Upload 7 files
Browse files- README.md +2913 -0
- config.json +31 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,2916 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- feature-extraction
|
5 |
+
- sentence-similarity
|
6 |
+
- mteb
|
7 |
+
model-index:
|
8 |
+
- name: stella-base-en-v2
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: Classification
|
12 |
+
dataset:
|
13 |
+
type: mteb/amazon_counterfactual
|
14 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
15 |
+
config: en
|
16 |
+
split: test
|
17 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
18 |
+
metrics:
|
19 |
+
- type: accuracy
|
20 |
+
value: 77.19402985074628
|
21 |
+
- type: ap
|
22 |
+
value: 40.43267503017359
|
23 |
+
- type: f1
|
24 |
+
value: 71.15585210518594
|
25 |
+
- task:
|
26 |
+
type: Classification
|
27 |
+
dataset:
|
28 |
+
type: mteb/amazon_polarity
|
29 |
+
name: MTEB AmazonPolarityClassification
|
30 |
+
config: default
|
31 |
+
split: test
|
32 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
33 |
+
metrics:
|
34 |
+
- type: accuracy
|
35 |
+
value: 93.256675
|
36 |
+
- type: ap
|
37 |
+
value: 90.00824833079179
|
38 |
+
- type: f1
|
39 |
+
value: 93.2473146151734
|
40 |
+
- task:
|
41 |
+
type: Classification
|
42 |
+
dataset:
|
43 |
+
type: mteb/amazon_reviews_multi
|
44 |
+
name: MTEB AmazonReviewsClassification (en)
|
45 |
+
config: en
|
46 |
+
split: test
|
47 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
48 |
+
metrics:
|
49 |
+
- type: accuracy
|
50 |
+
value: 49.612
|
51 |
+
- type: f1
|
52 |
+
value: 48.530785631574304
|
53 |
+
- task:
|
54 |
+
type: Retrieval
|
55 |
+
dataset:
|
56 |
+
type: arguana
|
57 |
+
name: MTEB ArguAna
|
58 |
+
config: default
|
59 |
+
split: test
|
60 |
+
revision: None
|
61 |
+
metrics:
|
62 |
+
- type: map_at_1
|
63 |
+
value: 37.411
|
64 |
+
- type: map_at_10
|
65 |
+
value: 52.673
|
66 |
+
- type: map_at_100
|
67 |
+
value: 53.410999999999994
|
68 |
+
- type: map_at_1000
|
69 |
+
value: 53.415
|
70 |
+
- type: map_at_3
|
71 |
+
value: 48.495
|
72 |
+
- type: map_at_5
|
73 |
+
value: 51.183
|
74 |
+
- type: mrr_at_1
|
75 |
+
value: 37.838
|
76 |
+
- type: mrr_at_10
|
77 |
+
value: 52.844
|
78 |
+
- type: mrr_at_100
|
79 |
+
value: 53.581999999999994
|
80 |
+
- type: mrr_at_1000
|
81 |
+
value: 53.586
|
82 |
+
- type: mrr_at_3
|
83 |
+
value: 48.672
|
84 |
+
- type: mrr_at_5
|
85 |
+
value: 51.272
|
86 |
+
- type: ndcg_at_1
|
87 |
+
value: 37.411
|
88 |
+
- type: ndcg_at_10
|
89 |
+
value: 60.626999999999995
|
90 |
+
- type: ndcg_at_100
|
91 |
+
value: 63.675000000000004
|
92 |
+
- type: ndcg_at_1000
|
93 |
+
value: 63.776999999999994
|
94 |
+
- type: ndcg_at_3
|
95 |
+
value: 52.148
|
96 |
+
- type: ndcg_at_5
|
97 |
+
value: 57.001999999999995
|
98 |
+
- type: precision_at_1
|
99 |
+
value: 37.411
|
100 |
+
- type: precision_at_10
|
101 |
+
value: 8.578
|
102 |
+
- type: precision_at_100
|
103 |
+
value: 0.989
|
104 |
+
- type: precision_at_1000
|
105 |
+
value: 0.1
|
106 |
+
- type: precision_at_3
|
107 |
+
value: 20.91
|
108 |
+
- type: precision_at_5
|
109 |
+
value: 14.908
|
110 |
+
- type: recall_at_1
|
111 |
+
value: 37.411
|
112 |
+
- type: recall_at_10
|
113 |
+
value: 85.775
|
114 |
+
- type: recall_at_100
|
115 |
+
value: 98.86200000000001
|
116 |
+
- type: recall_at_1000
|
117 |
+
value: 99.644
|
118 |
+
- type: recall_at_3
|
119 |
+
value: 62.731
|
120 |
+
- type: recall_at_5
|
121 |
+
value: 74.53800000000001
|
122 |
+
- task:
|
123 |
+
type: Clustering
|
124 |
+
dataset:
|
125 |
+
type: mteb/arxiv-clustering-p2p
|
126 |
+
name: MTEB ArxivClusteringP2P
|
127 |
+
config: default
|
128 |
+
split: test
|
129 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
130 |
+
metrics:
|
131 |
+
- type: v_measure
|
132 |
+
value: 47.24219029437865
|
133 |
+
- task:
|
134 |
+
type: Clustering
|
135 |
+
dataset:
|
136 |
+
type: mteb/arxiv-clustering-s2s
|
137 |
+
name: MTEB ArxivClusteringS2S
|
138 |
+
config: default
|
139 |
+
split: test
|
140 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
141 |
+
metrics:
|
142 |
+
- type: v_measure
|
143 |
+
value: 40.474604844291726
|
144 |
+
- task:
|
145 |
+
type: Reranking
|
146 |
+
dataset:
|
147 |
+
type: mteb/askubuntudupquestions-reranking
|
148 |
+
name: MTEB AskUbuntuDupQuestions
|
149 |
+
config: default
|
150 |
+
split: test
|
151 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
152 |
+
metrics:
|
153 |
+
- type: map
|
154 |
+
value: 62.720542706366054
|
155 |
+
- type: mrr
|
156 |
+
value: 75.59633733456448
|
157 |
+
- task:
|
158 |
+
type: STS
|
159 |
+
dataset:
|
160 |
+
type: mteb/biosses-sts
|
161 |
+
name: MTEB BIOSSES
|
162 |
+
config: default
|
163 |
+
split: test
|
164 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
165 |
+
metrics:
|
166 |
+
- type: cos_sim_pearson
|
167 |
+
value: 86.31345008397868
|
168 |
+
- type: cos_sim_spearman
|
169 |
+
value: 85.94292212320399
|
170 |
+
- type: euclidean_pearson
|
171 |
+
value: 85.03974302774525
|
172 |
+
- type: euclidean_spearman
|
173 |
+
value: 85.88087251659051
|
174 |
+
- type: manhattan_pearson
|
175 |
+
value: 84.91900996712951
|
176 |
+
- type: manhattan_spearman
|
177 |
+
value: 85.96701905781116
|
178 |
+
- task:
|
179 |
+
type: Classification
|
180 |
+
dataset:
|
181 |
+
type: mteb/banking77
|
182 |
+
name: MTEB Banking77Classification
|
183 |
+
config: default
|
184 |
+
split: test
|
185 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
186 |
+
metrics:
|
187 |
+
- type: accuracy
|
188 |
+
value: 84.72727272727273
|
189 |
+
- type: f1
|
190 |
+
value: 84.29572512364581
|
191 |
+
- task:
|
192 |
+
type: Clustering
|
193 |
+
dataset:
|
194 |
+
type: mteb/biorxiv-clustering-p2p
|
195 |
+
name: MTEB BiorxivClusteringP2P
|
196 |
+
config: default
|
197 |
+
split: test
|
198 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
199 |
+
metrics:
|
200 |
+
- type: v_measure
|
201 |
+
value: 39.55532460397536
|
202 |
+
- task:
|
203 |
+
type: Clustering
|
204 |
+
dataset:
|
205 |
+
type: mteb/biorxiv-clustering-s2s
|
206 |
+
name: MTEB BiorxivClusteringS2S
|
207 |
+
config: default
|
208 |
+
split: test
|
209 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
210 |
+
metrics:
|
211 |
+
- type: v_measure
|
212 |
+
value: 35.91195973591251
|
213 |
+
- task:
|
214 |
+
type: Retrieval
|
215 |
+
dataset:
|
216 |
+
type: BeIR/cqadupstack
|
217 |
+
name: MTEB CQADupstackAndroidRetrieval
|
218 |
+
config: default
|
219 |
+
split: test
|
220 |
+
revision: None
|
221 |
+
metrics:
|
222 |
+
- type: map_at_1
|
223 |
+
value: 32.822
|
224 |
+
- type: map_at_10
|
225 |
+
value: 44.139
|
226 |
+
- type: map_at_100
|
227 |
+
value: 45.786
|
228 |
+
- type: map_at_1000
|
229 |
+
value: 45.906000000000006
|
230 |
+
- type: map_at_3
|
231 |
+
value: 40.637
|
232 |
+
- type: map_at_5
|
233 |
+
value: 42.575
|
234 |
+
- type: mrr_at_1
|
235 |
+
value: 41.059
|
236 |
+
- type: mrr_at_10
|
237 |
+
value: 50.751000000000005
|
238 |
+
- type: mrr_at_100
|
239 |
+
value: 51.548
|
240 |
+
- type: mrr_at_1000
|
241 |
+
value: 51.583999999999996
|
242 |
+
- type: mrr_at_3
|
243 |
+
value: 48.236000000000004
|
244 |
+
- type: mrr_at_5
|
245 |
+
value: 49.838
|
246 |
+
- type: ndcg_at_1
|
247 |
+
value: 41.059
|
248 |
+
- type: ndcg_at_10
|
249 |
+
value: 50.573
|
250 |
+
- type: ndcg_at_100
|
251 |
+
value: 56.25
|
252 |
+
- type: ndcg_at_1000
|
253 |
+
value: 58.004
|
254 |
+
- type: ndcg_at_3
|
255 |
+
value: 45.995000000000005
|
256 |
+
- type: ndcg_at_5
|
257 |
+
value: 48.18
|
258 |
+
- type: precision_at_1
|
259 |
+
value: 41.059
|
260 |
+
- type: precision_at_10
|
261 |
+
value: 9.757
|
262 |
+
- type: precision_at_100
|
263 |
+
value: 1.609
|
264 |
+
- type: precision_at_1000
|
265 |
+
value: 0.20600000000000002
|
266 |
+
- type: precision_at_3
|
267 |
+
value: 22.222
|
268 |
+
- type: precision_at_5
|
269 |
+
value: 16.023
|
270 |
+
- type: recall_at_1
|
271 |
+
value: 32.822
|
272 |
+
- type: recall_at_10
|
273 |
+
value: 61.794000000000004
|
274 |
+
- type: recall_at_100
|
275 |
+
value: 85.64699999999999
|
276 |
+
- type: recall_at_1000
|
277 |
+
value: 96.836
|
278 |
+
- type: recall_at_3
|
279 |
+
value: 47.999
|
280 |
+
- type: recall_at_5
|
281 |
+
value: 54.376999999999995
|
282 |
+
- task:
|
283 |
+
type: Retrieval
|
284 |
+
dataset:
|
285 |
+
type: BeIR/cqadupstack
|
286 |
+
name: MTEB CQADupstackEnglishRetrieval
|
287 |
+
config: default
|
288 |
+
split: test
|
289 |
+
revision: None
|
290 |
+
metrics:
|
291 |
+
- type: map_at_1
|
292 |
+
value: 29.579
|
293 |
+
- type: map_at_10
|
294 |
+
value: 39.787
|
295 |
+
- type: map_at_100
|
296 |
+
value: 40.976
|
297 |
+
- type: map_at_1000
|
298 |
+
value: 41.108
|
299 |
+
- type: map_at_3
|
300 |
+
value: 36.819
|
301 |
+
- type: map_at_5
|
302 |
+
value: 38.437
|
303 |
+
- type: mrr_at_1
|
304 |
+
value: 37.516
|
305 |
+
- type: mrr_at_10
|
306 |
+
value: 45.822
|
307 |
+
- type: mrr_at_100
|
308 |
+
value: 46.454
|
309 |
+
- type: mrr_at_1000
|
310 |
+
value: 46.495999999999995
|
311 |
+
- type: mrr_at_3
|
312 |
+
value: 43.556
|
313 |
+
- type: mrr_at_5
|
314 |
+
value: 44.814
|
315 |
+
- type: ndcg_at_1
|
316 |
+
value: 37.516
|
317 |
+
- type: ndcg_at_10
|
318 |
+
value: 45.5
|
319 |
+
- type: ndcg_at_100
|
320 |
+
value: 49.707
|
321 |
+
- type: ndcg_at_1000
|
322 |
+
value: 51.842
|
323 |
+
- type: ndcg_at_3
|
324 |
+
value: 41.369
|
325 |
+
- type: ndcg_at_5
|
326 |
+
value: 43.161
|
327 |
+
- type: precision_at_1
|
328 |
+
value: 37.516
|
329 |
+
- type: precision_at_10
|
330 |
+
value: 8.713
|
331 |
+
- type: precision_at_100
|
332 |
+
value: 1.38
|
333 |
+
- type: precision_at_1000
|
334 |
+
value: 0.188
|
335 |
+
- type: precision_at_3
|
336 |
+
value: 20.233999999999998
|
337 |
+
- type: precision_at_5
|
338 |
+
value: 14.280000000000001
|
339 |
+
- type: recall_at_1
|
340 |
+
value: 29.579
|
341 |
+
- type: recall_at_10
|
342 |
+
value: 55.458
|
343 |
+
- type: recall_at_100
|
344 |
+
value: 73.49799999999999
|
345 |
+
- type: recall_at_1000
|
346 |
+
value: 87.08200000000001
|
347 |
+
- type: recall_at_3
|
348 |
+
value: 42.858000000000004
|
349 |
+
- type: recall_at_5
|
350 |
+
value: 48.215
|
351 |
+
- task:
|
352 |
+
type: Retrieval
|
353 |
+
dataset:
|
354 |
+
type: BeIR/cqadupstack
|
355 |
+
name: MTEB CQADupstackGamingRetrieval
|
356 |
+
config: default
|
357 |
+
split: test
|
358 |
+
revision: None
|
359 |
+
metrics:
|
360 |
+
- type: map_at_1
|
361 |
+
value: 40.489999999999995
|
362 |
+
- type: map_at_10
|
363 |
+
value: 53.313
|
364 |
+
- type: map_at_100
|
365 |
+
value: 54.290000000000006
|
366 |
+
- type: map_at_1000
|
367 |
+
value: 54.346000000000004
|
368 |
+
- type: map_at_3
|
369 |
+
value: 49.983
|
370 |
+
- type: map_at_5
|
371 |
+
value: 51.867
|
372 |
+
- type: mrr_at_1
|
373 |
+
value: 46.27
|
374 |
+
- type: mrr_at_10
|
375 |
+
value: 56.660999999999994
|
376 |
+
- type: mrr_at_100
|
377 |
+
value: 57.274
|
378 |
+
- type: mrr_at_1000
|
379 |
+
value: 57.301
|
380 |
+
- type: mrr_at_3
|
381 |
+
value: 54.138
|
382 |
+
- type: mrr_at_5
|
383 |
+
value: 55.623999999999995
|
384 |
+
- type: ndcg_at_1
|
385 |
+
value: 46.27
|
386 |
+
- type: ndcg_at_10
|
387 |
+
value: 59.192
|
388 |
+
- type: ndcg_at_100
|
389 |
+
value: 63.026
|
390 |
+
- type: ndcg_at_1000
|
391 |
+
value: 64.079
|
392 |
+
- type: ndcg_at_3
|
393 |
+
value: 53.656000000000006
|
394 |
+
- type: ndcg_at_5
|
395 |
+
value: 56.387
|
396 |
+
- type: precision_at_1
|
397 |
+
value: 46.27
|
398 |
+
- type: precision_at_10
|
399 |
+
value: 9.511
|
400 |
+
- type: precision_at_100
|
401 |
+
value: 1.23
|
402 |
+
- type: precision_at_1000
|
403 |
+
value: 0.136
|
404 |
+
- type: precision_at_3
|
405 |
+
value: 24.096
|
406 |
+
- type: precision_at_5
|
407 |
+
value: 16.476
|
408 |
+
- type: recall_at_1
|
409 |
+
value: 40.489999999999995
|
410 |
+
- type: recall_at_10
|
411 |
+
value: 73.148
|
412 |
+
- type: recall_at_100
|
413 |
+
value: 89.723
|
414 |
+
- type: recall_at_1000
|
415 |
+
value: 97.073
|
416 |
+
- type: recall_at_3
|
417 |
+
value: 58.363
|
418 |
+
- type: recall_at_5
|
419 |
+
value: 65.083
|
420 |
+
- task:
|
421 |
+
type: Retrieval
|
422 |
+
dataset:
|
423 |
+
type: BeIR/cqadupstack
|
424 |
+
name: MTEB CQADupstackGisRetrieval
|
425 |
+
config: default
|
426 |
+
split: test
|
427 |
+
revision: None
|
428 |
+
metrics:
|
429 |
+
- type: map_at_1
|
430 |
+
value: 26.197
|
431 |
+
- type: map_at_10
|
432 |
+
value: 35.135
|
433 |
+
- type: map_at_100
|
434 |
+
value: 36.14
|
435 |
+
- type: map_at_1000
|
436 |
+
value: 36.216
|
437 |
+
- type: map_at_3
|
438 |
+
value: 32.358
|
439 |
+
- type: map_at_5
|
440 |
+
value: 33.814
|
441 |
+
- type: mrr_at_1
|
442 |
+
value: 28.475
|
443 |
+
- type: mrr_at_10
|
444 |
+
value: 37.096000000000004
|
445 |
+
- type: mrr_at_100
|
446 |
+
value: 38.006
|
447 |
+
- type: mrr_at_1000
|
448 |
+
value: 38.06
|
449 |
+
- type: mrr_at_3
|
450 |
+
value: 34.52
|
451 |
+
- type: mrr_at_5
|
452 |
+
value: 35.994
|
453 |
+
- type: ndcg_at_1
|
454 |
+
value: 28.475
|
455 |
+
- type: ndcg_at_10
|
456 |
+
value: 40.263
|
457 |
+
- type: ndcg_at_100
|
458 |
+
value: 45.327
|
459 |
+
- type: ndcg_at_1000
|
460 |
+
value: 47.225
|
461 |
+
- type: ndcg_at_3
|
462 |
+
value: 34.882000000000005
|
463 |
+
- type: ndcg_at_5
|
464 |
+
value: 37.347
|
465 |
+
- type: precision_at_1
|
466 |
+
value: 28.475
|
467 |
+
- type: precision_at_10
|
468 |
+
value: 6.249
|
469 |
+
- type: precision_at_100
|
470 |
+
value: 0.919
|
471 |
+
- type: precision_at_1000
|
472 |
+
value: 0.11199999999999999
|
473 |
+
- type: precision_at_3
|
474 |
+
value: 14.689
|
475 |
+
- type: precision_at_5
|
476 |
+
value: 10.237
|
477 |
+
- type: recall_at_1
|
478 |
+
value: 26.197
|
479 |
+
- type: recall_at_10
|
480 |
+
value: 54.17999999999999
|
481 |
+
- type: recall_at_100
|
482 |
+
value: 77.768
|
483 |
+
- type: recall_at_1000
|
484 |
+
value: 91.932
|
485 |
+
- type: recall_at_3
|
486 |
+
value: 39.804
|
487 |
+
- type: recall_at_5
|
488 |
+
value: 45.660000000000004
|
489 |
+
- task:
|
490 |
+
type: Retrieval
|
491 |
+
dataset:
|
492 |
+
type: BeIR/cqadupstack
|
493 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
494 |
+
config: default
|
495 |
+
split: test
|
496 |
+
revision: None
|
497 |
+
metrics:
|
498 |
+
- type: map_at_1
|
499 |
+
value: 16.683
|
500 |
+
- type: map_at_10
|
501 |
+
value: 25.013999999999996
|
502 |
+
- type: map_at_100
|
503 |
+
value: 26.411
|
504 |
+
- type: map_at_1000
|
505 |
+
value: 26.531
|
506 |
+
- type: map_at_3
|
507 |
+
value: 22.357
|
508 |
+
- type: map_at_5
|
509 |
+
value: 23.982999999999997
|
510 |
+
- type: mrr_at_1
|
511 |
+
value: 20.896
|
512 |
+
- type: mrr_at_10
|
513 |
+
value: 29.758000000000003
|
514 |
+
- type: mrr_at_100
|
515 |
+
value: 30.895
|
516 |
+
- type: mrr_at_1000
|
517 |
+
value: 30.964999999999996
|
518 |
+
- type: mrr_at_3
|
519 |
+
value: 27.177
|
520 |
+
- type: mrr_at_5
|
521 |
+
value: 28.799999999999997
|
522 |
+
- type: ndcg_at_1
|
523 |
+
value: 20.896
|
524 |
+
- type: ndcg_at_10
|
525 |
+
value: 30.294999999999998
|
526 |
+
- type: ndcg_at_100
|
527 |
+
value: 36.68
|
528 |
+
- type: ndcg_at_1000
|
529 |
+
value: 39.519
|
530 |
+
- type: ndcg_at_3
|
531 |
+
value: 25.480999999999998
|
532 |
+
- type: ndcg_at_5
|
533 |
+
value: 28.027
|
534 |
+
- type: precision_at_1
|
535 |
+
value: 20.896
|
536 |
+
- type: precision_at_10
|
537 |
+
value: 5.56
|
538 |
+
- type: precision_at_100
|
539 |
+
value: 1.006
|
540 |
+
- type: precision_at_1000
|
541 |
+
value: 0.13899999999999998
|
542 |
+
- type: precision_at_3
|
543 |
+
value: 12.231
|
544 |
+
- type: precision_at_5
|
545 |
+
value: 9.104
|
546 |
+
- type: recall_at_1
|
547 |
+
value: 16.683
|
548 |
+
- type: recall_at_10
|
549 |
+
value: 41.807
|
550 |
+
- type: recall_at_100
|
551 |
+
value: 69.219
|
552 |
+
- type: recall_at_1000
|
553 |
+
value: 89.178
|
554 |
+
- type: recall_at_3
|
555 |
+
value: 28.772
|
556 |
+
- type: recall_at_5
|
557 |
+
value: 35.167
|
558 |
+
- task:
|
559 |
+
type: Retrieval
|
560 |
+
dataset:
|
561 |
+
type: BeIR/cqadupstack
|
562 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
563 |
+
config: default
|
564 |
+
split: test
|
565 |
+
revision: None
|
566 |
+
metrics:
|
567 |
+
- type: map_at_1
|
568 |
+
value: 30.653000000000002
|
569 |
+
- type: map_at_10
|
570 |
+
value: 41.21
|
571 |
+
- type: map_at_100
|
572 |
+
value: 42.543
|
573 |
+
- type: map_at_1000
|
574 |
+
value: 42.657000000000004
|
575 |
+
- type: map_at_3
|
576 |
+
value: 38.094
|
577 |
+
- type: map_at_5
|
578 |
+
value: 39.966
|
579 |
+
- type: mrr_at_1
|
580 |
+
value: 37.824999999999996
|
581 |
+
- type: mrr_at_10
|
582 |
+
value: 47.087
|
583 |
+
- type: mrr_at_100
|
584 |
+
value: 47.959
|
585 |
+
- type: mrr_at_1000
|
586 |
+
value: 48.003
|
587 |
+
- type: mrr_at_3
|
588 |
+
value: 45.043
|
589 |
+
- type: mrr_at_5
|
590 |
+
value: 46.352
|
591 |
+
- type: ndcg_at_1
|
592 |
+
value: 37.824999999999996
|
593 |
+
- type: ndcg_at_10
|
594 |
+
value: 47.158
|
595 |
+
- type: ndcg_at_100
|
596 |
+
value: 52.65
|
597 |
+
- type: ndcg_at_1000
|
598 |
+
value: 54.644999999999996
|
599 |
+
- type: ndcg_at_3
|
600 |
+
value: 42.632999999999996
|
601 |
+
- type: ndcg_at_5
|
602 |
+
value: 44.994
|
603 |
+
- type: precision_at_1
|
604 |
+
value: 37.824999999999996
|
605 |
+
- type: precision_at_10
|
606 |
+
value: 8.498999999999999
|
607 |
+
- type: precision_at_100
|
608 |
+
value: 1.308
|
609 |
+
- type: precision_at_1000
|
610 |
+
value: 0.166
|
611 |
+
- type: precision_at_3
|
612 |
+
value: 20.308
|
613 |
+
- type: precision_at_5
|
614 |
+
value: 14.283000000000001
|
615 |
+
- type: recall_at_1
|
616 |
+
value: 30.653000000000002
|
617 |
+
- type: recall_at_10
|
618 |
+
value: 58.826
|
619 |
+
- type: recall_at_100
|
620 |
+
value: 81.94
|
621 |
+
- type: recall_at_1000
|
622 |
+
value: 94.71000000000001
|
623 |
+
- type: recall_at_3
|
624 |
+
value: 45.965
|
625 |
+
- type: recall_at_5
|
626 |
+
value: 52.294
|
627 |
+
- task:
|
628 |
+
type: Retrieval
|
629 |
+
dataset:
|
630 |
+
type: BeIR/cqadupstack
|
631 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
632 |
+
config: default
|
633 |
+
split: test
|
634 |
+
revision: None
|
635 |
+
metrics:
|
636 |
+
- type: map_at_1
|
637 |
+
value: 26.71
|
638 |
+
- type: map_at_10
|
639 |
+
value: 36.001
|
640 |
+
- type: map_at_100
|
641 |
+
value: 37.416
|
642 |
+
- type: map_at_1000
|
643 |
+
value: 37.522
|
644 |
+
- type: map_at_3
|
645 |
+
value: 32.841
|
646 |
+
- type: map_at_5
|
647 |
+
value: 34.515
|
648 |
+
- type: mrr_at_1
|
649 |
+
value: 32.647999999999996
|
650 |
+
- type: mrr_at_10
|
651 |
+
value: 41.43
|
652 |
+
- type: mrr_at_100
|
653 |
+
value: 42.433
|
654 |
+
- type: mrr_at_1000
|
655 |
+
value: 42.482
|
656 |
+
- type: mrr_at_3
|
657 |
+
value: 39.117000000000004
|
658 |
+
- type: mrr_at_5
|
659 |
+
value: 40.35
|
660 |
+
- type: ndcg_at_1
|
661 |
+
value: 32.647999999999996
|
662 |
+
- type: ndcg_at_10
|
663 |
+
value: 41.629
|
664 |
+
- type: ndcg_at_100
|
665 |
+
value: 47.707
|
666 |
+
- type: ndcg_at_1000
|
667 |
+
value: 49.913000000000004
|
668 |
+
- type: ndcg_at_3
|
669 |
+
value: 36.598000000000006
|
670 |
+
- type: ndcg_at_5
|
671 |
+
value: 38.696000000000005
|
672 |
+
- type: precision_at_1
|
673 |
+
value: 32.647999999999996
|
674 |
+
- type: precision_at_10
|
675 |
+
value: 7.704999999999999
|
676 |
+
- type: precision_at_100
|
677 |
+
value: 1.242
|
678 |
+
- type: precision_at_1000
|
679 |
+
value: 0.16
|
680 |
+
- type: precision_at_3
|
681 |
+
value: 17.314
|
682 |
+
- type: precision_at_5
|
683 |
+
value: 12.374
|
684 |
+
- type: recall_at_1
|
685 |
+
value: 26.71
|
686 |
+
- type: recall_at_10
|
687 |
+
value: 52.898
|
688 |
+
- type: recall_at_100
|
689 |
+
value: 79.08
|
690 |
+
- type: recall_at_1000
|
691 |
+
value: 93.94
|
692 |
+
- type: recall_at_3
|
693 |
+
value: 38.731
|
694 |
+
- type: recall_at_5
|
695 |
+
value: 44.433
|
696 |
+
- task:
|
697 |
+
type: Retrieval
|
698 |
+
dataset:
|
699 |
+
type: BeIR/cqadupstack
|
700 |
+
name: MTEB CQADupstackRetrieval
|
701 |
+
config: default
|
702 |
+
split: test
|
703 |
+
revision: None
|
704 |
+
metrics:
|
705 |
+
- type: map_at_1
|
706 |
+
value: 26.510999999999996
|
707 |
+
- type: map_at_10
|
708 |
+
value: 35.755333333333326
|
709 |
+
- type: map_at_100
|
710 |
+
value: 36.97525
|
711 |
+
- type: map_at_1000
|
712 |
+
value: 37.08741666666667
|
713 |
+
- type: map_at_3
|
714 |
+
value: 32.921
|
715 |
+
- type: map_at_5
|
716 |
+
value: 34.45041666666667
|
717 |
+
- type: mrr_at_1
|
718 |
+
value: 31.578416666666666
|
719 |
+
- type: mrr_at_10
|
720 |
+
value: 40.06066666666667
|
721 |
+
- type: mrr_at_100
|
722 |
+
value: 40.93350000000001
|
723 |
+
- type: mrr_at_1000
|
724 |
+
value: 40.98716666666667
|
725 |
+
- type: mrr_at_3
|
726 |
+
value: 37.710499999999996
|
727 |
+
- type: mrr_at_5
|
728 |
+
value: 39.033249999999995
|
729 |
+
- type: ndcg_at_1
|
730 |
+
value: 31.578416666666666
|
731 |
+
- type: ndcg_at_10
|
732 |
+
value: 41.138666666666666
|
733 |
+
- type: ndcg_at_100
|
734 |
+
value: 46.37291666666666
|
735 |
+
- type: ndcg_at_1000
|
736 |
+
value: 48.587500000000006
|
737 |
+
- type: ndcg_at_3
|
738 |
+
value: 36.397083333333335
|
739 |
+
- type: ndcg_at_5
|
740 |
+
value: 38.539
|
741 |
+
- type: precision_at_1
|
742 |
+
value: 31.578416666666666
|
743 |
+
- type: precision_at_10
|
744 |
+
value: 7.221583333333332
|
745 |
+
- type: precision_at_100
|
746 |
+
value: 1.1581666666666668
|
747 |
+
- type: precision_at_1000
|
748 |
+
value: 0.15416666666666667
|
749 |
+
- type: precision_at_3
|
750 |
+
value: 16.758
|
751 |
+
- type: precision_at_5
|
752 |
+
value: 11.830916666666665
|
753 |
+
- type: recall_at_1
|
754 |
+
value: 26.510999999999996
|
755 |
+
- type: recall_at_10
|
756 |
+
value: 52.7825
|
757 |
+
- type: recall_at_100
|
758 |
+
value: 75.79675
|
759 |
+
- type: recall_at_1000
|
760 |
+
value: 91.10483333333335
|
761 |
+
- type: recall_at_3
|
762 |
+
value: 39.48233333333334
|
763 |
+
- type: recall_at_5
|
764 |
+
value: 45.07116666666667
|
765 |
+
- task:
|
766 |
+
type: Retrieval
|
767 |
+
dataset:
|
768 |
+
type: BeIR/cqadupstack
|
769 |
+
name: MTEB CQADupstackStatsRetrieval
|
770 |
+
config: default
|
771 |
+
split: test
|
772 |
+
revision: None
|
773 |
+
metrics:
|
774 |
+
- type: map_at_1
|
775 |
+
value: 24.564
|
776 |
+
- type: map_at_10
|
777 |
+
value: 31.235000000000003
|
778 |
+
- type: map_at_100
|
779 |
+
value: 32.124
|
780 |
+
- type: map_at_1000
|
781 |
+
value: 32.216
|
782 |
+
- type: map_at_3
|
783 |
+
value: 29.330000000000002
|
784 |
+
- type: map_at_5
|
785 |
+
value: 30.379
|
786 |
+
- type: mrr_at_1
|
787 |
+
value: 27.761000000000003
|
788 |
+
- type: mrr_at_10
|
789 |
+
value: 34.093
|
790 |
+
- type: mrr_at_100
|
791 |
+
value: 34.885
|
792 |
+
- type: mrr_at_1000
|
793 |
+
value: 34.957
|
794 |
+
- type: mrr_at_3
|
795 |
+
value: 32.388
|
796 |
+
- type: mrr_at_5
|
797 |
+
value: 33.269
|
798 |
+
- type: ndcg_at_1
|
799 |
+
value: 27.761000000000003
|
800 |
+
- type: ndcg_at_10
|
801 |
+
value: 35.146
|
802 |
+
- type: ndcg_at_100
|
803 |
+
value: 39.597
|
804 |
+
- type: ndcg_at_1000
|
805 |
+
value: 42.163000000000004
|
806 |
+
- type: ndcg_at_3
|
807 |
+
value: 31.674000000000003
|
808 |
+
- type: ndcg_at_5
|
809 |
+
value: 33.224
|
810 |
+
- type: precision_at_1
|
811 |
+
value: 27.761000000000003
|
812 |
+
- type: precision_at_10
|
813 |
+
value: 5.383
|
814 |
+
- type: precision_at_100
|
815 |
+
value: 0.836
|
816 |
+
- type: precision_at_1000
|
817 |
+
value: 0.11199999999999999
|
818 |
+
- type: precision_at_3
|
819 |
+
value: 13.599
|
820 |
+
- type: precision_at_5
|
821 |
+
value: 9.202
|
822 |
+
- type: recall_at_1
|
823 |
+
value: 24.564
|
824 |
+
- type: recall_at_10
|
825 |
+
value: 44.36
|
826 |
+
- type: recall_at_100
|
827 |
+
value: 64.408
|
828 |
+
- type: recall_at_1000
|
829 |
+
value: 83.892
|
830 |
+
- type: recall_at_3
|
831 |
+
value: 34.653
|
832 |
+
- type: recall_at_5
|
833 |
+
value: 38.589
|
834 |
+
- task:
|
835 |
+
type: Retrieval
|
836 |
+
dataset:
|
837 |
+
type: BeIR/cqadupstack
|
838 |
+
name: MTEB CQADupstackTexRetrieval
|
839 |
+
config: default
|
840 |
+
split: test
|
841 |
+
revision: None
|
842 |
+
metrics:
|
843 |
+
- type: map_at_1
|
844 |
+
value: 17.01
|
845 |
+
- type: map_at_10
|
846 |
+
value: 24.485
|
847 |
+
- type: map_at_100
|
848 |
+
value: 25.573
|
849 |
+
- type: map_at_1000
|
850 |
+
value: 25.703
|
851 |
+
- type: map_at_3
|
852 |
+
value: 21.953
|
853 |
+
- type: map_at_5
|
854 |
+
value: 23.294999999999998
|
855 |
+
- type: mrr_at_1
|
856 |
+
value: 20.544
|
857 |
+
- type: mrr_at_10
|
858 |
+
value: 28.238000000000003
|
859 |
+
- type: mrr_at_100
|
860 |
+
value: 29.142000000000003
|
861 |
+
- type: mrr_at_1000
|
862 |
+
value: 29.219
|
863 |
+
- type: mrr_at_3
|
864 |
+
value: 25.802999999999997
|
865 |
+
- type: mrr_at_5
|
866 |
+
value: 27.105
|
867 |
+
- type: ndcg_at_1
|
868 |
+
value: 20.544
|
869 |
+
- type: ndcg_at_10
|
870 |
+
value: 29.387999999999998
|
871 |
+
- type: ndcg_at_100
|
872 |
+
value: 34.603
|
873 |
+
- type: ndcg_at_1000
|
874 |
+
value: 37.564
|
875 |
+
- type: ndcg_at_3
|
876 |
+
value: 24.731
|
877 |
+
- type: ndcg_at_5
|
878 |
+
value: 26.773000000000003
|
879 |
+
- type: precision_at_1
|
880 |
+
value: 20.544
|
881 |
+
- type: precision_at_10
|
882 |
+
value: 5.509
|
883 |
+
- type: precision_at_100
|
884 |
+
value: 0.9450000000000001
|
885 |
+
- type: precision_at_1000
|
886 |
+
value: 0.13799999999999998
|
887 |
+
- type: precision_at_3
|
888 |
+
value: 11.757
|
889 |
+
- type: precision_at_5
|
890 |
+
value: 8.596
|
891 |
+
- type: recall_at_1
|
892 |
+
value: 17.01
|
893 |
+
- type: recall_at_10
|
894 |
+
value: 40.392
|
895 |
+
- type: recall_at_100
|
896 |
+
value: 64.043
|
897 |
+
- type: recall_at_1000
|
898 |
+
value: 85.031
|
899 |
+
- type: recall_at_3
|
900 |
+
value: 27.293
|
901 |
+
- type: recall_at_5
|
902 |
+
value: 32.586999999999996
|
903 |
+
- task:
|
904 |
+
type: Retrieval
|
905 |
+
dataset:
|
906 |
+
type: BeIR/cqadupstack
|
907 |
+
name: MTEB CQADupstackUnixRetrieval
|
908 |
+
config: default
|
909 |
+
split: test
|
910 |
+
revision: None
|
911 |
+
metrics:
|
912 |
+
- type: map_at_1
|
913 |
+
value: 27.155
|
914 |
+
- type: map_at_10
|
915 |
+
value: 35.92
|
916 |
+
- type: map_at_100
|
917 |
+
value: 37.034
|
918 |
+
- type: map_at_1000
|
919 |
+
value: 37.139
|
920 |
+
- type: map_at_3
|
921 |
+
value: 33.263999999999996
|
922 |
+
- type: map_at_5
|
923 |
+
value: 34.61
|
924 |
+
- type: mrr_at_1
|
925 |
+
value: 32.183
|
926 |
+
- type: mrr_at_10
|
927 |
+
value: 40.099000000000004
|
928 |
+
- type: mrr_at_100
|
929 |
+
value: 41.001
|
930 |
+
- type: mrr_at_1000
|
931 |
+
value: 41.059
|
932 |
+
- type: mrr_at_3
|
933 |
+
value: 37.889
|
934 |
+
- type: mrr_at_5
|
935 |
+
value: 39.007999999999996
|
936 |
+
- type: ndcg_at_1
|
937 |
+
value: 32.183
|
938 |
+
- type: ndcg_at_10
|
939 |
+
value: 41.127
|
940 |
+
- type: ndcg_at_100
|
941 |
+
value: 46.464
|
942 |
+
- type: ndcg_at_1000
|
943 |
+
value: 48.67
|
944 |
+
- type: ndcg_at_3
|
945 |
+
value: 36.396
|
946 |
+
- type: ndcg_at_5
|
947 |
+
value: 38.313
|
948 |
+
- type: precision_at_1
|
949 |
+
value: 32.183
|
950 |
+
- type: precision_at_10
|
951 |
+
value: 6.847
|
952 |
+
- type: precision_at_100
|
953 |
+
value: 1.0739999999999998
|
954 |
+
- type: precision_at_1000
|
955 |
+
value: 0.13699999999999998
|
956 |
+
- type: precision_at_3
|
957 |
+
value: 16.356
|
958 |
+
- type: precision_at_5
|
959 |
+
value: 11.362
|
960 |
+
- type: recall_at_1
|
961 |
+
value: 27.155
|
962 |
+
- type: recall_at_10
|
963 |
+
value: 52.922000000000004
|
964 |
+
- type: recall_at_100
|
965 |
+
value: 76.39
|
966 |
+
- type: recall_at_1000
|
967 |
+
value: 91.553
|
968 |
+
- type: recall_at_3
|
969 |
+
value: 39.745999999999995
|
970 |
+
- type: recall_at_5
|
971 |
+
value: 44.637
|
972 |
+
- task:
|
973 |
+
type: Retrieval
|
974 |
+
dataset:
|
975 |
+
type: BeIR/cqadupstack
|
976 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
977 |
+
config: default
|
978 |
+
split: test
|
979 |
+
revision: None
|
980 |
+
metrics:
|
981 |
+
- type: map_at_1
|
982 |
+
value: 25.523
|
983 |
+
- type: map_at_10
|
984 |
+
value: 34.268
|
985 |
+
- type: map_at_100
|
986 |
+
value: 35.835
|
987 |
+
- type: map_at_1000
|
988 |
+
value: 36.046
|
989 |
+
- type: map_at_3
|
990 |
+
value: 31.662000000000003
|
991 |
+
- type: map_at_5
|
992 |
+
value: 32.71
|
993 |
+
- type: mrr_at_1
|
994 |
+
value: 31.028
|
995 |
+
- type: mrr_at_10
|
996 |
+
value: 38.924
|
997 |
+
- type: mrr_at_100
|
998 |
+
value: 39.95
|
999 |
+
- type: mrr_at_1000
|
1000 |
+
value: 40.003
|
1001 |
+
- type: mrr_at_3
|
1002 |
+
value: 36.594
|
1003 |
+
- type: mrr_at_5
|
1004 |
+
value: 37.701
|
1005 |
+
- type: ndcg_at_1
|
1006 |
+
value: 31.028
|
1007 |
+
- type: ndcg_at_10
|
1008 |
+
value: 39.848
|
1009 |
+
- type: ndcg_at_100
|
1010 |
+
value: 45.721000000000004
|
1011 |
+
- type: ndcg_at_1000
|
1012 |
+
value: 48.424
|
1013 |
+
- type: ndcg_at_3
|
1014 |
+
value: 35.329
|
1015 |
+
- type: ndcg_at_5
|
1016 |
+
value: 36.779
|
1017 |
+
- type: precision_at_1
|
1018 |
+
value: 31.028
|
1019 |
+
- type: precision_at_10
|
1020 |
+
value: 7.51
|
1021 |
+
- type: precision_at_100
|
1022 |
+
value: 1.478
|
1023 |
+
- type: precision_at_1000
|
1024 |
+
value: 0.24
|
1025 |
+
- type: precision_at_3
|
1026 |
+
value: 16.337
|
1027 |
+
- type: precision_at_5
|
1028 |
+
value: 11.383000000000001
|
1029 |
+
- type: recall_at_1
|
1030 |
+
value: 25.523
|
1031 |
+
- type: recall_at_10
|
1032 |
+
value: 50.735
|
1033 |
+
- type: recall_at_100
|
1034 |
+
value: 76.593
|
1035 |
+
- type: recall_at_1000
|
1036 |
+
value: 93.771
|
1037 |
+
- type: recall_at_3
|
1038 |
+
value: 37.574000000000005
|
1039 |
+
- type: recall_at_5
|
1040 |
+
value: 41.602
|
1041 |
+
- task:
|
1042 |
+
type: Retrieval
|
1043 |
+
dataset:
|
1044 |
+
type: BeIR/cqadupstack
|
1045 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1046 |
+
config: default
|
1047 |
+
split: test
|
1048 |
+
revision: None
|
1049 |
+
metrics:
|
1050 |
+
- type: map_at_1
|
1051 |
+
value: 20.746000000000002
|
1052 |
+
- type: map_at_10
|
1053 |
+
value: 28.557
|
1054 |
+
- type: map_at_100
|
1055 |
+
value: 29.575000000000003
|
1056 |
+
- type: map_at_1000
|
1057 |
+
value: 29.659000000000002
|
1058 |
+
- type: map_at_3
|
1059 |
+
value: 25.753999999999998
|
1060 |
+
- type: map_at_5
|
1061 |
+
value: 27.254
|
1062 |
+
- type: mrr_at_1
|
1063 |
+
value: 22.736
|
1064 |
+
- type: mrr_at_10
|
1065 |
+
value: 30.769000000000002
|
1066 |
+
- type: mrr_at_100
|
1067 |
+
value: 31.655
|
1068 |
+
- type: mrr_at_1000
|
1069 |
+
value: 31.717000000000002
|
1070 |
+
- type: mrr_at_3
|
1071 |
+
value: 28.065
|
1072 |
+
- type: mrr_at_5
|
1073 |
+
value: 29.543999999999997
|
1074 |
+
- type: ndcg_at_1
|
1075 |
+
value: 22.736
|
1076 |
+
- type: ndcg_at_10
|
1077 |
+
value: 33.545
|
1078 |
+
- type: ndcg_at_100
|
1079 |
+
value: 38.743
|
1080 |
+
- type: ndcg_at_1000
|
1081 |
+
value: 41.002
|
1082 |
+
- type: ndcg_at_3
|
1083 |
+
value: 28.021
|
1084 |
+
- type: ndcg_at_5
|
1085 |
+
value: 30.586999999999996
|
1086 |
+
- type: precision_at_1
|
1087 |
+
value: 22.736
|
1088 |
+
- type: precision_at_10
|
1089 |
+
value: 5.416
|
1090 |
+
- type: precision_at_100
|
1091 |
+
value: 0.8710000000000001
|
1092 |
+
- type: precision_at_1000
|
1093 |
+
value: 0.116
|
1094 |
+
- type: precision_at_3
|
1095 |
+
value: 11.953
|
1096 |
+
- type: precision_at_5
|
1097 |
+
value: 8.651
|
1098 |
+
- type: recall_at_1
|
1099 |
+
value: 20.746000000000002
|
1100 |
+
- type: recall_at_10
|
1101 |
+
value: 46.87
|
1102 |
+
- type: recall_at_100
|
1103 |
+
value: 71.25200000000001
|
1104 |
+
- type: recall_at_1000
|
1105 |
+
value: 88.26
|
1106 |
+
- type: recall_at_3
|
1107 |
+
value: 32.029999999999994
|
1108 |
+
- type: recall_at_5
|
1109 |
+
value: 38.21
|
1110 |
+
- task:
|
1111 |
+
type: Retrieval
|
1112 |
+
dataset:
|
1113 |
+
type: climate-fever
|
1114 |
+
name: MTEB ClimateFEVER
|
1115 |
+
config: default
|
1116 |
+
split: test
|
1117 |
+
revision: None
|
1118 |
+
metrics:
|
1119 |
+
- type: map_at_1
|
1120 |
+
value: 12.105
|
1121 |
+
- type: map_at_10
|
1122 |
+
value: 20.577
|
1123 |
+
- type: map_at_100
|
1124 |
+
value: 22.686999999999998
|
1125 |
+
- type: map_at_1000
|
1126 |
+
value: 22.889
|
1127 |
+
- type: map_at_3
|
1128 |
+
value: 17.174
|
1129 |
+
- type: map_at_5
|
1130 |
+
value: 18.807
|
1131 |
+
- type: mrr_at_1
|
1132 |
+
value: 27.101
|
1133 |
+
- type: mrr_at_10
|
1134 |
+
value: 38.475
|
1135 |
+
- type: mrr_at_100
|
1136 |
+
value: 39.491
|
1137 |
+
- type: mrr_at_1000
|
1138 |
+
value: 39.525
|
1139 |
+
- type: mrr_at_3
|
1140 |
+
value: 34.886
|
1141 |
+
- type: mrr_at_5
|
1142 |
+
value: 36.922
|
1143 |
+
- type: ndcg_at_1
|
1144 |
+
value: 27.101
|
1145 |
+
- type: ndcg_at_10
|
1146 |
+
value: 29.002
|
1147 |
+
- type: ndcg_at_100
|
1148 |
+
value: 37.218
|
1149 |
+
- type: ndcg_at_1000
|
1150 |
+
value: 40.644000000000005
|
1151 |
+
- type: ndcg_at_3
|
1152 |
+
value: 23.464
|
1153 |
+
- type: ndcg_at_5
|
1154 |
+
value: 25.262
|
1155 |
+
- type: precision_at_1
|
1156 |
+
value: 27.101
|
1157 |
+
- type: precision_at_10
|
1158 |
+
value: 9.179
|
1159 |
+
- type: precision_at_100
|
1160 |
+
value: 1.806
|
1161 |
+
- type: precision_at_1000
|
1162 |
+
value: 0.244
|
1163 |
+
- type: precision_at_3
|
1164 |
+
value: 17.394000000000002
|
1165 |
+
- type: precision_at_5
|
1166 |
+
value: 13.342
|
1167 |
+
- type: recall_at_1
|
1168 |
+
value: 12.105
|
1169 |
+
- type: recall_at_10
|
1170 |
+
value: 35.143
|
1171 |
+
- type: recall_at_100
|
1172 |
+
value: 63.44499999999999
|
1173 |
+
- type: recall_at_1000
|
1174 |
+
value: 82.49499999999999
|
1175 |
+
- type: recall_at_3
|
1176 |
+
value: 21.489
|
1177 |
+
- type: recall_at_5
|
1178 |
+
value: 26.82
|
1179 |
+
- task:
|
1180 |
+
type: Retrieval
|
1181 |
+
dataset:
|
1182 |
+
type: dbpedia-entity
|
1183 |
+
name: MTEB DBPedia
|
1184 |
+
config: default
|
1185 |
+
split: test
|
1186 |
+
revision: None
|
1187 |
+
metrics:
|
1188 |
+
- type: map_at_1
|
1189 |
+
value: 8.769
|
1190 |
+
- type: map_at_10
|
1191 |
+
value: 18.619
|
1192 |
+
- type: map_at_100
|
1193 |
+
value: 26.3
|
1194 |
+
- type: map_at_1000
|
1195 |
+
value: 28.063
|
1196 |
+
- type: map_at_3
|
1197 |
+
value: 13.746
|
1198 |
+
- type: map_at_5
|
1199 |
+
value: 16.035
|
1200 |
+
- type: mrr_at_1
|
1201 |
+
value: 65.25
|
1202 |
+
- type: mrr_at_10
|
1203 |
+
value: 73.678
|
1204 |
+
- type: mrr_at_100
|
1205 |
+
value: 73.993
|
1206 |
+
- type: mrr_at_1000
|
1207 |
+
value: 74.003
|
1208 |
+
- type: mrr_at_3
|
1209 |
+
value: 72.042
|
1210 |
+
- type: mrr_at_5
|
1211 |
+
value: 72.992
|
1212 |
+
- type: ndcg_at_1
|
1213 |
+
value: 53.625
|
1214 |
+
- type: ndcg_at_10
|
1215 |
+
value: 39.638
|
1216 |
+
- type: ndcg_at_100
|
1217 |
+
value: 44.601
|
1218 |
+
- type: ndcg_at_1000
|
1219 |
+
value: 52.80200000000001
|
1220 |
+
- type: ndcg_at_3
|
1221 |
+
value: 44.727
|
1222 |
+
- type: ndcg_at_5
|
1223 |
+
value: 42.199
|
1224 |
+
- type: precision_at_1
|
1225 |
+
value: 65.25
|
1226 |
+
- type: precision_at_10
|
1227 |
+
value: 31.025000000000002
|
1228 |
+
- type: precision_at_100
|
1229 |
+
value: 10.174999999999999
|
1230 |
+
- type: precision_at_1000
|
1231 |
+
value: 2.0740000000000003
|
1232 |
+
- type: precision_at_3
|
1233 |
+
value: 48.083
|
1234 |
+
- type: precision_at_5
|
1235 |
+
value: 40.6
|
1236 |
+
- type: recall_at_1
|
1237 |
+
value: 8.769
|
1238 |
+
- type: recall_at_10
|
1239 |
+
value: 23.910999999999998
|
1240 |
+
- type: recall_at_100
|
1241 |
+
value: 51.202999999999996
|
1242 |
+
- type: recall_at_1000
|
1243 |
+
value: 77.031
|
1244 |
+
- type: recall_at_3
|
1245 |
+
value: 15.387999999999998
|
1246 |
+
- type: recall_at_5
|
1247 |
+
value: 18.919
|
1248 |
+
- task:
|
1249 |
+
type: Classification
|
1250 |
+
dataset:
|
1251 |
+
type: mteb/emotion
|
1252 |
+
name: MTEB EmotionClassification
|
1253 |
+
config: default
|
1254 |
+
split: test
|
1255 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1256 |
+
metrics:
|
1257 |
+
- type: accuracy
|
1258 |
+
value: 54.47
|
1259 |
+
- type: f1
|
1260 |
+
value: 48.21839043361556
|
1261 |
+
- task:
|
1262 |
+
type: Retrieval
|
1263 |
+
dataset:
|
1264 |
+
type: fever
|
1265 |
+
name: MTEB FEVER
|
1266 |
+
config: default
|
1267 |
+
split: test
|
1268 |
+
revision: None
|
1269 |
+
metrics:
|
1270 |
+
- type: map_at_1
|
1271 |
+
value: 63.564
|
1272 |
+
- type: map_at_10
|
1273 |
+
value: 74.236
|
1274 |
+
- type: map_at_100
|
1275 |
+
value: 74.53699999999999
|
1276 |
+
- type: map_at_1000
|
1277 |
+
value: 74.557
|
1278 |
+
- type: map_at_3
|
1279 |
+
value: 72.556
|
1280 |
+
- type: map_at_5
|
1281 |
+
value: 73.656
|
1282 |
+
- type: mrr_at_1
|
1283 |
+
value: 68.497
|
1284 |
+
- type: mrr_at_10
|
1285 |
+
value: 78.373
|
1286 |
+
- type: mrr_at_100
|
1287 |
+
value: 78.54299999999999
|
1288 |
+
- type: mrr_at_1000
|
1289 |
+
value: 78.549
|
1290 |
+
- type: mrr_at_3
|
1291 |
+
value: 77.03
|
1292 |
+
- type: mrr_at_5
|
1293 |
+
value: 77.938
|
1294 |
+
- type: ndcg_at_1
|
1295 |
+
value: 68.497
|
1296 |
+
- type: ndcg_at_10
|
1297 |
+
value: 79.12599999999999
|
1298 |
+
- type: ndcg_at_100
|
1299 |
+
value: 80.319
|
1300 |
+
- type: ndcg_at_1000
|
1301 |
+
value: 80.71199999999999
|
1302 |
+
- type: ndcg_at_3
|
1303 |
+
value: 76.209
|
1304 |
+
- type: ndcg_at_5
|
1305 |
+
value: 77.90700000000001
|
1306 |
+
- type: precision_at_1
|
1307 |
+
value: 68.497
|
1308 |
+
- type: precision_at_10
|
1309 |
+
value: 9.958
|
1310 |
+
- type: precision_at_100
|
1311 |
+
value: 1.077
|
1312 |
+
- type: precision_at_1000
|
1313 |
+
value: 0.11299999999999999
|
1314 |
+
- type: precision_at_3
|
1315 |
+
value: 29.908
|
1316 |
+
- type: precision_at_5
|
1317 |
+
value: 18.971
|
1318 |
+
- type: recall_at_1
|
1319 |
+
value: 63.564
|
1320 |
+
- type: recall_at_10
|
1321 |
+
value: 90.05199999999999
|
1322 |
+
- type: recall_at_100
|
1323 |
+
value: 95.028
|
1324 |
+
- type: recall_at_1000
|
1325 |
+
value: 97.667
|
1326 |
+
- type: recall_at_3
|
1327 |
+
value: 82.17999999999999
|
1328 |
+
- type: recall_at_5
|
1329 |
+
value: 86.388
|
1330 |
+
- task:
|
1331 |
+
type: Retrieval
|
1332 |
+
dataset:
|
1333 |
+
type: fiqa
|
1334 |
+
name: MTEB FiQA2018
|
1335 |
+
config: default
|
1336 |
+
split: test
|
1337 |
+
revision: None
|
1338 |
+
metrics:
|
1339 |
+
- type: map_at_1
|
1340 |
+
value: 19.042
|
1341 |
+
- type: map_at_10
|
1342 |
+
value: 30.764999999999997
|
1343 |
+
- type: map_at_100
|
1344 |
+
value: 32.678000000000004
|
1345 |
+
- type: map_at_1000
|
1346 |
+
value: 32.881
|
1347 |
+
- type: map_at_3
|
1348 |
+
value: 26.525
|
1349 |
+
- type: map_at_5
|
1350 |
+
value: 28.932000000000002
|
1351 |
+
- type: mrr_at_1
|
1352 |
+
value: 37.653999999999996
|
1353 |
+
- type: mrr_at_10
|
1354 |
+
value: 46.597
|
1355 |
+
- type: mrr_at_100
|
1356 |
+
value: 47.413
|
1357 |
+
- type: mrr_at_1000
|
1358 |
+
value: 47.453
|
1359 |
+
- type: mrr_at_3
|
1360 |
+
value: 43.775999999999996
|
1361 |
+
- type: mrr_at_5
|
1362 |
+
value: 45.489000000000004
|
1363 |
+
- type: ndcg_at_1
|
1364 |
+
value: 37.653999999999996
|
1365 |
+
- type: ndcg_at_10
|
1366 |
+
value: 38.615
|
1367 |
+
- type: ndcg_at_100
|
1368 |
+
value: 45.513999999999996
|
1369 |
+
- type: ndcg_at_1000
|
1370 |
+
value: 48.815999999999995
|
1371 |
+
- type: ndcg_at_3
|
1372 |
+
value: 34.427
|
1373 |
+
- type: ndcg_at_5
|
1374 |
+
value: 35.954
|
1375 |
+
- type: precision_at_1
|
1376 |
+
value: 37.653999999999996
|
1377 |
+
- type: precision_at_10
|
1378 |
+
value: 10.864
|
1379 |
+
- type: precision_at_100
|
1380 |
+
value: 1.7850000000000001
|
1381 |
+
- type: precision_at_1000
|
1382 |
+
value: 0.23800000000000002
|
1383 |
+
- type: precision_at_3
|
1384 |
+
value: 22.788
|
1385 |
+
- type: precision_at_5
|
1386 |
+
value: 17.346
|
1387 |
+
- type: recall_at_1
|
1388 |
+
value: 19.042
|
1389 |
+
- type: recall_at_10
|
1390 |
+
value: 45.707
|
1391 |
+
- type: recall_at_100
|
1392 |
+
value: 71.152
|
1393 |
+
- type: recall_at_1000
|
1394 |
+
value: 90.7
|
1395 |
+
- type: recall_at_3
|
1396 |
+
value: 30.814000000000004
|
1397 |
+
- type: recall_at_5
|
1398 |
+
value: 37.478
|
1399 |
+
- task:
|
1400 |
+
type: Retrieval
|
1401 |
+
dataset:
|
1402 |
+
type: hotpotqa
|
1403 |
+
name: MTEB HotpotQA
|
1404 |
+
config: default
|
1405 |
+
split: test
|
1406 |
+
revision: None
|
1407 |
+
metrics:
|
1408 |
+
- type: map_at_1
|
1409 |
+
value: 38.001000000000005
|
1410 |
+
- type: map_at_10
|
1411 |
+
value: 59.611000000000004
|
1412 |
+
- type: map_at_100
|
1413 |
+
value: 60.582
|
1414 |
+
- type: map_at_1000
|
1415 |
+
value: 60.646
|
1416 |
+
- type: map_at_3
|
1417 |
+
value: 56.031
|
1418 |
+
- type: map_at_5
|
1419 |
+
value: 58.243
|
1420 |
+
- type: mrr_at_1
|
1421 |
+
value: 76.003
|
1422 |
+
- type: mrr_at_10
|
1423 |
+
value: 82.15400000000001
|
1424 |
+
- type: mrr_at_100
|
1425 |
+
value: 82.377
|
1426 |
+
- type: mrr_at_1000
|
1427 |
+
value: 82.383
|
1428 |
+
- type: mrr_at_3
|
1429 |
+
value: 81.092
|
1430 |
+
- type: mrr_at_5
|
1431 |
+
value: 81.742
|
1432 |
+
- type: ndcg_at_1
|
1433 |
+
value: 76.003
|
1434 |
+
- type: ndcg_at_10
|
1435 |
+
value: 68.216
|
1436 |
+
- type: ndcg_at_100
|
1437 |
+
value: 71.601
|
1438 |
+
- type: ndcg_at_1000
|
1439 |
+
value: 72.821
|
1440 |
+
- type: ndcg_at_3
|
1441 |
+
value: 63.109
|
1442 |
+
- type: ndcg_at_5
|
1443 |
+
value: 65.902
|
1444 |
+
- type: precision_at_1
|
1445 |
+
value: 76.003
|
1446 |
+
- type: precision_at_10
|
1447 |
+
value: 14.379
|
1448 |
+
- type: precision_at_100
|
1449 |
+
value: 1.702
|
1450 |
+
- type: precision_at_1000
|
1451 |
+
value: 0.186
|
1452 |
+
- type: precision_at_3
|
1453 |
+
value: 40.396
|
1454 |
+
- type: precision_at_5
|
1455 |
+
value: 26.442
|
1456 |
+
- type: recall_at_1
|
1457 |
+
value: 38.001000000000005
|
1458 |
+
- type: recall_at_10
|
1459 |
+
value: 71.897
|
1460 |
+
- type: recall_at_100
|
1461 |
+
value: 85.105
|
1462 |
+
- type: recall_at_1000
|
1463 |
+
value: 93.133
|
1464 |
+
- type: recall_at_3
|
1465 |
+
value: 60.594
|
1466 |
+
- type: recall_at_5
|
1467 |
+
value: 66.104
|
1468 |
+
- task:
|
1469 |
+
type: Classification
|
1470 |
+
dataset:
|
1471 |
+
type: mteb/imdb
|
1472 |
+
name: MTEB ImdbClassification
|
1473 |
+
config: default
|
1474 |
+
split: test
|
1475 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1476 |
+
metrics:
|
1477 |
+
- type: accuracy
|
1478 |
+
value: 91.31280000000001
|
1479 |
+
- type: ap
|
1480 |
+
value: 87.53723467501632
|
1481 |
+
- type: f1
|
1482 |
+
value: 91.30282906596291
|
1483 |
+
- task:
|
1484 |
+
type: Retrieval
|
1485 |
+
dataset:
|
1486 |
+
type: msmarco
|
1487 |
+
name: MTEB MSMARCO
|
1488 |
+
config: default
|
1489 |
+
split: dev
|
1490 |
+
revision: None
|
1491 |
+
metrics:
|
1492 |
+
- type: map_at_1
|
1493 |
+
value: 21.917
|
1494 |
+
- type: map_at_10
|
1495 |
+
value: 34.117999999999995
|
1496 |
+
- type: map_at_100
|
1497 |
+
value: 35.283
|
1498 |
+
- type: map_at_1000
|
1499 |
+
value: 35.333999999999996
|
1500 |
+
- type: map_at_3
|
1501 |
+
value: 30.330000000000002
|
1502 |
+
- type: map_at_5
|
1503 |
+
value: 32.461
|
1504 |
+
- type: mrr_at_1
|
1505 |
+
value: 22.579
|
1506 |
+
- type: mrr_at_10
|
1507 |
+
value: 34.794000000000004
|
1508 |
+
- type: mrr_at_100
|
1509 |
+
value: 35.893
|
1510 |
+
- type: mrr_at_1000
|
1511 |
+
value: 35.937000000000005
|
1512 |
+
- type: mrr_at_3
|
1513 |
+
value: 31.091
|
1514 |
+
- type: mrr_at_5
|
1515 |
+
value: 33.173
|
1516 |
+
- type: ndcg_at_1
|
1517 |
+
value: 22.579
|
1518 |
+
- type: ndcg_at_10
|
1519 |
+
value: 40.951
|
1520 |
+
- type: ndcg_at_100
|
1521 |
+
value: 46.558
|
1522 |
+
- type: ndcg_at_1000
|
1523 |
+
value: 47.803000000000004
|
1524 |
+
- type: ndcg_at_3
|
1525 |
+
value: 33.262
|
1526 |
+
- type: ndcg_at_5
|
1527 |
+
value: 37.036
|
1528 |
+
- type: precision_at_1
|
1529 |
+
value: 22.579
|
1530 |
+
- type: precision_at_10
|
1531 |
+
value: 6.463000000000001
|
1532 |
+
- type: precision_at_100
|
1533 |
+
value: 0.928
|
1534 |
+
- type: precision_at_1000
|
1535 |
+
value: 0.104
|
1536 |
+
- type: precision_at_3
|
1537 |
+
value: 14.174000000000001
|
1538 |
+
- type: precision_at_5
|
1539 |
+
value: 10.421
|
1540 |
+
- type: recall_at_1
|
1541 |
+
value: 21.917
|
1542 |
+
- type: recall_at_10
|
1543 |
+
value: 61.885
|
1544 |
+
- type: recall_at_100
|
1545 |
+
value: 87.847
|
1546 |
+
- type: recall_at_1000
|
1547 |
+
value: 97.322
|
1548 |
+
- type: recall_at_3
|
1549 |
+
value: 41.010000000000005
|
1550 |
+
- type: recall_at_5
|
1551 |
+
value: 50.031000000000006
|
1552 |
+
- task:
|
1553 |
+
type: Classification
|
1554 |
+
dataset:
|
1555 |
+
type: mteb/mtop_domain
|
1556 |
+
name: MTEB MTOPDomainClassification (en)
|
1557 |
+
config: en
|
1558 |
+
split: test
|
1559 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1560 |
+
metrics:
|
1561 |
+
- type: accuracy
|
1562 |
+
value: 93.49521203830369
|
1563 |
+
- type: f1
|
1564 |
+
value: 93.30882341740241
|
1565 |
+
- task:
|
1566 |
+
type: Classification
|
1567 |
+
dataset:
|
1568 |
+
type: mteb/mtop_intent
|
1569 |
+
name: MTEB MTOPIntentClassification (en)
|
1570 |
+
config: en
|
1571 |
+
split: test
|
1572 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1573 |
+
metrics:
|
1574 |
+
- type: accuracy
|
1575 |
+
value: 71.0579115367077
|
1576 |
+
- type: f1
|
1577 |
+
value: 51.2368258319339
|
1578 |
+
- task:
|
1579 |
+
type: Classification
|
1580 |
+
dataset:
|
1581 |
+
type: mteb/amazon_massive_intent
|
1582 |
+
name: MTEB MassiveIntentClassification (en)
|
1583 |
+
config: en
|
1584 |
+
split: test
|
1585 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1586 |
+
metrics:
|
1587 |
+
- type: accuracy
|
1588 |
+
value: 73.88029589778077
|
1589 |
+
- type: f1
|
1590 |
+
value: 72.34422048584663
|
1591 |
+
- task:
|
1592 |
+
type: Classification
|
1593 |
+
dataset:
|
1594 |
+
type: mteb/amazon_massive_scenario
|
1595 |
+
name: MTEB MassiveScenarioClassification (en)
|
1596 |
+
config: en
|
1597 |
+
split: test
|
1598 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1599 |
+
metrics:
|
1600 |
+
- type: accuracy
|
1601 |
+
value: 78.2817753866846
|
1602 |
+
- type: f1
|
1603 |
+
value: 77.87746050004304
|
1604 |
+
- task:
|
1605 |
+
type: Clustering
|
1606 |
+
dataset:
|
1607 |
+
type: mteb/medrxiv-clustering-p2p
|
1608 |
+
name: MTEB MedrxivClusteringP2P
|
1609 |
+
config: default
|
1610 |
+
split: test
|
1611 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1612 |
+
metrics:
|
1613 |
+
- type: v_measure
|
1614 |
+
value: 33.247341454119216
|
1615 |
+
- task:
|
1616 |
+
type: Clustering
|
1617 |
+
dataset:
|
1618 |
+
type: mteb/medrxiv-clustering-s2s
|
1619 |
+
name: MTEB MedrxivClusteringS2S
|
1620 |
+
config: default
|
1621 |
+
split: test
|
1622 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1623 |
+
metrics:
|
1624 |
+
- type: v_measure
|
1625 |
+
value: 31.9647477166234
|
1626 |
+
- task:
|
1627 |
+
type: Reranking
|
1628 |
+
dataset:
|
1629 |
+
type: mteb/mind_small
|
1630 |
+
name: MTEB MindSmallReranking
|
1631 |
+
config: default
|
1632 |
+
split: test
|
1633 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1634 |
+
metrics:
|
1635 |
+
- type: map
|
1636 |
+
value: 31.90698374676892
|
1637 |
+
- type: mrr
|
1638 |
+
value: 33.07523683771251
|
1639 |
+
- task:
|
1640 |
+
type: Retrieval
|
1641 |
+
dataset:
|
1642 |
+
type: nfcorpus
|
1643 |
+
name: MTEB NFCorpus
|
1644 |
+
config: default
|
1645 |
+
split: test
|
1646 |
+
revision: None
|
1647 |
+
metrics:
|
1648 |
+
- type: map_at_1
|
1649 |
+
value: 6.717
|
1650 |
+
- type: map_at_10
|
1651 |
+
value: 14.566
|
1652 |
+
- type: map_at_100
|
1653 |
+
value: 18.465999999999998
|
1654 |
+
- type: map_at_1000
|
1655 |
+
value: 20.033
|
1656 |
+
- type: map_at_3
|
1657 |
+
value: 10.863
|
1658 |
+
- type: map_at_5
|
1659 |
+
value: 12.589
|
1660 |
+
- type: mrr_at_1
|
1661 |
+
value: 49.845
|
1662 |
+
- type: mrr_at_10
|
1663 |
+
value: 58.385
|
1664 |
+
- type: mrr_at_100
|
1665 |
+
value: 58.989999999999995
|
1666 |
+
- type: mrr_at_1000
|
1667 |
+
value: 59.028999999999996
|
1668 |
+
- type: mrr_at_3
|
1669 |
+
value: 56.76
|
1670 |
+
- type: mrr_at_5
|
1671 |
+
value: 57.766
|
1672 |
+
- type: ndcg_at_1
|
1673 |
+
value: 47.678
|
1674 |
+
- type: ndcg_at_10
|
1675 |
+
value: 37.511
|
1676 |
+
- type: ndcg_at_100
|
1677 |
+
value: 34.537
|
1678 |
+
- type: ndcg_at_1000
|
1679 |
+
value: 43.612
|
1680 |
+
- type: ndcg_at_3
|
1681 |
+
value: 43.713
|
1682 |
+
- type: ndcg_at_5
|
1683 |
+
value: 41.303
|
1684 |
+
- type: precision_at_1
|
1685 |
+
value: 49.845
|
1686 |
+
- type: precision_at_10
|
1687 |
+
value: 27.307
|
1688 |
+
- type: precision_at_100
|
1689 |
+
value: 8.746
|
1690 |
+
- type: precision_at_1000
|
1691 |
+
value: 2.182
|
1692 |
+
- type: precision_at_3
|
1693 |
+
value: 40.764
|
1694 |
+
- type: precision_at_5
|
1695 |
+
value: 35.232
|
1696 |
+
- type: recall_at_1
|
1697 |
+
value: 6.717
|
1698 |
+
- type: recall_at_10
|
1699 |
+
value: 18.107
|
1700 |
+
- type: recall_at_100
|
1701 |
+
value: 33.759
|
1702 |
+
- type: recall_at_1000
|
1703 |
+
value: 67.31
|
1704 |
+
- type: recall_at_3
|
1705 |
+
value: 11.68
|
1706 |
+
- type: recall_at_5
|
1707 |
+
value: 14.557999999999998
|
1708 |
+
- task:
|
1709 |
+
type: Retrieval
|
1710 |
+
dataset:
|
1711 |
+
type: nq
|
1712 |
+
name: MTEB NQ
|
1713 |
+
config: default
|
1714 |
+
split: test
|
1715 |
+
revision: None
|
1716 |
+
metrics:
|
1717 |
+
- type: map_at_1
|
1718 |
+
value: 27.633999999999997
|
1719 |
+
- type: map_at_10
|
1720 |
+
value: 42.400999999999996
|
1721 |
+
- type: map_at_100
|
1722 |
+
value: 43.561
|
1723 |
+
- type: map_at_1000
|
1724 |
+
value: 43.592
|
1725 |
+
- type: map_at_3
|
1726 |
+
value: 37.865
|
1727 |
+
- type: map_at_5
|
1728 |
+
value: 40.650999999999996
|
1729 |
+
- type: mrr_at_1
|
1730 |
+
value: 31.286
|
1731 |
+
- type: mrr_at_10
|
1732 |
+
value: 44.996
|
1733 |
+
- type: mrr_at_100
|
1734 |
+
value: 45.889
|
1735 |
+
- type: mrr_at_1000
|
1736 |
+
value: 45.911
|
1737 |
+
- type: mrr_at_3
|
1738 |
+
value: 41.126000000000005
|
1739 |
+
- type: mrr_at_5
|
1740 |
+
value: 43.536
|
1741 |
+
- type: ndcg_at_1
|
1742 |
+
value: 31.257
|
1743 |
+
- type: ndcg_at_10
|
1744 |
+
value: 50.197
|
1745 |
+
- type: ndcg_at_100
|
1746 |
+
value: 55.062
|
1747 |
+
- type: ndcg_at_1000
|
1748 |
+
value: 55.81700000000001
|
1749 |
+
- type: ndcg_at_3
|
1750 |
+
value: 41.650999999999996
|
1751 |
+
- type: ndcg_at_5
|
1752 |
+
value: 46.324
|
1753 |
+
- type: precision_at_1
|
1754 |
+
value: 31.257
|
1755 |
+
- type: precision_at_10
|
1756 |
+
value: 8.508000000000001
|
1757 |
+
- type: precision_at_100
|
1758 |
+
value: 1.121
|
1759 |
+
- type: precision_at_1000
|
1760 |
+
value: 0.11900000000000001
|
1761 |
+
- type: precision_at_3
|
1762 |
+
value: 19.1
|
1763 |
+
- type: precision_at_5
|
1764 |
+
value: 14.16
|
1765 |
+
- type: recall_at_1
|
1766 |
+
value: 27.633999999999997
|
1767 |
+
- type: recall_at_10
|
1768 |
+
value: 71.40100000000001
|
1769 |
+
- type: recall_at_100
|
1770 |
+
value: 92.463
|
1771 |
+
- type: recall_at_1000
|
1772 |
+
value: 98.13199999999999
|
1773 |
+
- type: recall_at_3
|
1774 |
+
value: 49.382
|
1775 |
+
- type: recall_at_5
|
1776 |
+
value: 60.144
|
1777 |
+
- task:
|
1778 |
+
type: Retrieval
|
1779 |
+
dataset:
|
1780 |
+
type: quora
|
1781 |
+
name: MTEB QuoraRetrieval
|
1782 |
+
config: default
|
1783 |
+
split: test
|
1784 |
+
revision: None
|
1785 |
+
metrics:
|
1786 |
+
- type: map_at_1
|
1787 |
+
value: 71.17099999999999
|
1788 |
+
- type: map_at_10
|
1789 |
+
value: 85.036
|
1790 |
+
- type: map_at_100
|
1791 |
+
value: 85.67099999999999
|
1792 |
+
- type: map_at_1000
|
1793 |
+
value: 85.68599999999999
|
1794 |
+
- type: map_at_3
|
1795 |
+
value: 82.086
|
1796 |
+
- type: map_at_5
|
1797 |
+
value: 83.956
|
1798 |
+
- type: mrr_at_1
|
1799 |
+
value: 82.04
|
1800 |
+
- type: mrr_at_10
|
1801 |
+
value: 88.018
|
1802 |
+
- type: mrr_at_100
|
1803 |
+
value: 88.114
|
1804 |
+
- type: mrr_at_1000
|
1805 |
+
value: 88.115
|
1806 |
+
- type: mrr_at_3
|
1807 |
+
value: 87.047
|
1808 |
+
- type: mrr_at_5
|
1809 |
+
value: 87.73100000000001
|
1810 |
+
- type: ndcg_at_1
|
1811 |
+
value: 82.03
|
1812 |
+
- type: ndcg_at_10
|
1813 |
+
value: 88.717
|
1814 |
+
- type: ndcg_at_100
|
1815 |
+
value: 89.904
|
1816 |
+
- type: ndcg_at_1000
|
1817 |
+
value: 89.991
|
1818 |
+
- type: ndcg_at_3
|
1819 |
+
value: 85.89099999999999
|
1820 |
+
- type: ndcg_at_5
|
1821 |
+
value: 87.485
|
1822 |
+
- type: precision_at_1
|
1823 |
+
value: 82.03
|
1824 |
+
- type: precision_at_10
|
1825 |
+
value: 13.444999999999999
|
1826 |
+
- type: precision_at_100
|
1827 |
+
value: 1.533
|
1828 |
+
- type: precision_at_1000
|
1829 |
+
value: 0.157
|
1830 |
+
- type: precision_at_3
|
1831 |
+
value: 37.537
|
1832 |
+
- type: precision_at_5
|
1833 |
+
value: 24.692
|
1834 |
+
- type: recall_at_1
|
1835 |
+
value: 71.17099999999999
|
1836 |
+
- type: recall_at_10
|
1837 |
+
value: 95.634
|
1838 |
+
- type: recall_at_100
|
1839 |
+
value: 99.614
|
1840 |
+
- type: recall_at_1000
|
1841 |
+
value: 99.99
|
1842 |
+
- type: recall_at_3
|
1843 |
+
value: 87.48
|
1844 |
+
- type: recall_at_5
|
1845 |
+
value: 91.996
|
1846 |
+
- task:
|
1847 |
+
type: Clustering
|
1848 |
+
dataset:
|
1849 |
+
type: mteb/reddit-clustering
|
1850 |
+
name: MTEB RedditClustering
|
1851 |
+
config: default
|
1852 |
+
split: test
|
1853 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1854 |
+
metrics:
|
1855 |
+
- type: v_measure
|
1856 |
+
value: 55.067219624685315
|
1857 |
+
- task:
|
1858 |
+
type: Clustering
|
1859 |
+
dataset:
|
1860 |
+
type: mteb/reddit-clustering-p2p
|
1861 |
+
name: MTEB RedditClusteringP2P
|
1862 |
+
config: default
|
1863 |
+
split: test
|
1864 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1865 |
+
metrics:
|
1866 |
+
- type: v_measure
|
1867 |
+
value: 62.121822992300444
|
1868 |
+
- task:
|
1869 |
+
type: Retrieval
|
1870 |
+
dataset:
|
1871 |
+
type: scidocs
|
1872 |
+
name: MTEB SCIDOCS
|
1873 |
+
config: default
|
1874 |
+
split: test
|
1875 |
+
revision: None
|
1876 |
+
metrics:
|
1877 |
+
- type: map_at_1
|
1878 |
+
value: 4.153
|
1879 |
+
- type: map_at_10
|
1880 |
+
value: 11.024000000000001
|
1881 |
+
- type: map_at_100
|
1882 |
+
value: 13.233
|
1883 |
+
- type: map_at_1000
|
1884 |
+
value: 13.62
|
1885 |
+
- type: map_at_3
|
1886 |
+
value: 7.779999999999999
|
1887 |
+
- type: map_at_5
|
1888 |
+
value: 9.529
|
1889 |
+
- type: mrr_at_1
|
1890 |
+
value: 20.599999999999998
|
1891 |
+
- type: mrr_at_10
|
1892 |
+
value: 31.361
|
1893 |
+
- type: mrr_at_100
|
1894 |
+
value: 32.738
|
1895 |
+
- type: mrr_at_1000
|
1896 |
+
value: 32.792
|
1897 |
+
- type: mrr_at_3
|
1898 |
+
value: 28.15
|
1899 |
+
- type: mrr_at_5
|
1900 |
+
value: 30.085
|
1901 |
+
- type: ndcg_at_1
|
1902 |
+
value: 20.599999999999998
|
1903 |
+
- type: ndcg_at_10
|
1904 |
+
value: 18.583
|
1905 |
+
- type: ndcg_at_100
|
1906 |
+
value: 27.590999999999998
|
1907 |
+
- type: ndcg_at_1000
|
1908 |
+
value: 34.001
|
1909 |
+
- type: ndcg_at_3
|
1910 |
+
value: 17.455000000000002
|
1911 |
+
- type: ndcg_at_5
|
1912 |
+
value: 15.588
|
1913 |
+
- type: precision_at_1
|
1914 |
+
value: 20.599999999999998
|
1915 |
+
- type: precision_at_10
|
1916 |
+
value: 9.74
|
1917 |
+
- type: precision_at_100
|
1918 |
+
value: 2.284
|
1919 |
+
- type: precision_at_1000
|
1920 |
+
value: 0.381
|
1921 |
+
- type: precision_at_3
|
1922 |
+
value: 16.533
|
1923 |
+
- type: precision_at_5
|
1924 |
+
value: 14.02
|
1925 |
+
- type: recall_at_1
|
1926 |
+
value: 4.153
|
1927 |
+
- type: recall_at_10
|
1928 |
+
value: 19.738
|
1929 |
+
- type: recall_at_100
|
1930 |
+
value: 46.322
|
1931 |
+
- type: recall_at_1000
|
1932 |
+
value: 77.378
|
1933 |
+
- type: recall_at_3
|
1934 |
+
value: 10.048
|
1935 |
+
- type: recall_at_5
|
1936 |
+
value: 14.233
|
1937 |
+
- task:
|
1938 |
+
type: STS
|
1939 |
+
dataset:
|
1940 |
+
type: mteb/sickr-sts
|
1941 |
+
name: MTEB SICK-R
|
1942 |
+
config: default
|
1943 |
+
split: test
|
1944 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1945 |
+
metrics:
|
1946 |
+
- type: cos_sim_pearson
|
1947 |
+
value: 85.07097501003639
|
1948 |
+
- type: cos_sim_spearman
|
1949 |
+
value: 81.05827848407056
|
1950 |
+
- type: euclidean_pearson
|
1951 |
+
value: 82.6279003372546
|
1952 |
+
- type: euclidean_spearman
|
1953 |
+
value: 81.00031515279802
|
1954 |
+
- type: manhattan_pearson
|
1955 |
+
value: 82.59338284959495
|
1956 |
+
- type: manhattan_spearman
|
1957 |
+
value: 80.97432711064945
|
1958 |
+
- task:
|
1959 |
+
type: STS
|
1960 |
+
dataset:
|
1961 |
+
type: mteb/sts12-sts
|
1962 |
+
name: MTEB STS12
|
1963 |
+
config: default
|
1964 |
+
split: test
|
1965 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1966 |
+
metrics:
|
1967 |
+
- type: cos_sim_pearson
|
1968 |
+
value: 86.28991993621685
|
1969 |
+
- type: cos_sim_spearman
|
1970 |
+
value: 78.71828082424351
|
1971 |
+
- type: euclidean_pearson
|
1972 |
+
value: 83.4881331520832
|
1973 |
+
- type: euclidean_spearman
|
1974 |
+
value: 78.51746826842316
|
1975 |
+
- type: manhattan_pearson
|
1976 |
+
value: 83.4109223774324
|
1977 |
+
- type: manhattan_spearman
|
1978 |
+
value: 78.431544382179
|
1979 |
+
- task:
|
1980 |
+
type: STS
|
1981 |
+
dataset:
|
1982 |
+
type: mteb/sts13-sts
|
1983 |
+
name: MTEB STS13
|
1984 |
+
config: default
|
1985 |
+
split: test
|
1986 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1987 |
+
metrics:
|
1988 |
+
- type: cos_sim_pearson
|
1989 |
+
value: 83.16651661072123
|
1990 |
+
- type: cos_sim_spearman
|
1991 |
+
value: 84.88094386637867
|
1992 |
+
- type: euclidean_pearson
|
1993 |
+
value: 84.3547603585416
|
1994 |
+
- type: euclidean_spearman
|
1995 |
+
value: 84.85148665860193
|
1996 |
+
- type: manhattan_pearson
|
1997 |
+
value: 84.29648369879266
|
1998 |
+
- type: manhattan_spearman
|
1999 |
+
value: 84.76074870571124
|
2000 |
+
- task:
|
2001 |
+
type: STS
|
2002 |
+
dataset:
|
2003 |
+
type: mteb/sts14-sts
|
2004 |
+
name: MTEB STS14
|
2005 |
+
config: default
|
2006 |
+
split: test
|
2007 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2008 |
+
metrics:
|
2009 |
+
- type: cos_sim_pearson
|
2010 |
+
value: 83.40596254292149
|
2011 |
+
- type: cos_sim_spearman
|
2012 |
+
value: 83.10699573133829
|
2013 |
+
- type: euclidean_pearson
|
2014 |
+
value: 83.22794776876958
|
2015 |
+
- type: euclidean_spearman
|
2016 |
+
value: 83.22583316084712
|
2017 |
+
- type: manhattan_pearson
|
2018 |
+
value: 83.15899233935681
|
2019 |
+
- type: manhattan_spearman
|
2020 |
+
value: 83.17668293648019
|
2021 |
+
- task:
|
2022 |
+
type: STS
|
2023 |
+
dataset:
|
2024 |
+
type: mteb/sts15-sts
|
2025 |
+
name: MTEB STS15
|
2026 |
+
config: default
|
2027 |
+
split: test
|
2028 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2029 |
+
metrics:
|
2030 |
+
- type: cos_sim_pearson
|
2031 |
+
value: 87.27977121352563
|
2032 |
+
- type: cos_sim_spearman
|
2033 |
+
value: 88.73903130248591
|
2034 |
+
- type: euclidean_pearson
|
2035 |
+
value: 88.30685958438735
|
2036 |
+
- type: euclidean_spearman
|
2037 |
+
value: 88.79755484280406
|
2038 |
+
- type: manhattan_pearson
|
2039 |
+
value: 88.30305607758652
|
2040 |
+
- type: manhattan_spearman
|
2041 |
+
value: 88.80096577072784
|
2042 |
+
- task:
|
2043 |
+
type: STS
|
2044 |
+
dataset:
|
2045 |
+
type: mteb/sts16-sts
|
2046 |
+
name: MTEB STS16
|
2047 |
+
config: default
|
2048 |
+
split: test
|
2049 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2050 |
+
metrics:
|
2051 |
+
- type: cos_sim_pearson
|
2052 |
+
value: 84.08819031430218
|
2053 |
+
- type: cos_sim_spearman
|
2054 |
+
value: 86.35414445951125
|
2055 |
+
- type: euclidean_pearson
|
2056 |
+
value: 85.4683192388315
|
2057 |
+
- type: euclidean_spearman
|
2058 |
+
value: 86.2079674669473
|
2059 |
+
- type: manhattan_pearson
|
2060 |
+
value: 85.35835702257341
|
2061 |
+
- type: manhattan_spearman
|
2062 |
+
value: 86.08483380002187
|
2063 |
+
- task:
|
2064 |
+
type: STS
|
2065 |
+
dataset:
|
2066 |
+
type: mteb/sts17-crosslingual-sts
|
2067 |
+
name: MTEB STS17 (en-en)
|
2068 |
+
config: en-en
|
2069 |
+
split: test
|
2070 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2071 |
+
metrics:
|
2072 |
+
- type: cos_sim_pearson
|
2073 |
+
value: 87.36149449801478
|
2074 |
+
- type: cos_sim_spearman
|
2075 |
+
value: 87.7102980757725
|
2076 |
+
- type: euclidean_pearson
|
2077 |
+
value: 88.16457177837161
|
2078 |
+
- type: euclidean_spearman
|
2079 |
+
value: 87.6598652482716
|
2080 |
+
- type: manhattan_pearson
|
2081 |
+
value: 88.23894728971618
|
2082 |
+
- type: manhattan_spearman
|
2083 |
+
value: 87.74470156709361
|
2084 |
+
- task:
|
2085 |
+
type: STS
|
2086 |
+
dataset:
|
2087 |
+
type: mteb/sts22-crosslingual-sts
|
2088 |
+
name: MTEB STS22 (en)
|
2089 |
+
config: en
|
2090 |
+
split: test
|
2091 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2092 |
+
metrics:
|
2093 |
+
- type: cos_sim_pearson
|
2094 |
+
value: 64.54023758394433
|
2095 |
+
- type: cos_sim_spearman
|
2096 |
+
value: 66.28491960187773
|
2097 |
+
- type: euclidean_pearson
|
2098 |
+
value: 67.0853128483472
|
2099 |
+
- type: euclidean_spearman
|
2100 |
+
value: 66.10307543766307
|
2101 |
+
- type: manhattan_pearson
|
2102 |
+
value: 66.7635365592556
|
2103 |
+
- type: manhattan_spearman
|
2104 |
+
value: 65.76408004780167
|
2105 |
+
- task:
|
2106 |
+
type: STS
|
2107 |
+
dataset:
|
2108 |
+
type: mteb/stsbenchmark-sts
|
2109 |
+
name: MTEB STSBenchmark
|
2110 |
+
config: default
|
2111 |
+
split: test
|
2112 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2113 |
+
metrics:
|
2114 |
+
- type: cos_sim_pearson
|
2115 |
+
value: 85.15858398195317
|
2116 |
+
- type: cos_sim_spearman
|
2117 |
+
value: 87.44850004752102
|
2118 |
+
- type: euclidean_pearson
|
2119 |
+
value: 86.60737082550408
|
2120 |
+
- type: euclidean_spearman
|
2121 |
+
value: 87.31591549824242
|
2122 |
+
- type: manhattan_pearson
|
2123 |
+
value: 86.56187011429977
|
2124 |
+
- type: manhattan_spearman
|
2125 |
+
value: 87.23854795795319
|
2126 |
+
- task:
|
2127 |
+
type: Reranking
|
2128 |
+
dataset:
|
2129 |
+
type: mteb/scidocs-reranking
|
2130 |
+
name: MTEB SciDocsRR
|
2131 |
+
config: default
|
2132 |
+
split: test
|
2133 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2134 |
+
metrics:
|
2135 |
+
- type: map
|
2136 |
+
value: 86.66210488769109
|
2137 |
+
- type: mrr
|
2138 |
+
value: 96.23100664767331
|
2139 |
+
- task:
|
2140 |
+
type: Retrieval
|
2141 |
+
dataset:
|
2142 |
+
type: scifact
|
2143 |
+
name: MTEB SciFact
|
2144 |
+
config: default
|
2145 |
+
split: test
|
2146 |
+
revision: None
|
2147 |
+
metrics:
|
2148 |
+
- type: map_at_1
|
2149 |
+
value: 56.094
|
2150 |
+
- type: map_at_10
|
2151 |
+
value: 67.486
|
2152 |
+
- type: map_at_100
|
2153 |
+
value: 67.925
|
2154 |
+
- type: map_at_1000
|
2155 |
+
value: 67.949
|
2156 |
+
- type: map_at_3
|
2157 |
+
value: 64.857
|
2158 |
+
- type: map_at_5
|
2159 |
+
value: 66.31
|
2160 |
+
- type: mrr_at_1
|
2161 |
+
value: 58.667
|
2162 |
+
- type: mrr_at_10
|
2163 |
+
value: 68.438
|
2164 |
+
- type: mrr_at_100
|
2165 |
+
value: 68.733
|
2166 |
+
- type: mrr_at_1000
|
2167 |
+
value: 68.757
|
2168 |
+
- type: mrr_at_3
|
2169 |
+
value: 66.389
|
2170 |
+
- type: mrr_at_5
|
2171 |
+
value: 67.456
|
2172 |
+
- type: ndcg_at_1
|
2173 |
+
value: 58.667
|
2174 |
+
- type: ndcg_at_10
|
2175 |
+
value: 72.506
|
2176 |
+
- type: ndcg_at_100
|
2177 |
+
value: 74.27
|
2178 |
+
- type: ndcg_at_1000
|
2179 |
+
value: 74.94800000000001
|
2180 |
+
- type: ndcg_at_3
|
2181 |
+
value: 67.977
|
2182 |
+
- type: ndcg_at_5
|
2183 |
+
value: 70.028
|
2184 |
+
- type: precision_at_1
|
2185 |
+
value: 58.667
|
2186 |
+
- type: precision_at_10
|
2187 |
+
value: 9.767000000000001
|
2188 |
+
- type: precision_at_100
|
2189 |
+
value: 1.073
|
2190 |
+
- type: precision_at_1000
|
2191 |
+
value: 0.11299999999999999
|
2192 |
+
- type: precision_at_3
|
2193 |
+
value: 27.0
|
2194 |
+
- type: precision_at_5
|
2195 |
+
value: 17.666999999999998
|
2196 |
+
- type: recall_at_1
|
2197 |
+
value: 56.094
|
2198 |
+
- type: recall_at_10
|
2199 |
+
value: 86.68900000000001
|
2200 |
+
- type: recall_at_100
|
2201 |
+
value: 94.333
|
2202 |
+
- type: recall_at_1000
|
2203 |
+
value: 99.667
|
2204 |
+
- type: recall_at_3
|
2205 |
+
value: 74.522
|
2206 |
+
- type: recall_at_5
|
2207 |
+
value: 79.611
|
2208 |
+
- task:
|
2209 |
+
type: PairClassification
|
2210 |
+
dataset:
|
2211 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2212 |
+
name: MTEB SprintDuplicateQuestions
|
2213 |
+
config: default
|
2214 |
+
split: test
|
2215 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2216 |
+
metrics:
|
2217 |
+
- type: cos_sim_accuracy
|
2218 |
+
value: 99.83069306930693
|
2219 |
+
- type: cos_sim_ap
|
2220 |
+
value: 95.69184662911199
|
2221 |
+
- type: cos_sim_f1
|
2222 |
+
value: 91.4027149321267
|
2223 |
+
- type: cos_sim_precision
|
2224 |
+
value: 91.91102123356926
|
2225 |
+
- type: cos_sim_recall
|
2226 |
+
value: 90.9
|
2227 |
+
- type: dot_accuracy
|
2228 |
+
value: 99.69405940594059
|
2229 |
+
- type: dot_ap
|
2230 |
+
value: 90.21674151456216
|
2231 |
+
- type: dot_f1
|
2232 |
+
value: 84.4489179667841
|
2233 |
+
- type: dot_precision
|
2234 |
+
value: 85.00506585612969
|
2235 |
+
- type: dot_recall
|
2236 |
+
value: 83.89999999999999
|
2237 |
+
- type: euclidean_accuracy
|
2238 |
+
value: 99.83069306930693
|
2239 |
+
- type: euclidean_ap
|
2240 |
+
value: 95.67760109671087
|
2241 |
+
- type: euclidean_f1
|
2242 |
+
value: 91.19754350051177
|
2243 |
+
- type: euclidean_precision
|
2244 |
+
value: 93.39622641509435
|
2245 |
+
- type: euclidean_recall
|
2246 |
+
value: 89.1
|
2247 |
+
- type: manhattan_accuracy
|
2248 |
+
value: 99.83267326732673
|
2249 |
+
- type: manhattan_ap
|
2250 |
+
value: 95.69771347732625
|
2251 |
+
- type: manhattan_f1
|
2252 |
+
value: 91.32420091324201
|
2253 |
+
- type: manhattan_precision
|
2254 |
+
value: 92.68795056642637
|
2255 |
+
- type: manhattan_recall
|
2256 |
+
value: 90.0
|
2257 |
+
- type: max_accuracy
|
2258 |
+
value: 99.83267326732673
|
2259 |
+
- type: max_ap
|
2260 |
+
value: 95.69771347732625
|
2261 |
+
- type: max_f1
|
2262 |
+
value: 91.4027149321267
|
2263 |
+
- task:
|
2264 |
+
type: Clustering
|
2265 |
+
dataset:
|
2266 |
+
type: mteb/stackexchange-clustering
|
2267 |
+
name: MTEB StackExchangeClustering
|
2268 |
+
config: default
|
2269 |
+
split: test
|
2270 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2271 |
+
metrics:
|
2272 |
+
- type: v_measure
|
2273 |
+
value: 64.47378332953092
|
2274 |
+
- task:
|
2275 |
+
type: Clustering
|
2276 |
+
dataset:
|
2277 |
+
type: mteb/stackexchange-clustering-p2p
|
2278 |
+
name: MTEB StackExchangeClusteringP2P
|
2279 |
+
config: default
|
2280 |
+
split: test
|
2281 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2282 |
+
metrics:
|
2283 |
+
- type: v_measure
|
2284 |
+
value: 33.79602531604151
|
2285 |
+
- task:
|
2286 |
+
type: Reranking
|
2287 |
+
dataset:
|
2288 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2289 |
+
name: MTEB StackOverflowDupQuestions
|
2290 |
+
config: default
|
2291 |
+
split: test
|
2292 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2293 |
+
metrics:
|
2294 |
+
- type: map
|
2295 |
+
value: 53.80707639107175
|
2296 |
+
- type: mrr
|
2297 |
+
value: 54.64886522790935
|
2298 |
+
- task:
|
2299 |
+
type: Summarization
|
2300 |
+
dataset:
|
2301 |
+
type: mteb/summeval
|
2302 |
+
name: MTEB SummEval
|
2303 |
+
config: default
|
2304 |
+
split: test
|
2305 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2306 |
+
metrics:
|
2307 |
+
- type: cos_sim_pearson
|
2308 |
+
value: 30.852448373051395
|
2309 |
+
- type: cos_sim_spearman
|
2310 |
+
value: 32.51821499493775
|
2311 |
+
- type: dot_pearson
|
2312 |
+
value: 30.390650062190456
|
2313 |
+
- type: dot_spearman
|
2314 |
+
value: 30.588836159667636
|
2315 |
+
- task:
|
2316 |
+
type: Retrieval
|
2317 |
+
dataset:
|
2318 |
+
type: trec-covid
|
2319 |
+
name: MTEB TRECCOVID
|
2320 |
+
config: default
|
2321 |
+
split: test
|
2322 |
+
revision: None
|
2323 |
+
metrics:
|
2324 |
+
- type: map_at_1
|
2325 |
+
value: 0.198
|
2326 |
+
- type: map_at_10
|
2327 |
+
value: 1.51
|
2328 |
+
- type: map_at_100
|
2329 |
+
value: 8.882
|
2330 |
+
- type: map_at_1000
|
2331 |
+
value: 22.181
|
2332 |
+
- type: map_at_3
|
2333 |
+
value: 0.553
|
2334 |
+
- type: map_at_5
|
2335 |
+
value: 0.843
|
2336 |
+
- type: mrr_at_1
|
2337 |
+
value: 74.0
|
2338 |
+
- type: mrr_at_10
|
2339 |
+
value: 84.89999999999999
|
2340 |
+
- type: mrr_at_100
|
2341 |
+
value: 84.89999999999999
|
2342 |
+
- type: mrr_at_1000
|
2343 |
+
value: 84.89999999999999
|
2344 |
+
- type: mrr_at_3
|
2345 |
+
value: 84.0
|
2346 |
+
- type: mrr_at_5
|
2347 |
+
value: 84.89999999999999
|
2348 |
+
- type: ndcg_at_1
|
2349 |
+
value: 68.0
|
2350 |
+
- type: ndcg_at_10
|
2351 |
+
value: 64.792
|
2352 |
+
- type: ndcg_at_100
|
2353 |
+
value: 51.37199999999999
|
2354 |
+
- type: ndcg_at_1000
|
2355 |
+
value: 47.392
|
2356 |
+
- type: ndcg_at_3
|
2357 |
+
value: 68.46900000000001
|
2358 |
+
- type: ndcg_at_5
|
2359 |
+
value: 67.084
|
2360 |
+
- type: precision_at_1
|
2361 |
+
value: 74.0
|
2362 |
+
- type: precision_at_10
|
2363 |
+
value: 69.39999999999999
|
2364 |
+
- type: precision_at_100
|
2365 |
+
value: 53.080000000000005
|
2366 |
+
- type: precision_at_1000
|
2367 |
+
value: 21.258
|
2368 |
+
- type: precision_at_3
|
2369 |
+
value: 76.0
|
2370 |
+
- type: precision_at_5
|
2371 |
+
value: 73.2
|
2372 |
+
- type: recall_at_1
|
2373 |
+
value: 0.198
|
2374 |
+
- type: recall_at_10
|
2375 |
+
value: 1.7950000000000002
|
2376 |
+
- type: recall_at_100
|
2377 |
+
value: 12.626999999999999
|
2378 |
+
- type: recall_at_1000
|
2379 |
+
value: 44.84
|
2380 |
+
- type: recall_at_3
|
2381 |
+
value: 0.611
|
2382 |
+
- type: recall_at_5
|
2383 |
+
value: 0.959
|
2384 |
+
- task:
|
2385 |
+
type: Retrieval
|
2386 |
+
dataset:
|
2387 |
+
type: webis-touche2020
|
2388 |
+
name: MTEB Touche2020
|
2389 |
+
config: default
|
2390 |
+
split: test
|
2391 |
+
revision: None
|
2392 |
+
metrics:
|
2393 |
+
- type: map_at_1
|
2394 |
+
value: 1.4949999999999999
|
2395 |
+
- type: map_at_10
|
2396 |
+
value: 8.797
|
2397 |
+
- type: map_at_100
|
2398 |
+
value: 14.889
|
2399 |
+
- type: map_at_1000
|
2400 |
+
value: 16.309
|
2401 |
+
- type: map_at_3
|
2402 |
+
value: 4.389
|
2403 |
+
- type: map_at_5
|
2404 |
+
value: 6.776
|
2405 |
+
- type: mrr_at_1
|
2406 |
+
value: 18.367
|
2407 |
+
- type: mrr_at_10
|
2408 |
+
value: 35.844
|
2409 |
+
- type: mrr_at_100
|
2410 |
+
value: 37.119
|
2411 |
+
- type: mrr_at_1000
|
2412 |
+
value: 37.119
|
2413 |
+
- type: mrr_at_3
|
2414 |
+
value: 30.612000000000002
|
2415 |
+
- type: mrr_at_5
|
2416 |
+
value: 33.163
|
2417 |
+
- type: ndcg_at_1
|
2418 |
+
value: 16.326999999999998
|
2419 |
+
- type: ndcg_at_10
|
2420 |
+
value: 21.9
|
2421 |
+
- type: ndcg_at_100
|
2422 |
+
value: 34.705000000000005
|
2423 |
+
- type: ndcg_at_1000
|
2424 |
+
value: 45.709
|
2425 |
+
- type: ndcg_at_3
|
2426 |
+
value: 22.7
|
2427 |
+
- type: ndcg_at_5
|
2428 |
+
value: 23.197000000000003
|
2429 |
+
- type: precision_at_1
|
2430 |
+
value: 18.367
|
2431 |
+
- type: precision_at_10
|
2432 |
+
value: 21.02
|
2433 |
+
- type: precision_at_100
|
2434 |
+
value: 7.714
|
2435 |
+
- type: precision_at_1000
|
2436 |
+
value: 1.504
|
2437 |
+
- type: precision_at_3
|
2438 |
+
value: 26.531
|
2439 |
+
- type: precision_at_5
|
2440 |
+
value: 26.122
|
2441 |
+
- type: recall_at_1
|
2442 |
+
value: 1.4949999999999999
|
2443 |
+
- type: recall_at_10
|
2444 |
+
value: 15.504000000000001
|
2445 |
+
- type: recall_at_100
|
2446 |
+
value: 47.978
|
2447 |
+
- type: recall_at_1000
|
2448 |
+
value: 81.56
|
2449 |
+
- type: recall_at_3
|
2450 |
+
value: 5.569
|
2451 |
+
- type: recall_at_5
|
2452 |
+
value: 9.821
|
2453 |
+
- task:
|
2454 |
+
type: Classification
|
2455 |
+
dataset:
|
2456 |
+
type: mteb/toxic_conversations_50k
|
2457 |
+
name: MTEB ToxicConversationsClassification
|
2458 |
+
config: default
|
2459 |
+
split: test
|
2460 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2461 |
+
metrics:
|
2462 |
+
- type: accuracy
|
2463 |
+
value: 72.99279999999999
|
2464 |
+
- type: ap
|
2465 |
+
value: 15.459189680101492
|
2466 |
+
- type: f1
|
2467 |
+
value: 56.33023271441895
|
2468 |
+
- task:
|
2469 |
+
type: Classification
|
2470 |
+
dataset:
|
2471 |
+
type: mteb/tweet_sentiment_extraction
|
2472 |
+
name: MTEB TweetSentimentExtractionClassification
|
2473 |
+
config: default
|
2474 |
+
split: test
|
2475 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2476 |
+
metrics:
|
2477 |
+
- type: accuracy
|
2478 |
+
value: 63.070175438596486
|
2479 |
+
- type: f1
|
2480 |
+
value: 63.28070758709465
|
2481 |
+
- task:
|
2482 |
+
type: Clustering
|
2483 |
+
dataset:
|
2484 |
+
type: mteb/twentynewsgroups-clustering
|
2485 |
+
name: MTEB TwentyNewsgroupsClustering
|
2486 |
+
config: default
|
2487 |
+
split: test
|
2488 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2489 |
+
metrics:
|
2490 |
+
- type: v_measure
|
2491 |
+
value: 50.076231309703054
|
2492 |
+
- task:
|
2493 |
+
type: PairClassification
|
2494 |
+
dataset:
|
2495 |
+
type: mteb/twittersemeval2015-pairclassification
|
2496 |
+
name: MTEB TwitterSemEval2015
|
2497 |
+
config: default
|
2498 |
+
split: test
|
2499 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2500 |
+
metrics:
|
2501 |
+
- type: cos_sim_accuracy
|
2502 |
+
value: 87.21463908922931
|
2503 |
+
- type: cos_sim_ap
|
2504 |
+
value: 77.67287017966282
|
2505 |
+
- type: cos_sim_f1
|
2506 |
+
value: 70.34412955465588
|
2507 |
+
- type: cos_sim_precision
|
2508 |
+
value: 67.57413709285368
|
2509 |
+
- type: cos_sim_recall
|
2510 |
+
value: 73.35092348284961
|
2511 |
+
- type: dot_accuracy
|
2512 |
+
value: 85.04500208618943
|
2513 |
+
- type: dot_ap
|
2514 |
+
value: 70.4075203869744
|
2515 |
+
- type: dot_f1
|
2516 |
+
value: 66.18172537008678
|
2517 |
+
- type: dot_precision
|
2518 |
+
value: 64.08798813643104
|
2519 |
+
- type: dot_recall
|
2520 |
+
value: 68.41688654353561
|
2521 |
+
- type: euclidean_accuracy
|
2522 |
+
value: 87.17887584192646
|
2523 |
+
- type: euclidean_ap
|
2524 |
+
value: 77.5774128274464
|
2525 |
+
- type: euclidean_f1
|
2526 |
+
value: 70.09307972480777
|
2527 |
+
- type: euclidean_precision
|
2528 |
+
value: 71.70852884349986
|
2529 |
+
- type: euclidean_recall
|
2530 |
+
value: 68.54881266490766
|
2531 |
+
- type: manhattan_accuracy
|
2532 |
+
value: 87.28020504261787
|
2533 |
+
- type: manhattan_ap
|
2534 |
+
value: 77.57835820297892
|
2535 |
+
- type: manhattan_f1
|
2536 |
+
value: 70.23063591521131
|
2537 |
+
- type: manhattan_precision
|
2538 |
+
value: 70.97817299919159
|
2539 |
+
- type: manhattan_recall
|
2540 |
+
value: 69.49868073878628
|
2541 |
+
- type: max_accuracy
|
2542 |
+
value: 87.28020504261787
|
2543 |
+
- type: max_ap
|
2544 |
+
value: 77.67287017966282
|
2545 |
+
- type: max_f1
|
2546 |
+
value: 70.34412955465588
|
2547 |
+
- task:
|
2548 |
+
type: PairClassification
|
2549 |
+
dataset:
|
2550 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2551 |
+
name: MTEB TwitterURLCorpus
|
2552 |
+
config: default
|
2553 |
+
split: test
|
2554 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2555 |
+
metrics:
|
2556 |
+
- type: cos_sim_accuracy
|
2557 |
+
value: 88.96650754841464
|
2558 |
+
- type: cos_sim_ap
|
2559 |
+
value: 86.00185968965064
|
2560 |
+
- type: cos_sim_f1
|
2561 |
+
value: 77.95861256351718
|
2562 |
+
- type: cos_sim_precision
|
2563 |
+
value: 74.70712773465067
|
2564 |
+
- type: cos_sim_recall
|
2565 |
+
value: 81.50600554357868
|
2566 |
+
- type: dot_accuracy
|
2567 |
+
value: 87.36950362867233
|
2568 |
+
- type: dot_ap
|
2569 |
+
value: 82.22071181147555
|
2570 |
+
- type: dot_f1
|
2571 |
+
value: 74.85680716698488
|
2572 |
+
- type: dot_precision
|
2573 |
+
value: 71.54688377316114
|
2574 |
+
- type: dot_recall
|
2575 |
+
value: 78.48783492454572
|
2576 |
+
- type: euclidean_accuracy
|
2577 |
+
value: 88.99561454573679
|
2578 |
+
- type: euclidean_ap
|
2579 |
+
value: 86.15882097229648
|
2580 |
+
- type: euclidean_f1
|
2581 |
+
value: 78.18463125322332
|
2582 |
+
- type: euclidean_precision
|
2583 |
+
value: 74.95408956067241
|
2584 |
+
- type: euclidean_recall
|
2585 |
+
value: 81.70619032953496
|
2586 |
+
- type: manhattan_accuracy
|
2587 |
+
value: 88.96650754841464
|
2588 |
+
- type: manhattan_ap
|
2589 |
+
value: 86.13133111232099
|
2590 |
+
- type: manhattan_f1
|
2591 |
+
value: 78.10771470160115
|
2592 |
+
- type: manhattan_precision
|
2593 |
+
value: 74.05465084184377
|
2594 |
+
- type: manhattan_recall
|
2595 |
+
value: 82.63012011087157
|
2596 |
+
- type: max_accuracy
|
2597 |
+
value: 88.99561454573679
|
2598 |
+
- type: max_ap
|
2599 |
+
value: 86.15882097229648
|
2600 |
+
- type: max_f1
|
2601 |
+
value: 78.18463125322332
|
2602 |
+
language:
|
2603 |
+
- en
|
2604 |
license: mit
|
2605 |
---
|
2606 |
+
|
2607 |
+
## stella model
|
2608 |
+
|
2609 |
+
**新闻 | News**
|
2610 |
+
|
2611 |
+
**[2023-10-19]** 开源stella-base-en-v2 使用简单,**不需要任何前缀文本**。
|
2612 |
+
Release stella-base-en-v2. This model **does not need any prefix text**.\
|
2613 |
+
**[2023-10-12]** 开源stella-base-zh-v2和stella-large-zh-v2, 效果更好且使用简单,**不需要任何前缀文本**。
|
2614 |
+
Release stella-base-zh-v2 and stella-large-zh-v2. The 2 models have better performance
|
2615 |
+
and **do not need any prefix text**.\
|
2616 |
+
**[2023-09-11]** 开源stella-base-zh和stella-large-zh
|
2617 |
+
|
2618 |
+
stella是一个通用的文本编码模型,主要有以下模型:
|
2619 |
+
|
2620 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|
2621 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
|
2622 |
+
| stella-base-en-v2 | 0.2 | 768 | 512 | English | No |
|
2623 |
+
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No |
|
2624 |
+
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No |
|
2625 |
+
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes |
|
2626 |
+
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes |
|
2627 |
+
|
2628 |
+
完整的训练思路和训练过程已记录在[博客](https://zhuanlan.zhihu.com/p/655322183),欢迎阅读讨论。
|
2629 |
+
|
2630 |
+
**训练数据:**
|
2631 |
+
|
2632 |
+
1. 开源数据(wudao_base_200GB[1]、m3e[2]和simclue[3]),着重挑选了长度大于512的文本
|
2633 |
+
2. 在通用语料库上使用LLM构造一批(question, paragraph)和(sentence, paragraph)数据
|
2634 |
+
|
2635 |
+
**训练方法:**
|
2636 |
+
|
2637 |
+
1. 对比学习损失函数
|
2638 |
+
2. 带有难负例的对比学习损失函数(分别基于bm25和vector构造了难负例)
|
2639 |
+
3. EWC(Elastic Weights Consolidation)[4]
|
2640 |
+
4. cosent loss[5]
|
2641 |
+
5. 每一种类型的数据一个迭代器,分别计算loss进行更新
|
2642 |
+
|
2643 |
+
stella-v2在stella模型的基础上,使用了更多的训练数据,同时知识蒸馏等方法去除了前置的instruction(
|
2644 |
+
比如piccolo的`查询:`, `结果:`, e5的`query:`和`passage:`)。
|
2645 |
+
|
2646 |
+
**初始权重:**\
|
2647 |
+
stella-base-zh和stella-large-zh分别以piccolo-base-zh[6]和piccolo-large-zh作为基础模型,512-1024的position
|
2648 |
+
embedding使用层次分解位置编码[7]进行初始化。\
|
2649 |
+
感谢商汤科技研究院开源的[piccolo系列模型](https://huggingface.co/sensenova)。
|
2650 |
+
|
2651 |
+
stella is a general-purpose text encoder, which mainly includes the following models:
|
2652 |
+
|
2653 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Language | Need instruction for retrieval? |
|
2654 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:--------:|:-------------------------------:|
|
2655 |
+
| stella-base-en-v2 | 0.2 | 768 | 512 | English | No |
|
2656 |
+
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | Chinese | No |
|
2657 |
+
| stella-base-zh-v2 | 0.2 | 768 | 1024 | Chinese | No |
|
2658 |
+
| stella-large-zh | 0.65 | 1024 | 1024 | Chinese | Yes |
|
2659 |
+
| stella-base-zh | 0.2 | 768 | 1024 | Chinese | Yes |
|
2660 |
+
|
2661 |
+
The training data mainly includes:
|
2662 |
+
|
2663 |
+
1. Open-source training data (wudao_base_200GB, m3e, and simclue), with a focus on selecting texts with lengths greater
|
2664 |
+
than 512.
|
2665 |
+
2. A batch of (question, paragraph) and (sentence, paragraph) data constructed on a general corpus using LLM.
|
2666 |
+
|
2667 |
+
The loss functions mainly include:
|
2668 |
+
|
2669 |
+
1. Contrastive learning loss function
|
2670 |
+
2. Contrastive learning loss function with hard negative examples (based on bm25 and vector hard negatives)
|
2671 |
+
3. EWC (Elastic Weights Consolidation)
|
2672 |
+
4. cosent loss
|
2673 |
+
|
2674 |
+
Model weight initialization:\
|
2675 |
+
stella-base-zh and stella-large-zh use piccolo-base-zh and piccolo-large-zh as the base models, respectively, and the
|
2676 |
+
512-1024 position embedding uses the initialization strategy of hierarchical decomposed position encoding.
|
2677 |
+
|
2678 |
+
Training strategy:\
|
2679 |
+
One iterator for each type of data, separately calculating the loss.
|
2680 |
+
|
2681 |
+
Based on stella models, stella-v2 use more training data and remove instruction by Knowledge Distillation.
|
2682 |
+
|
2683 |
+
## Metric
|
2684 |
+
|
2685 |
+
#### C-MTEB leaderboard (Chinese)
|
2686 |
+
|
2687 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (35) | Classification (9) | Clustering (4) | Pair Classification (2) | Reranking (4) | Retrieval (8) | STS (8) |
|
2688 |
+
|:------------------:|:---------------:|:---------:|:---------------:|:------------:|:------------------:|:--------------:|:-----------------------:|:-------------:|:-------------:|:-------:|
|
2689 |
+
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | 65.13 | 69.05 | 49.16 | 82.68 | 66.41 | 70.14 | 58.66 |
|
2690 |
+
| stella-base-zh-v2 | 0.2 | 768 | 1024 | 64.36 | 68.29 | 49.4 | 79.95 | 66.1 | 70.08 | 56.92 |
|
2691 |
+
| stella-large-zh | 0.65 | 1024 | 1024 | 64.54 | 67.62 | 48.65 | 78.72 | 65.98 | 71.02 | 58.3 |
|
2692 |
+
| stella-base-zh | 0.2 | 768 | 1024 | 64.16 | 67.77 | 48.7 | 76.09 | 66.95 | 71.07 | 56.54 |
|
2693 |
+
|
2694 |
+
#### MTEB leaderboard (English)
|
2695 |
+
|
2696 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Classification (12) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) |
|
2697 |
+
|:-----------------:|:---------------:|:---------:|:---------------:|:------------:|:-------------------:|:---------------:|:-----------------------:|:-------------:|:--------------:|:--------:|:------------------:|
|
2698 |
+
| stella-base-en-v2 | 0.2 | 768 | 512 | 62.61 | 75.28 | 44.9 | 86.45 | 58.77 | 50.1 | 83.02 | 32.52 |
|
2699 |
+
|
2700 |
+
#### Reproduce our results
|
2701 |
+
|
2702 |
+
**C-MTEB:**
|
2703 |
+
|
2704 |
+
```python
|
2705 |
+
import torch
|
2706 |
+
import numpy as np
|
2707 |
+
from typing import List
|
2708 |
+
from mteb import MTEB
|
2709 |
+
from sentence_transformers import SentenceTransformer
|
2710 |
+
|
2711 |
+
|
2712 |
+
class FastTextEncoder():
|
2713 |
+
def __init__(self, model_name):
|
2714 |
+
self.model = SentenceTransformer(model_name).cuda().half().eval()
|
2715 |
+
self.model.max_seq_length = 512
|
2716 |
+
|
2717 |
+
def encode(
|
2718 |
+
self,
|
2719 |
+
input_texts: List[str],
|
2720 |
+
*args,
|
2721 |
+
**kwargs
|
2722 |
+
):
|
2723 |
+
new_sens = list(set(input_texts))
|
2724 |
+
new_sens.sort(key=lambda x: len(x), reverse=True)
|
2725 |
+
vecs = self.model.encode(
|
2726 |
+
new_sens, normalize_embeddings=True, convert_to_numpy=True, batch_size=256
|
2727 |
+
).astype(np.float32)
|
2728 |
+
sen2arrid = {sen: idx for idx, sen in enumerate(new_sens)}
|
2729 |
+
vecs = vecs[[sen2arrid[sen] for sen in input_texts]]
|
2730 |
+
torch.cuda.empty_cache()
|
2731 |
+
return vecs
|
2732 |
+
|
2733 |
+
|
2734 |
+
if __name__ == '__main__':
|
2735 |
+
model_name = "infgrad/stella-base-zh-v2"
|
2736 |
+
output_folder = "zh_mteb_results/stella-base-zh-v2"
|
2737 |
+
task_names = [t.description["name"] for t in MTEB(task_langs=['zh', 'zh-CN']).tasks]
|
2738 |
+
model = FastTextEncoder(model_name)
|
2739 |
+
for task in task_names:
|
2740 |
+
MTEB(tasks=[task], task_langs=['zh', 'zh-CN']).run(model, output_folder=output_folder)
|
2741 |
+
|
2742 |
+
```
|
2743 |
+
|
2744 |
+
**MTEB:**
|
2745 |
+
|
2746 |
+
You can use official script to reproduce our result. [scripts/run_mteb_english.py](https://github.com/embeddings-benchmark/mteb/blob/main/scripts/run_mteb_english.py)
|
2747 |
+
|
2748 |
+
#### Evaluation for long text
|
2749 |
+
|
2750 |
+
经过实际观察发现,C-MTEB的评测数据长度基本都是小于512的,
|
2751 |
+
更致命的是那些长度大于512的文本,其重点都在前半部分
|
2752 |
+
这里以CMRC2018的数据为例说明这个问题:
|
2753 |
+
|
2754 |
+
```
|
2755 |
+
question: 《无双大蛇z》是谁旗下ω-force开发的动作游戏?
|
2756 |
+
|
2757 |
+
passage:《无双大蛇z》是光荣旗下ω-force开发的动作游戏,于2009年3月12日登陆索尼playstation3,并于2009年11月27日推......
|
2758 |
+
```
|
2759 |
+
|
2760 |
+
passage长度为800多,大于512,但是对于这个question而言只需要前面40个字就足以检索,多的内容对于模型而言是一种噪声,反而降低了效果。\
|
2761 |
+
简言之,现有数据集的2个问题:\
|
2762 |
+
1)长度大于512的过少\
|
2763 |
+
2)即便大于512,对于检索而言也只需要前512的文本内容\
|
2764 |
+
导致**无法准确评估模型的长文本编码能力。**
|
2765 |
+
|
2766 |
+
为了解决这个问题,搜集了相关开源数据并使用规则进行过滤,最终整理了6份长文本测试集,他们分别是:
|
2767 |
+
|
2768 |
+
- CMRC2018,通用百科
|
2769 |
+
- CAIL,法律阅读理解
|
2770 |
+
- DRCD,繁体百科,已转简体
|
2771 |
+
- Military,军工问答
|
2772 |
+
- Squad,英文阅读理解,已转中文
|
2773 |
+
- Multifieldqa_zh,清华的大模型长文本理解能力评测数据[9]
|
2774 |
+
|
2775 |
+
处理规则是选取答案在512长度之后的文本,短的测试数据会欠采样一下,长短文本占比约为1:2,所以模型既得理解短文本也得理解长文本。
|
2776 |
+
除了Military数据集,我们提供了其他5个测试数据的下载地址:https://drive.google.com/file/d/1WC6EWaCbVgz-vPMDFH4TwAMkLyh5WNcN/view?usp=sharing
|
2777 |
+
|
2778 |
+
评测指标为Recall@5, 结果如下:
|
2779 |
+
|
2780 |
+
| Dataset | piccolo-base-zh | piccolo-large-zh | bge-base-zh | bge-large-zh | stella-base-zh | stella-large-zh |
|
2781 |
+
|:---------------:|:---------------:|:----------------:|:-----------:|:------------:|:--------------:|:---------------:|
|
2782 |
+
| CMRC2018 | 94.34 | 93.82 | 91.56 | 93.12 | 96.08 | 95.56 |
|
2783 |
+
| CAIL | 28.04 | 33.64 | 31.22 | 33.94 | 34.62 | 37.18 |
|
2784 |
+
| DRCD | 78.25 | 77.9 | 78.34 | 80.26 | 86.14 | 84.58 |
|
2785 |
+
| Military | 76.61 | 73.06 | 75.65 | 75.81 | 83.71 | 80.48 |
|
2786 |
+
| Squad | 91.21 | 86.61 | 87.87 | 90.38 | 93.31 | 91.21 |
|
2787 |
+
| Multifieldqa_zh | 81.41 | 83.92 | 83.92 | 83.42 | 79.9 | 80.4 |
|
2788 |
+
| **Average** | 74.98 | 74.83 | 74.76 | 76.15 | **78.96** | **78.24** |
|
2789 |
+
|
2790 |
+
**注意:** 因为长文本评测数据数量稀少,所以构造时也使用了train部分,如果自行评测,请注意模型的训练数据以免数据泄露。
|
2791 |
+
|
2792 |
+
## Usage
|
2793 |
+
|
2794 |
+
#### stella 中文系列模型
|
2795 |
+
|
2796 |
+
stella-base-zh 和 stella-large-zh: 本模型是在piccolo基础上训练的,因此**用法和piccolo完全一致**
|
2797 |
+
,即在检索重排任务上给query和passage加上`查询: `和`结果: `。对于短短匹配不需要做任何操作。
|
2798 |
+
|
2799 |
+
stella-base-zh-v2 和 stella-large-zh-v2: 本模型使用简单,**任何使用场景中都不需要加前缀文本**。
|
2800 |
+
|
2801 |
+
stella中文系列模型均使用mean pooling做为文本向量。
|
2802 |
+
|
2803 |
+
在sentence-transformer库中的使用方法:
|
2804 |
+
|
2805 |
+
```python
|
2806 |
+
from sentence_transformers import SentenceTransformer
|
2807 |
+
|
2808 |
+
sentences = ["数据1", "数据2"]
|
2809 |
+
model = SentenceTransformer('infgrad/stella-base-zh-v2')
|
2810 |
+
print(model.max_seq_length)
|
2811 |
+
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
|
2812 |
+
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
|
2813 |
+
similarity = embeddings_1 @ embeddings_2.T
|
2814 |
+
print(similarity)
|
2815 |
+
```
|
2816 |
+
|
2817 |
+
直接使用transformers库:
|
2818 |
+
|
2819 |
+
```python
|
2820 |
+
from transformers import AutoModel, AutoTokenizer
|
2821 |
+
from sklearn.preprocessing import normalize
|
2822 |
+
|
2823 |
+
model = AutoModel.from_pretrained('infgrad/stella-base-zh-v2')
|
2824 |
+
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-zh-v2')
|
2825 |
+
sentences = ["数据1", "数据ABCDEFGH"]
|
2826 |
+
batch_data = tokenizer(
|
2827 |
+
batch_text_or_text_pairs=sentences,
|
2828 |
+
padding="longest",
|
2829 |
+
return_tensors="pt",
|
2830 |
+
max_length=1024,
|
2831 |
+
truncation=True,
|
2832 |
+
)
|
2833 |
+
attention_mask = batch_data["attention_mask"]
|
2834 |
+
model_output = model(**batch_data)
|
2835 |
+
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
2836 |
+
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
2837 |
+
vectors = normalize(vectors, norm="l2", axis=1, )
|
2838 |
+
print(vectors.shape) # 2,768
|
2839 |
+
```
|
2840 |
+
|
2841 |
+
#### stella models for English
|
2842 |
+
|
2843 |
+
**Using Sentence-Transformers:**
|
2844 |
+
|
2845 |
+
```python
|
2846 |
+
from sentence_transformers import SentenceTransformer
|
2847 |
+
|
2848 |
+
sentences = ["one car come", "one car go"]
|
2849 |
+
model = SentenceTransformer('infgrad/stella-base-en-v2')
|
2850 |
+
print(model.max_seq_length)
|
2851 |
+
embeddings_1 = model.encode(sentences, normalize_embeddings=True)
|
2852 |
+
embeddings_2 = model.encode(sentences, normalize_embeddings=True)
|
2853 |
+
similarity = embeddings_1 @ embeddings_2.T
|
2854 |
+
print(similarity)
|
2855 |
+
```
|
2856 |
+
|
2857 |
+
**Using HuggingFace Transformers:**
|
2858 |
+
|
2859 |
+
```python
|
2860 |
+
from transformers import AutoModel, AutoTokenizer
|
2861 |
+
from sklearn.preprocessing import normalize
|
2862 |
+
|
2863 |
+
model = AutoModel.from_pretrained('infgrad/stella-base-en-v2')
|
2864 |
+
tokenizer = AutoTokenizer.from_pretrained('infgrad/stella-base-en-v2')
|
2865 |
+
sentences = ["one car come", "one car go"]
|
2866 |
+
batch_data = tokenizer(
|
2867 |
+
batch_text_or_text_pairs=sentences,
|
2868 |
+
padding="longest",
|
2869 |
+
return_tensors="pt",
|
2870 |
+
max_length=512,
|
2871 |
+
truncation=True,
|
2872 |
+
)
|
2873 |
+
attention_mask = batch_data["attention_mask"]
|
2874 |
+
model_output = model(**batch_data)
|
2875 |
+
last_hidden = model_output.last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
2876 |
+
vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
2877 |
+
vectors = normalize(vectors, norm="l2", axis=1, )
|
2878 |
+
print(vectors.shape) # 2,768
|
2879 |
+
```
|
2880 |
+
|
2881 |
+
## Training Detail
|
2882 |
+
|
2883 |
+
**硬件:** 单卡A100-80GB
|
2884 |
+
|
2885 |
+
**环境:** torch1.13.*; transformers-trainer + deepspeed + gradient-checkpointing
|
2886 |
+
|
2887 |
+
**学习率:** 1e-6
|
2888 |
+
|
2889 |
+
**batch_size:** base模型为1024,额外增加20%的难负例;large模型为768,额外增加20%的难负例
|
2890 |
+
|
2891 |
+
**数据量:** 第一版模型约100万,其中用LLM构造的数据约有200K. LLM模型大小为13b。v2系列模型到了2000万训练数据。
|
2892 |
+
|
2893 |
+
## ToDoList
|
2894 |
+
|
2895 |
+
**评测的稳定性:**
|
2896 |
+
评测过程中发现Clustering任务会和官方的结果不一致,大约有±0.0x的小差距,原因是聚类代码没有设置random_seed,差距可以忽略不计,不影响评测结论。
|
2897 |
+
|
2898 |
+
**更高质量的长文本训练和测试数据:** 训练数据多是用13b模型构造的,肯定会存在噪声。
|
2899 |
+
测试数据基本都是从mrc数据整理来的,所以问题都是factoid类型,不符合真实分布。
|
2900 |
+
|
2901 |
+
**OOD的性能:** 虽然近期出现了很多向量编码模型,但是对于不是那么通用的domain,这一众模型包括stella、openai和cohere,
|
2902 |
+
它们的效果均比不上BM25。
|
2903 |
+
|
2904 |
+
## Reference
|
2905 |
+
|
2906 |
+
1. https://www.scidb.cn/en/detail?dataSetId=c6a3fe684227415a9db8e21bac4a15ab
|
2907 |
+
2. https://github.com/wangyuxinwhy/uniem
|
2908 |
+
3. https://github.com/CLUEbenchmark/SimCLUE
|
2909 |
+
4. https://arxiv.org/abs/1612.00796
|
2910 |
+
5. https://kexue.fm/archives/8847
|
2911 |
+
6. https://huggingface.co/sensenova/piccolo-base-zh
|
2912 |
+
7. https://kexue.fm/archives/7947
|
2913 |
+
8. https://github.com/FlagOpen/FlagEmbedding
|
2914 |
+
9. https://github.com/THUDM/LongBench
|
2915 |
+
|
2916 |
+
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float16",
|
27 |
+
"transformers_version": "4.30.2",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a99ae6d5ec0ee97d674a1d8483974920d0a9ceae63a6ff0d274033f00c487cd8
|
3 |
+
size 219035693
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 512,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|