cahya commited on
Commit
d47bd37
1 Parent(s): 676360c

Add README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -0
README.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: lg
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ license: apache-2.0
12
+ model-index:
13
+ - name: Wav2Vec2 Luganda
14
+ results:
15
+ - task:
16
+ name: Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice lg
20
+ type: common_voice
21
+ args: lg
22
+ metrics:
23
+ - name: Test WER
24
+ type: wer
25
+ value: 7.53
26
+ ---
27
+
28
+ # Automatic Speech Recognition for Luganda
29
+
30
+ This is the model built for the
31
+ [Mozilla Luganda Automatic Speech Recognition competition](https://zindi.africa/competitions/mozilla-luganda-automatic-speech-recognition).
32
+ It is a fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
33
+ model on the [Luganda Common Voice dataset](https://huggingface.co/datasets/common_voice) version 7.0.
34
+
35
+ We also provide a [live demo](https://huggingface.co/spaces/indonesian-nlp/luganda-asr) to test the model.
36
+
37
+ When using this model, make sure that your speech input is sampled at 16kHz.
38
+
39
+ ## Usage
40
+ The model can be used directly (without a language model) as follows:
41
+ ```python
42
+ import torch
43
+ import torchaudio
44
+ from datasets import load_dataset
45
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
46
+
47
+ test_dataset = load_dataset("common_voice", "lg", split="test[:2%]")
48
+
49
+ processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda")
50
+ model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda")
51
+
52
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
53
+
54
+ # Preprocessing the datasets.
55
+ # We need to read the aduio files as arrays
56
+ def speech_file_to_array_fn(batch):
57
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
58
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
59
+ return batch
60
+
61
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
62
+ inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
63
+
64
+ with torch.no_grad():
65
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
66
+
67
+ predicted_ids = torch.argmax(logits, dim=-1)
68
+
69
+ print("Prediction:", processor.batch_decode(predicted_ids))
70
+ print("Reference:", test_dataset[:2]["sentence"])
71
+ ```
72
+
73
+
74
+ ## Evaluation
75
+
76
+ The model can be evaluated as follows on the Indonesian test data of Common Voice.
77
+
78
+ ```python
79
+ import torch
80
+ import torchaudio
81
+ from datasets import load_dataset, load_metric
82
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
83
+ import re
84
+
85
+ test_dataset = load_dataset("common_voice", "lg", split="test")
86
+ wer = load_metric("wer")
87
+
88
+ processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda")
89
+ model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda")
90
+ model.to("cuda")
91
+
92
+ chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "‘", "’", "’"]
93
+ chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]'
94
+
95
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
96
+
97
+ # Preprocessing the datasets.
98
+ # We need to read the audio files as arrays
99
+ def speech_file_to_array_fn(batch):
100
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
101
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
102
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
103
+ return batch
104
+
105
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
106
+
107
+ # Preprocessing the datasets.
108
+ # We need to read the audio files as arrays
109
+ def evaluate(batch):
110
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
111
+
112
+ with torch.no_grad():
113
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
114
+
115
+ pred_ids = torch.argmax(logits, dim=-1)
116
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
117
+ return batch
118
+
119
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
120
+
121
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
122
+ ```
123
+
124
+ **Test Result**: 7.53 %
125
+
126
+ ## Training
127
+
128
+ The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO
129
+
130
+ The script used for training can be found [here](https://github.com/indonesian-nlp/luganda-asr)