
  'score': 0.8957489,
  'word': 'England',
  'start': 30,
  'end': 37},
 {'entity_group': 'LOCATION',
  'score': 0.73186326,
  'word': 'UnitedKingdom',
  'start': 46,
  'end': 60}]
"""
```

## Usage in spacy

```bash
pip install spacy transformers git+https://github.com/explosion/spacy-huggingface-pipelines -q
```

```python
import spacy
from spacy import displacy

text = "My name is Sarah and I live in London"

nlp = spacy.blank("en")
nlp.add_pipe("hf_token_pipe", config={"model": "imvladikon/t5-english-ner", "kwargs": {"trust_remote_code":True}})
doc = nlp(text)
print(doc.ents)
# (Sarah, London)
```


This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the private(en) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1956
- Commercial Item Precision: 0.0
- Commercial Item Recall: 0.0
- Commercial Item F1: 0.0
- Commercial Item Number: 1
- Date Precision: 0.8125
- Date Recall: 0.9286
- Date F1: 0.8667
- Date Number: 14
- Location Precision: 0.7143
- Location Recall: 0.75
- Location F1: 0.7317
- Location Number: 20
- Organization Precision: 0.8588
- Organization Recall: 0.9125
- Organization F1: 0.8848
- Organization Number: 80
- Other Precision: 0.3684
- Other Recall: 0.3333
- Other F1: 0.35
- Other Number: 21
- Person Precision: 0.8182
- Person Recall: 0.9310
- Person F1: 0.8710
- Person Number: 29
- Quantity Precision: 0.8
- Quantity Recall: 0.8571
- Quantity F1: 0.8276
- Quantity Number: 14
- Title Precision: 0.0
- Title Recall: 0.0
- Title F1: 0.0
- Title Number: 7
- Overall Precision: 0.75
- Overall Recall: 0.7903
- Overall F1: 0.7696
- Overall Accuracy: 0.9534

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Commercial Item Precision | Commercial Item Recall | Commercial Item F1 | Commercial Item Number | Date Precision | Date Recall | Date F1 | Date Number | Location Precision | Location Recall | Location F1 | Location Number | Organization Precision | Organization Recall | Organization F1 | Organization Number | Other Precision | Other Recall | Other F1 | Other Number | Person Precision | Person Recall | Person F1 | Person Number | Quantity Precision | Quantity Recall | Quantity F1 | Quantity Number | Title Precision | Title Recall | Title F1 | Title Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------:|:----------------------:|:------------------:|:----------------------:|:--------------:|:-----------:|:-------:|:-----------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:---------------:|:------------:|:--------:|:------------:|:----------------:|:-------------:|:---------:|:-------------:|:------------------:|:---------------:|:-----------:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.8868        | 1.0   | 708  | 0.2725          | 0.0                       | 0.0                    | 0.0                | 1                      | 0.8125         | 0.9286      | 0.8667  | 14          | 0.4167             | 0.75            | 0.5357      | 20              | 0.8272                 | 0.8375              | 0.8323          | 80                  | 1.0             | 0.0476       | 0.0909   | 21           | 0.8438           | 0.9310        | 0.8852    | 29            | 0.6667             | 0.7143          | 0.6897      | 14              | 0.0             | 0.0          | 0.0      | 7            | 0.7348            | 0.7151         | 0.7248     | 0.9446           |
| 0.2984        | 2.0   | 1416 | 0.2121          | 0.0                       | 0.0                    | 0.0                | 1                      | 0.8667         | 0.9286      | 0.8966  | 14          | 0.5                | 0.8             | 0.6154      | 20              | 0.8375                 | 0.8375              | 0.8375          | 80                  | 0.3077          | 0.1905       | 0.2353   | 21           | 0.8182           | 0.9310        | 0.8710    | 29            | 0.7333             | 0.7857          | 0.7586      | 14              | 0.0             | 0.0          | 0.0      | 7            | 0.7077            | 0.7419         | 0.7244     | 0.9481           |
| 0.1729        | 3.0   | 2124 | 0.1956          | 0.0                       | 0.0                    | 0.0                | 1                      | 0.8125         | 0.9286      | 0.8667  | 14          | 0.7143             | 0.75            | 0.7317      | 20              | 0.8588                 | 0.9125              | 0.8848          | 80                  | 0.3684          | 0.3333       | 0.35     | 21           | 0.8182           | 0.9310        | 0.8710    | 29            | 0.8                | 0.8571          | 0.8276      | 14              | 0.0             | 0.0          | 0.0      | 7            | 0.75              | 0.7903         | 0.7696     | 0.9534           |


### Framework versions

- Transformers 4.21.1
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
## WANDB
[training logs and reports](https://wandb.ai/imvladikon/huggingface/runs/uyl6ihl1)