rl-unit1 / config.json
infinitas9's picture
ppo for rl course
8d40e84
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77df55aca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77df55ad30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77df55adc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77df55ae50>", "_build": "<function ActorCriticPolicy._build at 0x7f77df55aee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f77df55af70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77df55e040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f77df55e0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77df55e160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77df55e1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77df55e280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f77df556480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671530776236950654, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAb3b3hfKG60ip6M3TtMK/u3ig6rXmpswAAgD8AAAAAmogOvSXBDj96Z8m668vHvsibCTydgsq8AAAAAAAAAABmH9y8y9awPVR4yzsY2gK+iJC1vHhltjwAAAAAAAAAAAAqYbxrwBs/clx0vXeF8L6c8pK7ivFgvQAAAAAAAAAAgAtbPbfTTj6GFYC9lkiavmY1Ib16mfs7AAAAAAAAAABmJPk8UkHMuzIRvjxO2B29xpHfO+MJhDwAAIA/AACAP1oSyb0U+Jy6yac8sy5beC6K7bO6Bia7MwAAgD8AAAAAsyvCvSpVPT6KcaI9XUhLvrdSmbz046u8AAAAAAAAAABGsCY+NrdvvE3nHbvDeto5mLLmvYIgmjoAAIA/AACAP0O5X76hs9S8jAWoOpkHVjmvRTs+yPjauQAAgD8AAIA/ZvuFPAZjpj/2Jto9VhoEv+1vQj0a+3Y9AAAAAAAAAACQjmW+otlVPouqfD09smO+cYjYvIPjUDwAAAAAAAAAAFA9tz7NiQM/faMQvgTW5b5OxAk+0nUgvgAAAAAAAAAAAJdjvSTAnD9aCsm+Na0jv4o9SL03Kji+AAAAAAAAAAC6hTU+KJnhPWkCgL4D/Ru+3C2Nveg8Xr0AAAAAAAAAAEZEZL6B85O80VEuuJfrara/ggg+4lpYNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjuVd9YBVcUCUhpRSlIwBbJRL64wBdJRHQJfhOaiKziV1fZQoaAZoCWgPQwhBnIcTGKZiQJSGlFKUaBVN6ANoFkdAl+IkdNnGsHV9lChoBmgJaA9DCCVATS1b81tAlIaUUpRoFU3oA2gWR0CX46tvn8sMdX2UKGgGaAloD0MIwHrctxo6cECUhpRSlGgVTQMBaBZHQJfjwRFqi491fZQoaAZoCWgPQwghIjXtYu9uQJSGlFKUaBVL52gWR0CX5BJyhi9adX2UKGgGaAloD0MIvoOfOEAMckCUhpRSlGgVTX8BaBZHQJfkuhzvJBB1fZQoaAZoCWgPQwgna9RDNFZZQJSGlFKUaBVN6ANoFkdAl+T5Mtbs4XV9lChoBmgJaA9DCGu5MxMMlWtAlIaUUpRoFU1UAWgWR0CX5Y3juKGddX2UKGgGaAloD0MIRQ4RNydRYkCUhpRSlGgVTegDaBZHQJfl7ILgGbF1fZQoaAZoCWgPQwjzGyYapNpwQJSGlFKUaBVNHwFoFkdAl+av+bVjJHV9lChoBmgJaA9DCENwXMYNFHFAlIaUUpRoFUvRaBZHQJfoVZlnRLN1fZQoaAZoCWgPQwhoBYasLgRxQJSGlFKUaBVLy2gWR0CX6GbD/EOzdX2UKGgGaAloD0MI0jQomscdcECUhpRSlGgVS+VoFkdAl+k8aS9ug3V9lChoBmgJaA9DCPgcWI5Qn3BAlIaUUpRoFU0uAWgWR0CX6sHbAUL2dX2UKGgGaAloD0MI8bp+wS4jcECUhpRSlGgVS+NoFkdAl+tbhWHUMHV9lChoBmgJaA9DCPEqa5viuHBAlIaUUpRoFU0LAWgWR0CX62VuJk5IdX2UKGgGaAloD0MIt3wkJb0pbkCUhpRSlGgVS91oFkdAl+tx7E5yVHV9lChoBmgJaA9DCHZrmQzHe29AlIaUUpRoFUvraBZHQJfrlSR8twt1fZQoaAZoCWgPQwgrEhPU8IJvQJSGlFKUaBVL42gWR0CX7GrwvxpddX2UKGgGaAloD0MIiZtTyQB0cECUhpRSlGgVTagCaBZHQJftHcO9WZJ1fZQoaAZoCWgPQwgxs89jlCZyQJSGlFKUaBVNAAFoFkdAl+0coYvWYnV9lChoBmgJaA9DCLEzhc7r6m9AlIaUUpRoFUvvaBZHQJftp7u2JBR1fZQoaAZoCWgPQwgTQ3IyMR9yQJSGlFKUaBVNMwFoFkdAl+9X3ta6jHV9lChoBmgJaA9DCDEjvD1IKXBAlIaUUpRoFUvLaBZHQJfvuAZsKsx1fZQoaAZoCWgPQwhMUS6N36ViQJSGlFKUaBVN6ANoFkdAl+/6ouPFN3V9lChoBmgJaA9DCKq53GCofmNAlIaUUpRoFU3oA2gWR0CX8BDB/I8ydX2UKGgGaAloD0MIDfs9sc5rbkCUhpRSlGgVTSgBaBZHQJfwMiB5HEx1fZQoaAZoCWgPQwiDhv4JroRwQJSGlFKUaBVL/2gWR0CX8HEPlMh6dX2UKGgGaAloD0MIEaYol8arcECUhpRSlGgVTQIBaBZHQJfwdY2bXpZ1fZQoaAZoCWgPQwhA+5Ei8u5xQJSGlFKUaBVL5WgWR0CX8eNWU8msdX2UKGgGaAloD0MImDCalS2ccECUhpRSlGgVS+ZoFkdAl/H7owEhaHV9lChoBmgJaA9DCI/Ey9M5I21AlIaUUpRoFUvpaBZHQJfyCAkLQX11fZQoaAZoCWgPQwja44V0OBFwQJSGlFKUaBVL7mgWR0CX8kLqUu+RdX2UKGgGaAloD0MIGapiKn10cUCUhpRSlGgVS85oFkdAl/KjCLuQZHV9lChoBmgJaA9DCKkvSzs1tnFAlIaUUpRoFU0DAWgWR0CX81ajN6gNdX2UKGgGaAloD0MIKCmwACZWcUCUhpRSlGgVS/loFkdAl/OpoXbdrXV9lChoBmgJaA9DCPYoXI9Crm5AlIaUUpRoFUvTaBZHQJf1U+/xlQN1fZQoaAZoCWgPQwjzjeietU1yQJSGlFKUaBVL82gWR0CX9aEP1+RYdX2UKGgGaAloD0MIdsWM8HYhb0CUhpRSlGgVS+poFkdAl/Wv/7zkIXV9lChoBmgJaA9DCIvDmV/NA25AlIaUUpRoFUvvaBZHQJf2ELORkmR1fZQoaAZoCWgPQwg1CHO7F+5yQJSGlFKUaBVL5WgWR0CX9lT6BRQ8dX2UKGgGaAloD0MI4zPZP4/JcUCUhpRSlGgVS9toFkdAl/fGIj4YanV9lChoBmgJaA9DCPFFe7xQFnBAlIaUUpRoFU03AWgWR0CX+Grt3OfNdX2UKGgGaAloD0MIKPIk6VpYcUCUhpRSlGgVS/JoFkdAl/iQ53kgfXV9lChoBmgJaA9DCLqe6Lrw4W5AlIaUUpRoFUvcaBZHQJf4wCr92ox1fZQoaAZoCWgPQwg+PiE77wpvQJSGlFKUaBVNCQFoFkdAl/k/cnE2pHV9lChoBmgJaA9DCE8kmGpmCXFAlIaUUpRoFUv9aBZHQJf651loUSJ1fZQoaAZoCWgPQwi1MuGX+pJxQJSGlFKUaBVNFQFoFkdAl/tEy+HrQnV9lChoBmgJaA9DCEt4Qq+/lm5AlIaUUpRoFUvZaBZHQJf8bi1iONp1fZQoaAZoCWgPQwgNqg1ORPRwQJSGlFKUaBVL8mgWR0CX/G9g4OtodX2UKGgGaAloD0MIqdvZV94TcUCUhpRSlGgVS/JoFkdAl/zIiTt9hXV9lChoBmgJaA9DCFyrPeyFo2xAlIaUUpRoFUvUaBZHQJf+CFev6j51fZQoaAZoCWgPQwgu5ueGJiZyQJSGlFKUaBVNuwFoFkdAl/7jDTBqK3V9lChoBmgJaA9DCOfEHtrHFnFAlIaUUpRoFUvjaBZHQJf/TCzkZJl1fZQoaAZoCWgPQwjxSLw8HZZuQJSGlFKUaBVNTQFoFkdAl/93nMdLhHV9lChoBmgJaA9DCGMMrON4t3BAlIaUUpRoFUvvaBZHQJgAXUXpGF11fZQoaAZoCWgPQwhMqODwAvBuQJSGlFKUaBVNOQFoFkdAmAGy2x6fJ3V9lChoBmgJaA9DCHKKjuQyJXBAlIaUUpRoFUvlaBZHQJgCORRuTA51fZQoaAZoCWgPQwiwVBfwslVsQJSGlFKUaBVL/2gWR0CYAq82Jiy6dX2UKGgGaAloD0MIiLt6FZkhcUCUhpRSlGgVS9BoFkdAmAK9gWrOq3V9lChoBmgJaA9DCCLi5lTyBnFAlIaUUpRoFUvaaBZHQJgDW/O+qR51fZQoaAZoCWgPQwhtA3egTnJvQJSGlFKUaBVNFgFoFkdAmATZu2qkunV9lChoBmgJaA9DCHvZdtpa6nBAlIaUUpRoFUvkaBZHQJgGcPFvQ4V1fZQoaAZoCWgPQwg7xapBWHhwQJSGlFKUaBVNAQFoFkdAmAcrAxi5NHV9lChoBmgJaA9DCB09fm9TYmBAlIaUUpRoFU3oA2gWR0CYCBxAjY7JdX2UKGgGaAloD0MI5WA2AYYccECUhpRSlGgVS9toFkdAmAm32EkB0nV9lChoBmgJaA9DCI2Y2ecxTHFAlIaUUpRoFUvhaBZHQJgJ/4XXRPZ1fZQoaAZoCWgPQwi9jc2OVB5hQJSGlFKUaBVN6ANoFkdAmAtEDyOJcnV9lChoBmgJaA9DCHTrNT0otm9AlIaUUpRoFU1OAWgWR0CYDMcfNiYtdX2UKGgGaAloD0MIFkz8URRscECUhpRSlGgVS+NoFkdAmA54QSSNfnV9lChoBmgJaA9DCPhQoiUPBWJAlIaUUpRoFU3oA2gWR0CYDr717IDHdX2UKGgGaAloD0MIhnDMsudbckCUhpRSlGgVTWMBaBZHQJgPf4agmJF1fZQoaAZoCWgPQwjQDriuWLpxQJSGlFKUaBVL02gWR0CYD6Gy5Zr6dX2UKGgGaAloD0MI2JsYkhOeakCUhpRSlGgVTTkBaBZHQJgPs2aUiY91fZQoaAZoCWgPQwiC5J1D2UpxQJSGlFKUaBVNAwFoFkdAmBBkUXYUWXV9lChoBmgJaA9DCJPF/UfmqnBAlIaUUpRoFUvlaBZHQJgSAytV7yB1fZQoaAZoCWgPQwgcmNwoMkRtQJSGlFKUaBVL8WgWR0CYE6dUKiPAdX2UKGgGaAloD0MIzLVoAdqbcUCUhpRSlGgVTSIBaBZHQJgT0zdk8Rt1fZQoaAZoCWgPQwiF0EGXsB9yQJSGlFKUaBVL7mgWR0CYFP74zrNXdX2UKGgGaAloD0MIcM0d/S+McECUhpRSlGgVS9ZoFkdAmBXBKg7HQ3V9lChoBmgJaA9DCD4mUppNMm5AlIaUUpRoFUvfaBZHQJgWT+DOC5F1fZQoaAZoCWgPQwjwoq8gzYdiQJSGlFKUaBVN6ANoFkdAmBaPKU3XI3V9lChoBmgJaA9DCPusMlNaU0pAlIaUUpRoFUvOaBZHQJgWr3/Pw/h1fZQoaAZoCWgPQwgDX9Gt1wlxQJSGlFKUaBVL+GgWR0CYF+t8uzyCdX2UKGgGaAloD0MIq65DNSU+b0CUhpRSlGgVTQABaBZHQJgYC5byH211fZQoaAZoCWgPQwgH7kCdcntsQJSGlFKUaBVL62gWR0CYGDr1M/QjdX2UKGgGaAloD0MIwa27eSrgYECUhpRSlGgVTegDaBZHQJgZEOMERrd1fZQoaAZoCWgPQwjNPo9RHrVvQJSGlFKUaBVL52gWR0CYGY6Skj5cdX2UKGgGaAloD0MIdH6K40AZb0CUhpRSlGgVS95oFkdAmBrHHim2s3V9lChoBmgJaA9DCGJodXIGp25AlIaUUpRoFUvhaBZHQJgb4OPNmlJ1fZQoaAZoCWgPQwhgH5268jdxQJSGlFKUaBVNDQFoFkdAmBwPub7TD3V9lChoBmgJaA9DCOVC5V9L0W5AlIaUUpRoFUvqaBZHQJgc1djXnQp1fZQoaAZoCWgPQwhSZK2hlNhwQJSGlFKUaBVL02gWR0CYHPakhzNmdX2UKGgGaAloD0MItoDQenh+bECUhpRSlGgVS99oFkdAmBz/uTibUnV9lChoBmgJaA9DCNI0KJqHJG1AlIaUUpRoFUvhaBZHQJgdPEehf0F1fZQoaAZoCWgPQwjt8q0P60dfQJSGlFKUaBVN6ANoFkdAmB4zS9du53V9lChoBmgJaA9DCDZy3ZTysmxAlIaUUpRoFUviaBZHQJges7V8Ti91fZQoaAZoCWgPQwiYw+47Bp1iQJSGlFKUaBVN6ANoFkdAmB7yRB/qgXV9lChoBmgJaA9DCDOny2JikWNAlIaUUpRoFU3oA2gWR0CYIF5Etuk2dX2UKGgGaAloD0MIUKbR5GJHckCUhpRSlGgVTSQBaBZHQJggZkSVW0Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}