infinitejoy
commited on
Commit
·
4da9fbb
1
Parent(s):
68ff46b
armenian training script
Browse files- armenian_training_script.ipynb +1516 -0
armenian_training_script.ipynb
ADDED
@@ -0,0 +1,1516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# HuggingFace challenge - Debugger notebook\n",
|
8 |
+
"Run this notebook to verify your libraries versions, check GPU config and run a quick training"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 2,
|
14 |
+
"metadata": {
|
15 |
+
"id": "T2utsYSKszvv"
|
16 |
+
},
|
17 |
+
"outputs": [],
|
18 |
+
"source": [
|
19 |
+
"import platform\n",
|
20 |
+
"import multiprocessing\n",
|
21 |
+
"\n",
|
22 |
+
"import torch\n",
|
23 |
+
"import transformers\n",
|
24 |
+
"import datasets\n",
|
25 |
+
"\n",
|
26 |
+
"import soundfile"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "markdown",
|
31 |
+
"metadata": {},
|
32 |
+
"source": [
|
33 |
+
"## Print main infos"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": 3,
|
39 |
+
"metadata": {
|
40 |
+
"colab": {
|
41 |
+
"base_uri": "https://localhost:8080/"
|
42 |
+
},
|
43 |
+
"id": "5P6I-W9ts-kR",
|
44 |
+
"outputId": "939bd550-1486-46a6-8371-e82ada0f448c"
|
45 |
+
},
|
46 |
+
"outputs": [
|
47 |
+
{
|
48 |
+
"name": "stdout",
|
49 |
+
"output_type": "stream",
|
50 |
+
"text": [
|
51 |
+
"Platform: Linux-5.11.0-37-generic-x86_64-with-glibc2.10\n",
|
52 |
+
"CPU cores: 60\n",
|
53 |
+
"Python version: 3.8.8\n",
|
54 |
+
"PyTorch version: 1.10.1+cu102\n",
|
55 |
+
"GPU is visible: True\n",
|
56 |
+
"Transformers version: 4.16.0.dev0\n",
|
57 |
+
"Datasets version: 1.17.1.dev0\n",
|
58 |
+
"soundfile version: 0.10.3\n"
|
59 |
+
]
|
60 |
+
}
|
61 |
+
],
|
62 |
+
"source": [
|
63 |
+
"print(f\"Platform: {platform.platform()}\")\n",
|
64 |
+
"print(f\"CPU cores: {multiprocessing.cpu_count()}\")\n",
|
65 |
+
"\n",
|
66 |
+
"print(f\"Python version: {platform.python_version()}\")\n",
|
67 |
+
"\n",
|
68 |
+
"print(f\"PyTorch version: {torch.__version__}\")\n",
|
69 |
+
"print(f\"GPU is visible: {torch.cuda.is_available()}\")\n",
|
70 |
+
"\n",
|
71 |
+
"print(f\"Transformers version: {transformers.__version__}\")\n",
|
72 |
+
"print(f\"Datasets version: {datasets.__version__}\")\n",
|
73 |
+
"\n",
|
74 |
+
"print(f\"soundfile version: {soundfile.__version__}\")"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "markdown",
|
79 |
+
"metadata": {},
|
80 |
+
"source": [
|
81 |
+
"## Check your GPU informations (if any)\n",
|
82 |
+
"If you launched an AI Training job with GPU resources, they should be listed below (Tesla V100s 32GB).\n",
|
83 |
+
"Driver and CUDA version "
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": 4,
|
89 |
+
"metadata": {
|
90 |
+
"colab": {
|
91 |
+
"base_uri": "https://localhost:8080/"
|
92 |
+
},
|
93 |
+
"id": "YT7fRnKctggU",
|
94 |
+
"outputId": "f355a3e0-20da-489f-bd1f-5e508e792a68"
|
95 |
+
},
|
96 |
+
"outputs": [
|
97 |
+
{
|
98 |
+
"name": "stdout",
|
99 |
+
"output_type": "stream",
|
100 |
+
"text": [
|
101 |
+
"Mon Jan 24 17:23:29 2022 \n",
|
102 |
+
"+-----------------------------------------------------------------------------+\n",
|
103 |
+
"| NVIDIA-SMI 470.57.02 Driver Version: 470.57.02 CUDA Version: 11.4 |\n",
|
104 |
+
"|-------------------------------+----------------------+----------------------+\n",
|
105 |
+
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
|
106 |
+
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
|
107 |
+
"| | | MIG M. |\n",
|
108 |
+
"|===============================+======================+======================|\n",
|
109 |
+
"| 0 Tesla V100S-PCI... Off | 00000000:00:06.0 Off | 0 |\n",
|
110 |
+
"| N/A 36C P0 26W / 250W | 4MiB / 32510MiB | 0% Default |\n",
|
111 |
+
"| | | N/A |\n",
|
112 |
+
"+-------------------------------+----------------------+----------------------+\n",
|
113 |
+
" \n",
|
114 |
+
"+-----------------------------------------------------------------------------+\n",
|
115 |
+
"| Processes: |\n",
|
116 |
+
"| GPU GI CI PID Type Process name GPU Memory |\n",
|
117 |
+
"| ID ID Usage |\n",
|
118 |
+
"|=============================================================================|\n",
|
119 |
+
"| No running processes found |\n",
|
120 |
+
"+-----------------------------------------------------------------------------+\n"
|
121 |
+
]
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"source": [
|
125 |
+
"!nvidia-smi"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 4,
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [
|
133 |
+
{
|
134 |
+
"data": {
|
135 |
+
"application/vnd.jupyter.widget-view+json": {
|
136 |
+
"model_id": "2fa897b4afc049229144599af9e3f807",
|
137 |
+
"version_major": 2,
|
138 |
+
"version_minor": 0
|
139 |
+
},
|
140 |
+
"text/plain": [
|
141 |
+
"VBox(children=(HTML(value='<center>\\n<img src=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
"metadata": {},
|
145 |
+
"output_type": "display_data"
|
146 |
+
}
|
147 |
+
],
|
148 |
+
"source": [
|
149 |
+
"from huggingface_hub import notebook_login\n",
|
150 |
+
"\n",
|
151 |
+
"notebook_login()"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "markdown",
|
156 |
+
"metadata": {
|
157 |
+
"id": "TorMtpwPv6RQ"
|
158 |
+
},
|
159 |
+
"source": [
|
160 |
+
"## Quick training run with a dummy model and data\n",
|
161 |
+
"more information on https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": 5,
|
167 |
+
"metadata": {
|
168 |
+
"colab": {
|
169 |
+
"base_uri": "https://localhost:8080/"
|
170 |
+
},
|
171 |
+
"id": "fevoJD15u4Ss",
|
172 |
+
"outputId": "5861d34e-745b-45ee-e780-ed363043e655"
|
173 |
+
},
|
174 |
+
"outputs": [
|
175 |
+
{
|
176 |
+
"name": "stdout",
|
177 |
+
"output_type": "stream",
|
178 |
+
"text": [
|
179 |
+
"--2022-01-22 15:01:09-- https://raw.githubusercontent.com/huggingface/transformers/master/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py\n",
|
180 |
+
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.108.133, 185.199.109.133, ...\n",
|
181 |
+
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|:443... connected.\n",
|
182 |
+
"HTTP request sent, awaiting response... 200 OK\n",
|
183 |
+
"Length: 30348 (30K) [text/plain]\n",
|
184 |
+
"Saving to: ‘run_speech_recognition_ctc.py’\n",
|
185 |
+
"\n",
|
186 |
+
"run_speech_recognit 100%[===================>] 29.64K --.-KB/s in 0.001s \n",
|
187 |
+
"\n",
|
188 |
+
"2022-01-22 15:01:09 (20.1 MB/s) - ‘run_speech_recognition_ctc.py’ saved [30348/30348]\n",
|
189 |
+
"\n"
|
190 |
+
]
|
191 |
+
}
|
192 |
+
],
|
193 |
+
"source": [
|
194 |
+
"!wget -O run_speech_recognition_ctc.py https://raw.githubusercontent.com/huggingface/transformers/master/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": null,
|
200 |
+
"metadata": {},
|
201 |
+
"outputs": [],
|
202 |
+
"source": [
|
203 |
+
"# \t--learning_rate=\"7.5e-5\" \\\n",
|
204 |
+
"# 84.5"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"cell_type": "code",
|
209 |
+
"execution_count": null,
|
210 |
+
"metadata": {
|
211 |
+
"colab": {
|
212 |
+
"base_uri": "https://localhost:8080/"
|
213 |
+
},
|
214 |
+
"id": "Mz4bubhxxsad",
|
215 |
+
"outputId": "23398525-cc19-43c2-9fec-497e06214f29"
|
216 |
+
},
|
217 |
+
"outputs": [
|
218 |
+
{
|
219 |
+
"name": "stdout",
|
220 |
+
"output_type": "stream",
|
221 |
+
"text": [
|
222 |
+
"01/24/2022 17:28:58 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: True\n",
|
223 |
+
"01/24/2022 17:28:58 - INFO - __main__ - Training/evaluation parameters TrainingArguments(\n",
|
224 |
+
"_n_gpu=1,\n",
|
225 |
+
"adafactor=False,\n",
|
226 |
+
"adam_beta1=0.9,\n",
|
227 |
+
"adam_beta2=0.999,\n",
|
228 |
+
"adam_epsilon=1e-08,\n",
|
229 |
+
"bf16=False,\n",
|
230 |
+
"bf16_full_eval=False,\n",
|
231 |
+
"dataloader_drop_last=False,\n",
|
232 |
+
"dataloader_num_workers=0,\n",
|
233 |
+
"dataloader_pin_memory=True,\n",
|
234 |
+
"ddp_bucket_cap_mb=None,\n",
|
235 |
+
"ddp_find_unused_parameters=None,\n",
|
236 |
+
"debug=[],\n",
|
237 |
+
"deepspeed=None,\n",
|
238 |
+
"disable_tqdm=False,\n",
|
239 |
+
"do_eval=True,\n",
|
240 |
+
"do_predict=False,\n",
|
241 |
+
"do_train=True,\n",
|
242 |
+
"eval_accumulation_steps=None,\n",
|
243 |
+
"eval_steps=500,\n",
|
244 |
+
"evaluation_strategy=IntervalStrategy.STEPS,\n",
|
245 |
+
"fp16=True,\n",
|
246 |
+
"fp16_backend=auto,\n",
|
247 |
+
"fp16_full_eval=False,\n",
|
248 |
+
"fp16_opt_level=O1,\n",
|
249 |
+
"gradient_accumulation_steps=1,\n",
|
250 |
+
"gradient_checkpointing=True,\n",
|
251 |
+
"greater_is_better=None,\n",
|
252 |
+
"group_by_length=True,\n",
|
253 |
+
"half_precision_backend=auto,\n",
|
254 |
+
"hub_model_id=None,\n",
|
255 |
+
"hub_strategy=HubStrategy.EVERY_SAVE,\n",
|
256 |
+
"hub_token=<HUB_TOKEN>,\n",
|
257 |
+
"ignore_data_skip=False,\n",
|
258 |
+
"label_names=None,\n",
|
259 |
+
"label_smoothing_factor=0.0,\n",
|
260 |
+
"learning_rate=0.0003,\n",
|
261 |
+
"length_column_name=input_length,\n",
|
262 |
+
"load_best_model_at_end=False,\n",
|
263 |
+
"local_rank=-1,\n",
|
264 |
+
"log_level=-1,\n",
|
265 |
+
"log_level_replica=-1,\n",
|
266 |
+
"log_on_each_node=True,\n",
|
267 |
+
"logging_dir=./wav2vec2-large-xls-r-300m-armenian/runs/Jan24_17-28-58_job-8be8b741-e32e-4579-bbec-1e00d9824b4f,\n",
|
268 |
+
"logging_first_step=False,\n",
|
269 |
+
"logging_nan_inf_filter=True,\n",
|
270 |
+
"logging_steps=100,\n",
|
271 |
+
"logging_strategy=IntervalStrategy.STEPS,\n",
|
272 |
+
"lr_scheduler_type=SchedulerType.LINEAR,\n",
|
273 |
+
"max_grad_norm=1.0,\n",
|
274 |
+
"max_steps=-1,\n",
|
275 |
+
"metric_for_best_model=None,\n",
|
276 |
+
"mp_parameters=,\n",
|
277 |
+
"no_cuda=False,\n",
|
278 |
+
"num_train_epochs=200.0,\n",
|
279 |
+
"optim=OptimizerNames.ADAMW_HF,\n",
|
280 |
+
"output_dir=./wav2vec2-large-xls-r-300m-armenian,\n",
|
281 |
+
"overwrite_output_dir=True,\n",
|
282 |
+
"past_index=-1,\n",
|
283 |
+
"per_device_eval_batch_size=32,\n",
|
284 |
+
"per_device_train_batch_size=32,\n",
|
285 |
+
"prediction_loss_only=False,\n",
|
286 |
+
"push_to_hub=True,\n",
|
287 |
+
"push_to_hub_model_id=None,\n",
|
288 |
+
"push_to_hub_organization=None,\n",
|
289 |
+
"push_to_hub_token=<PUSH_TO_HUB_TOKEN>,\n",
|
290 |
+
"remove_unused_columns=True,\n",
|
291 |
+
"report_to=[],\n",
|
292 |
+
"resume_from_checkpoint=None,\n",
|
293 |
+
"run_name=./wav2vec2-large-xls-r-300m-armenian,\n",
|
294 |
+
"save_on_each_node=False,\n",
|
295 |
+
"save_steps=500,\n",
|
296 |
+
"save_strategy=IntervalStrategy.STEPS,\n",
|
297 |
+
"save_total_limit=2,\n",
|
298 |
+
"seed=42,\n",
|
299 |
+
"sharded_ddp=[],\n",
|
300 |
+
"skip_memory_metrics=True,\n",
|
301 |
+
"tf32=None,\n",
|
302 |
+
"tpu_metrics_debug=False,\n",
|
303 |
+
"tpu_num_cores=None,\n",
|
304 |
+
"use_legacy_prediction_loop=False,\n",
|
305 |
+
"warmup_ratio=0.0,\n",
|
306 |
+
"warmup_steps=500,\n",
|
307 |
+
"weight_decay=0.0,\n",
|
308 |
+
"xpu_backend=None,\n",
|
309 |
+
")\n",
|
310 |
+
"01/24/2022 17:29:00 - WARNING - datasets.builder - Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/hy-AM/7.0.0/33e08856cfa0d0665e837bcad73ffd920a0bc713ce8c5fffb55dbdf1c084d5ba)\n",
|
311 |
+
"01/24/2022 17:29:03 - WARNING - datasets.builder - Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/hy-AM/7.0.0/33e08856cfa0d0665e837bcad73ffd920a0bc713ce8c5fffb55dbdf1c084d5ba)\n",
|
312 |
+
"remove special characters from datasets: 100%|█| 554/554 [00:00<00:00, 5471.47ex\n",
|
313 |
+
"remove special characters from datasets: 100%|█| 212/212 [00:00<00:00, 7143.49ex\n",
|
314 |
+
"loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6\n",
|
315 |
+
"Model config Wav2Vec2Config {\n",
|
316 |
+
" \"_name_or_path\": \"facebook/wav2vec2-xls-r-300m\",\n",
|
317 |
+
" \"activation_dropout\": 0.0,\n",
|
318 |
+
" \"adapter_kernel_size\": 3,\n",
|
319 |
+
" \"adapter_stride\": 2,\n",
|
320 |
+
" \"add_adapter\": false,\n",
|
321 |
+
" \"apply_spec_augment\": true,\n",
|
322 |
+
" \"architectures\": [\n",
|
323 |
+
" \"Wav2Vec2ForPreTraining\"\n",
|
324 |
+
" ],\n",
|
325 |
+
" \"attention_dropout\": 0.1,\n",
|
326 |
+
" \"bos_token_id\": 1,\n",
|
327 |
+
" \"classifier_proj_size\": 256,\n",
|
328 |
+
" \"codevector_dim\": 768,\n",
|
329 |
+
" \"contrastive_logits_temperature\": 0.1,\n",
|
330 |
+
" \"conv_bias\": true,\n",
|
331 |
+
" \"conv_dim\": [\n",
|
332 |
+
" 512,\n",
|
333 |
+
" 512,\n",
|
334 |
+
" 512,\n",
|
335 |
+
" 512,\n",
|
336 |
+
" 512,\n",
|
337 |
+
" 512,\n",
|
338 |
+
" 512\n",
|
339 |
+
" ],\n",
|
340 |
+
" \"conv_kernel\": [\n",
|
341 |
+
" 10,\n",
|
342 |
+
" 3,\n",
|
343 |
+
" 3,\n",
|
344 |
+
" 3,\n",
|
345 |
+
" 3,\n",
|
346 |
+
" 2,\n",
|
347 |
+
" 2\n",
|
348 |
+
" ],\n",
|
349 |
+
" \"conv_stride\": [\n",
|
350 |
+
" 5,\n",
|
351 |
+
" 2,\n",
|
352 |
+
" 2,\n",
|
353 |
+
" 2,\n",
|
354 |
+
" 2,\n",
|
355 |
+
" 2,\n",
|
356 |
+
" 2\n",
|
357 |
+
" ],\n",
|
358 |
+
" \"ctc_loss_reduction\": \"sum\",\n",
|
359 |
+
" \"ctc_zero_infinity\": false,\n",
|
360 |
+
" \"diversity_loss_weight\": 0.1,\n",
|
361 |
+
" \"do_stable_layer_norm\": true,\n",
|
362 |
+
" \"eos_token_id\": 2,\n",
|
363 |
+
" \"feat_extract_activation\": \"gelu\",\n",
|
364 |
+
" \"feat_extract_dropout\": 0.0,\n",
|
365 |
+
" \"feat_extract_norm\": \"layer\",\n",
|
366 |
+
" \"feat_proj_dropout\": 0.1,\n",
|
367 |
+
" \"feat_quantizer_dropout\": 0.0,\n",
|
368 |
+
" \"final_dropout\": 0.0,\n",
|
369 |
+
" \"gradient_checkpointing\": false,\n",
|
370 |
+
" \"hidden_act\": \"gelu\",\n",
|
371 |
+
" \"hidden_dropout\": 0.1,\n",
|
372 |
+
" \"hidden_size\": 1024,\n",
|
373 |
+
" \"initializer_range\": 0.02,\n",
|
374 |
+
" \"intermediate_size\": 4096,\n",
|
375 |
+
" \"layer_norm_eps\": 1e-05,\n",
|
376 |
+
" \"layerdrop\": 0.1,\n",
|
377 |
+
" \"mask_feature_length\": 10,\n",
|
378 |
+
" \"mask_feature_min_masks\": 0,\n",
|
379 |
+
" \"mask_feature_prob\": 0.0,\n",
|
380 |
+
" \"mask_time_length\": 10,\n",
|
381 |
+
" \"mask_time_min_masks\": 2,\n",
|
382 |
+
" \"mask_time_prob\": 0.075,\n",
|
383 |
+
" \"model_type\": \"wav2vec2\",\n",
|
384 |
+
" \"num_adapter_layers\": 3,\n",
|
385 |
+
" \"num_attention_heads\": 16,\n",
|
386 |
+
" \"num_codevector_groups\": 2,\n",
|
387 |
+
" \"num_codevectors_per_group\": 320,\n",
|
388 |
+
" \"num_conv_pos_embedding_groups\": 16,\n",
|
389 |
+
" \"num_conv_pos_embeddings\": 128,\n",
|
390 |
+
" \"num_feat_extract_layers\": 7,\n",
|
391 |
+
" \"num_hidden_layers\": 24,\n",
|
392 |
+
" \"num_negatives\": 100,\n",
|
393 |
+
" \"output_hidden_size\": 1024,\n",
|
394 |
+
" \"pad_token_id\": 0,\n",
|
395 |
+
" \"proj_codevector_dim\": 768,\n",
|
396 |
+
" \"tdnn_dilation\": [\n",
|
397 |
+
" 1,\n",
|
398 |
+
" 2,\n",
|
399 |
+
" 3,\n",
|
400 |
+
" 1,\n",
|
401 |
+
" 1\n",
|
402 |
+
" ],\n",
|
403 |
+
" \"tdnn_dim\": [\n",
|
404 |
+
" 512,\n",
|
405 |
+
" 512,\n",
|
406 |
+
" 512,\n",
|
407 |
+
" 512,\n",
|
408 |
+
" 1500\n",
|
409 |
+
" ],\n",
|
410 |
+
" \"tdnn_kernel\": [\n",
|
411 |
+
" 5,\n",
|
412 |
+
" 3,\n",
|
413 |
+
" 3,\n",
|
414 |
+
" 1,\n",
|
415 |
+
" 1\n",
|
416 |
+
" ],\n",
|
417 |
+
" \"torch_dtype\": \"float32\",\n",
|
418 |
+
" \"transformers_version\": \"4.16.0.dev0\",\n",
|
419 |
+
" \"use_weighted_layer_sum\": false,\n",
|
420 |
+
" \"vocab_size\": 32,\n",
|
421 |
+
" \"xvector_output_dim\": 512\n",
|
422 |
+
"}\n",
|
423 |
+
"\n",
|
424 |
+
"100%|█████████████████████████████████████████████| 1/1 [00:00<00:00, 42.75ba/s]\n",
|
425 |
+
"100%|████████████████████████████████████████████| 1/1 [00:00<00:00, 137.47ba/s]\n",
|
426 |
+
"Didn't find file ./wav2vec2-large-xls-r-300m-armenian/tokenizer_config.json. We won't load it.\n",
|
427 |
+
"Didn't find file ./wav2vec2-large-xls-r-300m-armenian/added_tokens.json. We won't load it.\n",
|
428 |
+
"Didn't find file ./wav2vec2-large-xls-r-300m-armenian/special_tokens_map.json. We won't load it.\n",
|
429 |
+
"Didn't find file ./wav2vec2-large-xls-r-300m-armenian/tokenizer.json. We won't load it.\n",
|
430 |
+
"loading file ./wav2vec2-large-xls-r-300m-armenian/vocab.json\n",
|
431 |
+
"loading file None\n",
|
432 |
+
"loading file None\n",
|
433 |
+
"loading file None\n",
|
434 |
+
"loading file None\n",
|
435 |
+
"file ./wav2vec2-large-xls-r-300m-armenian/config.json not found\n",
|
436 |
+
"Adding <s> to the vocabulary\n",
|
437 |
+
"Adding </s> to the vocabulary\n",
|
438 |
+
"Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.\n",
|
439 |
+
"loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6\n",
|
440 |
+
"Model config Wav2Vec2Config {\n",
|
441 |
+
" \"_name_or_path\": \"facebook/wav2vec2-xls-r-300m\",\n",
|
442 |
+
" \"activation_dropout\": 0.0,\n",
|
443 |
+
" \"adapter_kernel_size\": 3,\n",
|
444 |
+
" \"adapter_stride\": 2,\n",
|
445 |
+
" \"add_adapter\": false,\n",
|
446 |
+
" \"apply_spec_augment\": true,\n",
|
447 |
+
" \"architectures\": [\n",
|
448 |
+
" \"Wav2Vec2ForPreTraining\"\n",
|
449 |
+
" ],\n",
|
450 |
+
" \"attention_dropout\": 0.1,\n",
|
451 |
+
" \"bos_token_id\": 1,\n",
|
452 |
+
" \"classifier_proj_size\": 256,\n",
|
453 |
+
" \"codevector_dim\": 768,\n",
|
454 |
+
" \"contrastive_logits_temperature\": 0.1,\n",
|
455 |
+
" \"conv_bias\": true,\n",
|
456 |
+
" \"conv_dim\": [\n",
|
457 |
+
" 512,\n",
|
458 |
+
" 512,\n",
|
459 |
+
" 512,\n",
|
460 |
+
" 512,\n",
|
461 |
+
" 512,\n",
|
462 |
+
" 512,\n",
|
463 |
+
" 512\n",
|
464 |
+
" ],\n",
|
465 |
+
" \"conv_kernel\": [\n",
|
466 |
+
" 10,\n",
|
467 |
+
" 3,\n",
|
468 |
+
" 3,\n",
|
469 |
+
" 3,\n",
|
470 |
+
" 3,\n",
|
471 |
+
" 2,\n",
|
472 |
+
" 2\n",
|
473 |
+
" ],\n",
|
474 |
+
" \"conv_stride\": [\n",
|
475 |
+
" 5,\n",
|
476 |
+
" 2,\n",
|
477 |
+
" 2,\n",
|
478 |
+
" 2,\n",
|
479 |
+
" 2,\n",
|
480 |
+
" 2,\n",
|
481 |
+
" 2\n",
|
482 |
+
" ],\n",
|
483 |
+
" \"ctc_loss_reduction\": \"sum\",\n",
|
484 |
+
" \"ctc_zero_infinity\": false,\n",
|
485 |
+
" \"diversity_loss_weight\": 0.1,\n",
|
486 |
+
" \"do_stable_layer_norm\": true,\n",
|
487 |
+
" \"eos_token_id\": 2,\n",
|
488 |
+
" \"feat_extract_activation\": \"gelu\",\n",
|
489 |
+
" \"feat_extract_dropout\": 0.0,\n",
|
490 |
+
" \"feat_extract_norm\": \"layer\",\n",
|
491 |
+
" \"feat_proj_dropout\": 0.1,\n",
|
492 |
+
" \"feat_quantizer_dropout\": 0.0,\n",
|
493 |
+
" \"final_dropout\": 0.0,\n",
|
494 |
+
" \"gradient_checkpointing\": false,\n",
|
495 |
+
" \"hidden_act\": \"gelu\",\n",
|
496 |
+
" \"hidden_dropout\": 0.1,\n",
|
497 |
+
" \"hidden_size\": 1024,\n",
|
498 |
+
" \"initializer_range\": 0.02,\n",
|
499 |
+
" \"intermediate_size\": 4096,\n",
|
500 |
+
" \"layer_norm_eps\": 1e-05,\n",
|
501 |
+
" \"layerdrop\": 0.1,\n",
|
502 |
+
" \"mask_feature_length\": 10,\n",
|
503 |
+
" \"mask_feature_min_masks\": 0,\n",
|
504 |
+
" \"mask_feature_prob\": 0.0,\n",
|
505 |
+
" \"mask_time_length\": 10,\n",
|
506 |
+
" \"mask_time_min_masks\": 2,\n",
|
507 |
+
" \"mask_time_prob\": 0.075,\n",
|
508 |
+
" \"model_type\": \"wav2vec2\",\n",
|
509 |
+
" \"num_adapter_layers\": 3,\n",
|
510 |
+
" \"num_attention_heads\": 16,\n",
|
511 |
+
" \"num_codevector_groups\": 2,\n",
|
512 |
+
" \"num_codevectors_per_group\": 320,\n",
|
513 |
+
" \"num_conv_pos_embedding_groups\": 16,\n",
|
514 |
+
" \"num_conv_pos_embeddings\": 128,\n",
|
515 |
+
" \"num_feat_extract_layers\": 7,\n",
|
516 |
+
" \"num_hidden_layers\": 24,\n",
|
517 |
+
" \"num_negatives\": 100,\n",
|
518 |
+
" \"output_hidden_size\": 1024,\n",
|
519 |
+
" \"pad_token_id\": 0,\n",
|
520 |
+
" \"proj_codevector_dim\": 768,\n",
|
521 |
+
" \"tdnn_dilation\": [\n",
|
522 |
+
" 1,\n",
|
523 |
+
" 2,\n",
|
524 |
+
" 3,\n",
|
525 |
+
" 1,\n",
|
526 |
+
" 1\n",
|
527 |
+
" ],\n",
|
528 |
+
" \"tdnn_dim\": [\n",
|
529 |
+
" 512,\n",
|
530 |
+
" 512,\n",
|
531 |
+
" 512,\n",
|
532 |
+
" 512,\n",
|
533 |
+
" 1500\n",
|
534 |
+
" ],\n",
|
535 |
+
" \"tdnn_kernel\": [\n",
|
536 |
+
" 5,\n",
|
537 |
+
" 3,\n",
|
538 |
+
" 3,\n",
|
539 |
+
" 1,\n",
|
540 |
+
" 1\n",
|
541 |
+
" ],\n",
|
542 |
+
" \"torch_dtype\": \"float32\",\n",
|
543 |
+
" \"transformers_version\": \"4.16.0.dev0\",\n",
|
544 |
+
" \"use_weighted_layer_sum\": false,\n",
|
545 |
+
" \"vocab_size\": 32,\n",
|
546 |
+
" \"xvector_output_dim\": 512\n",
|
547 |
+
"}\n",
|
548 |
+
"\n",
|
549 |
+
"loading feature extractor configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/preprocessor_config.json from cache at /workspace/.cache/huggingface/transformers/6fb028b95b394059e7d3b367bbca2382b576c66aebe896f04d2cd34e1b575f5b.d4484dc1c81456a2461485e7168b04347a7b9a4e3b1ef3aba723323b33e12326\n",
|
550 |
+
"Feature extractor Wav2Vec2FeatureExtractor {\n",
|
551 |
+
" \"do_normalize\": true,\n",
|
552 |
+
" \"feature_extractor_type\": \"Wav2Vec2FeatureExtractor\",\n",
|
553 |
+
" \"feature_size\": 1,\n",
|
554 |
+
" \"padding_side\": \"right\",\n",
|
555 |
+
" \"padding_value\": 0,\n",
|
556 |
+
" \"return_attention_mask\": true,\n",
|
557 |
+
" \"sampling_rate\": 16000\n",
|
558 |
+
"}\n",
|
559 |
+
"\n",
|
560 |
+
"loading weights file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/pytorch_model.bin from cache at /workspace/.cache/huggingface/transformers/1e6a6507f3b689035cd4b247e2a37c154e27f39143f31357a49b4e38baeccc36.1edb32803799e27ed554eb7dd935f6745b1a0b17b0ea256442fe24db6eb546cd\n",
|
561 |
+
"Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['project_q.bias', 'project_hid.bias', 'quantizer.weight_proj.bias', 'quantizer.codevectors', 'project_hid.weight', 'project_q.weight', 'quantizer.weight_proj.weight']\n",
|
562 |
+
"- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
563 |
+
"- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
564 |
+
"Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.bias', 'lm_head.weight']\n",
|
565 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
566 |
+
"preprocess datasets: 100%|███████████████████| 554/554 [00:05<00:00, 107.32ex/s]\n",
|
567 |
+
"preprocess datasets: 100%|███████████████████| 212/212 [00:01<00:00, 118.26ex/s]\n",
|
568 |
+
"100%|████████████████████████████████████████████| 1/1 [00:00<00:00, 690.08ba/s]\n",
|
569 |
+
"100%|███████████████████████████████████████████| 1/1 [00:00<00:00, 1093.41ba/s]\n",
|
570 |
+
"Configuration saved in ./wav2vec2-large-xls-r-300m-armenian/preprocessor_config.json\n",
|
571 |
+
"tokenizer config file saved in ./wav2vec2-large-xls-r-300m-armenian/tokenizer_config.json\n",
|
572 |
+
"Special tokens file saved in ./wav2vec2-large-xls-r-300m-armenian/special_tokens_map.json\n",
|
573 |
+
"added tokens file saved in ./wav2vec2-large-xls-r-300m-armenian/added_tokens.json\n",
|
574 |
+
"Configuration saved in ./wav2vec2-large-xls-r-300m-armenian/config.json\n",
|
575 |
+
"loading feature extractor configuration file ./wav2vec2-large-xls-r-300m-armenian/preprocessor_config.json\n",
|
576 |
+
"loading configuration file ./wav2vec2-large-xls-r-300m-armenian/config.json\n",
|
577 |
+
"Model config Wav2Vec2Config {\n",
|
578 |
+
" \"_name_or_path\": \"./wav2vec2-large-xls-r-300m-armenian\",\n",
|
579 |
+
" \"activation_dropout\": 0.1,\n",
|
580 |
+
" \"adapter_kernel_size\": 3,\n",
|
581 |
+
" \"adapter_stride\": 2,\n",
|
582 |
+
" \"add_adapter\": false,\n",
|
583 |
+
" \"apply_spec_augment\": true,\n",
|
584 |
+
" \"architectures\": [\n",
|
585 |
+
" \"Wav2Vec2ForPreTraining\"\n",
|
586 |
+
" ],\n",
|
587 |
+
" \"attention_dropout\": 0.0,\n",
|
588 |
+
" \"bos_token_id\": 1,\n",
|
589 |
+
" \"classifier_proj_size\": 256,\n",
|
590 |
+
" \"codevector_dim\": 768,\n",
|
591 |
+
" \"contrastive_logits_temperature\": 0.1,\n",
|
592 |
+
" \"conv_bias\": true,\n",
|
593 |
+
" \"conv_dim\": [\n",
|
594 |
+
" 512,\n",
|
595 |
+
" 512,\n",
|
596 |
+
" 512,\n",
|
597 |
+
" 512,\n",
|
598 |
+
" 512,\n",
|
599 |
+
" 512,\n",
|
600 |
+
" 512\n",
|
601 |
+
" ],\n",
|
602 |
+
" \"conv_kernel\": [\n",
|
603 |
+
" 10,\n",
|
604 |
+
" 3,\n",
|
605 |
+
" 3,\n",
|
606 |
+
" 3,\n",
|
607 |
+
" 3,\n",
|
608 |
+
" 2,\n",
|
609 |
+
" 2\n",
|
610 |
+
" ],\n",
|
611 |
+
" \"conv_stride\": [\n",
|
612 |
+
" 5,\n",
|
613 |
+
" 2,\n",
|
614 |
+
" 2,\n",
|
615 |
+
" 2,\n",
|
616 |
+
" 2,\n",
|
617 |
+
" 2,\n",
|
618 |
+
" 2\n",
|
619 |
+
" ],\n",
|
620 |
+
" \"ctc_loss_reduction\": \"mean\",\n",
|
621 |
+
" \"ctc_zero_infinity\": false,\n",
|
622 |
+
" \"diversity_loss_weight\": 0.1,\n",
|
623 |
+
" \"do_stable_layer_norm\": true,\n",
|
624 |
+
" \"eos_token_id\": 2,\n",
|
625 |
+
" \"feat_extract_activation\": \"gelu\",\n",
|
626 |
+
" \"feat_extract_dropout\": 0.0,\n",
|
627 |
+
" \"feat_extract_norm\": \"layer\",\n",
|
628 |
+
" \"feat_proj_dropout\": 0.0,\n",
|
629 |
+
" \"feat_quantizer_dropout\": 0.0,\n",
|
630 |
+
" \"final_dropout\": 0.0,\n",
|
631 |
+
" \"hidden_act\": \"gelu\",\n",
|
632 |
+
" \"hidden_dropout\": 0.0,\n",
|
633 |
+
" \"hidden_size\": 1024,\n",
|
634 |
+
" \"initializer_range\": 0.02,\n",
|
635 |
+
" \"intermediate_size\": 4096,\n",
|
636 |
+
" \"layer_norm_eps\": 1e-05,\n",
|
637 |
+
" \"layerdrop\": 0.0,\n",
|
638 |
+
" \"mask_feature_length\": 64,\n",
|
639 |
+
" \"mask_feature_min_masks\": 0,\n",
|
640 |
+
" \"mask_feature_prob\": 0.25,\n",
|
641 |
+
" \"mask_time_length\": 10,\n",
|
642 |
+
" \"mask_time_min_masks\": 2,\n",
|
643 |
+
" \"mask_time_prob\": 0.75,\n",
|
644 |
+
" \"model_type\": \"wav2vec2\",\n",
|
645 |
+
" \"num_adapter_layers\": 3,\n",
|
646 |
+
" \"num_attention_heads\": 16,\n",
|
647 |
+
" \"num_codevector_groups\": 2,\n",
|
648 |
+
" \"num_codevectors_per_group\": 320,\n",
|
649 |
+
" \"num_conv_pos_embedding_groups\": 16,\n",
|
650 |
+
" \"num_conv_pos_embeddings\": 128,\n",
|
651 |
+
" \"num_feat_extract_layers\": 7,\n",
|
652 |
+
" \"num_hidden_layers\": 24,\n",
|
653 |
+
" \"num_negatives\": 100,\n",
|
654 |
+
" \"output_hidden_size\": 1024,\n",
|
655 |
+
" \"pad_token_id\": 47,\n",
|
656 |
+
" \"proj_codevector_dim\": 768,\n",
|
657 |
+
" \"tdnn_dilation\": [\n",
|
658 |
+
" 1,\n",
|
659 |
+
" 2,\n",
|
660 |
+
" 3,\n",
|
661 |
+
" 1,\n",
|
662 |
+
" 1\n",
|
663 |
+
" ],\n",
|
664 |
+
" \"tdnn_dim\": [\n",
|
665 |
+
" 512,\n",
|
666 |
+
" 512,\n",
|
667 |
+
" 512,\n",
|
668 |
+
" 512,\n",
|
669 |
+
" 1500\n",
|
670 |
+
" ],\n",
|
671 |
+
" \"tdnn_kernel\": [\n",
|
672 |
+
" 5,\n",
|
673 |
+
" 3,\n",
|
674 |
+
" 3,\n",
|
675 |
+
" 1,\n",
|
676 |
+
" 1\n",
|
677 |
+
" ],\n",
|
678 |
+
" \"torch_dtype\": \"float32\",\n",
|
679 |
+
" \"transformers_version\": \"4.16.0.dev0\",\n",
|
680 |
+
" \"use_weighted_layer_sum\": false,\n",
|
681 |
+
" \"vocab_size\": 50,\n",
|
682 |
+
" \"xvector_output_dim\": 512\n",
|
683 |
+
"}\n",
|
684 |
+
"\n",
|
685 |
+
"loading feature extractor configuration file ./wav2vec2-large-xls-r-300m-armenian/preprocessor_config.json\n",
|
686 |
+
"Feature extractor Wav2Vec2FeatureExtractor {\n",
|
687 |
+
" \"do_normalize\": true,\n",
|
688 |
+
" \"feature_extractor_type\": \"Wav2Vec2FeatureExtractor\",\n",
|
689 |
+
" \"feature_size\": 1,\n",
|
690 |
+
" \"padding_side\": \"right\",\n",
|
691 |
+
" \"padding_value\": 0,\n",
|
692 |
+
" \"return_attention_mask\": true,\n",
|
693 |
+
" \"sampling_rate\": 16000\n",
|
694 |
+
"}\n",
|
695 |
+
"\n",
|
696 |
+
"Didn't find file ./wav2vec2-large-xls-r-300m-armenian/tokenizer.json. We won't load it.\n",
|
697 |
+
"loading file ./wav2vec2-large-xls-r-300m-armenian/vocab.json\n",
|
698 |
+
"loading file ./wav2vec2-large-xls-r-300m-armenian/tokenizer_config.json\n",
|
699 |
+
"loading file ./wav2vec2-large-xls-r-300m-armenian/added_tokens.json\n",
|
700 |
+
"loading file ./wav2vec2-large-xls-r-300m-armenian/special_tokens_map.json\n",
|
701 |
+
"loading file None\n",
|
702 |
+
"Adding <s> to the vocabulary\n",
|
703 |
+
"Adding </s> to the vocabulary\n",
|
704 |
+
"Cloning https://huggingface.co/infinitejoy/wav2vec2-large-xls-r-300m-armenian into local empty directory.\n",
|
705 |
+
"01/24/2022 17:29:28 - WARNING - huggingface_hub.repository - Cloning https://huggingface.co/infinitejoy/wav2vec2-large-xls-r-300m-armenian into local empty directory.\n",
|
706 |
+
"Using amp half precision backend\n",
|
707 |
+
"The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
708 |
+
"/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
709 |
+
" warnings.warn(\n",
|
710 |
+
"***** Running training *****\n",
|
711 |
+
" Num examples = 554\n",
|
712 |
+
" Num Epochs = 200\n",
|
713 |
+
" Instantaneous batch size per device = 32\n",
|
714 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 32\n",
|
715 |
+
" Gradient Accumulation steps = 1\n",
|
716 |
+
" Total optimization steps = 3600\n",
|
717 |
+
"{'loss': 9.8118, 'learning_rate': 5.82e-05, 'epoch': 5.56} \n",
|
718 |
+
"{'loss': 3.4789, 'learning_rate': 0.0001182, 'epoch': 11.11} \n",
|
719 |
+
"{'loss': 3.114, 'learning_rate': 0.00017819999999999997, 'epoch': 16.67} \n",
|
720 |
+
"{'loss': 2.721, 'learning_rate': 0.0002382, 'epoch': 22.22} \n",
|
721 |
+
"{'loss': 1.7294, 'learning_rate': 0.0002982, 'epoch': 27.78} \n",
|
722 |
+
" 14%|█████▎ | 500/3600 [19:09<2:08:46, 2.49s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
723 |
+
"***** Running Evaluation *****\n",
|
724 |
+
" Num examples = 212\n",
|
725 |
+
" Batch size = 32\n",
|
726 |
+
"\n",
|
727 |
+
" 0%| | 0/7 [00:00<?, ?it/s]\u001b[A\n",
|
728 |
+
" 29%|████████████▊ | 2/7 [00:01<00:04, 1.15it/s]\u001b[A\n",
|
729 |
+
" 43%|███████████████████▎ | 3/7 [00:03<00:04, 1.08s/it]\u001b[A\n",
|
730 |
+
" 57%|█████████████████████████▋ | 4/7 [00:04<00:03, 1.25s/it]\u001b[A\n",
|
731 |
+
" 71%|████████████████████████████████▏ | 5/7 [00:06<00:02, 1.41s/it]\u001b[A\n",
|
732 |
+
" 86%|██████████████████████████████████████▌ | 6/7 [00:08<00:01, 1.54s/it]\u001b[A\n",
|
733 |
+
" \u001b[A\n",
|
734 |
+
"\u001b[A{'eval_loss': 0.8540233373641968, 'eval_wer': 0.9943609022556391, 'eval_runtime': 10.9769, 'eval_samples_per_second': 19.313, 'eval_steps_per_second': 0.638, 'epoch': 27.78}\n",
|
735 |
+
" 14%|█████▎ | 500/3600 [19:20<2:08:46, 2.49s/it]\n",
|
736 |
+
"100%|█████████████████████████████████████████████| 7/7 [00:09<00:00, 1.36s/it]\u001b[A\n",
|
737 |
+
" \u001b[ASaving model checkpoint to ./wav2vec2-large-xls-r-300m-armenian/checkpoint-500\n",
|
738 |
+
"Configuration saved in ./wav2vec2-large-xls-r-300m-armenian/checkpoint-500/config.json\n",
|
739 |
+
"Model weights saved in ./wav2vec2-large-xls-r-300m-armenian/checkpoint-500/pytorch_model.bin\n",
|
740 |
+
"Configuration saved in ./wav2vec2-large-xls-r-300m-armenian/checkpoint-500/preprocessor_config.json\n",
|
741 |
+
"Configuration saved in ./wav2vec2-large-xls-r-300m-armenian/preprocessor_config.json\n",
|
742 |
+
"{'loss': 1.351, 'learning_rate': 0.0002906129032258064, 'epoch': 33.33} \n",
|
743 |
+
" 17%|██████▌ | 624/3600 [24:31<1:48:11, 2.18s/it]"
|
744 |
+
]
|
745 |
+
}
|
746 |
+
],
|
747 |
+
"source": [
|
748 |
+
"!python run_speech_recognition_ctc.py \\\n",
|
749 |
+
"\t--dataset_name=\"mozilla-foundation/common_voice_7_0\" \\\n",
|
750 |
+
"\t--model_name_or_path=\"facebook/wav2vec2-xls-r-300m\" \\\n",
|
751 |
+
"\t--dataset_config_name=\"hy-AM\" \\\n",
|
752 |
+
"\t--output_dir=\"./wav2vec2-large-xls-r-300m-armenian\" \\\n",
|
753 |
+
"\t--overwrite_output_dir \\\n",
|
754 |
+
"\t--num_train_epochs=\"200\" \\\n",
|
755 |
+
"\t--per_device_train_batch_size=\"32\" \\\n",
|
756 |
+
"\t--per_device_eval_batch_size=\"32\" \\\n",
|
757 |
+
"\t--gradient_accumulation_steps=\"1\" \\\n",
|
758 |
+
"\t--learning_rate=\"3e-4\" \\\n",
|
759 |
+
"\t--warmup_steps=\"500\" \\\n",
|
760 |
+
"\t--length_column_name=\"input_length\" \\\n",
|
761 |
+
"\t--evaluation_strategy=\"steps\" \\\n",
|
762 |
+
"\t--text_column_name=\"sentence\" \\\n",
|
763 |
+
"\t--chars_to_ignore , ? . ! \\- \\; \\: \\\" “ % ‘ ” � \\' \\’ \\– \\\n",
|
764 |
+
"\t--save_steps=\"500\" \\\n",
|
765 |
+
"\t--eval_steps=\"500\" \\\n",
|
766 |
+
"\t--logging_steps=\"100\" \\\n",
|
767 |
+
"\t--layerdrop=\"0.0\" \\\n",
|
768 |
+
"\t--activation_dropout=\"0.1\" \\\n",
|
769 |
+
"\t--save_total_limit=\"2\" \\\n",
|
770 |
+
"\t--freeze_feature_encoder \\\n",
|
771 |
+
"\t--feat_proj_dropout=\"0.0\" \\\n",
|
772 |
+
"\t--mask_time_prob=\"0.75\" \\\n",
|
773 |
+
"\t--mask_time_length=\"10\" \\\n",
|
774 |
+
"\t--mask_feature_prob=\"0.25\" \\\n",
|
775 |
+
"\t--mask_feature_length=\"64\" \\\n",
|
776 |
+
"\t--gradient_checkpointing \\\n",
|
777 |
+
"\t--use_auth_token \\\n",
|
778 |
+
"\t--fp16 \\\n",
|
779 |
+
"\t--group_by_length \\\n",
|
780 |
+
"\t--do_train --do_eval \\\n",
|
781 |
+
" --push_to_hub"
|
782 |
+
]
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"cell_type": "code",
|
786 |
+
"execution_count": null,
|
787 |
+
"metadata": {},
|
788 |
+
"outputs": [],
|
789 |
+
"source": [
|
790 |
+
"!ls -ltr"
|
791 |
+
]
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"cell_type": "code",
|
795 |
+
"execution_count": null,
|
796 |
+
"metadata": {},
|
797 |
+
"outputs": [],
|
798 |
+
"source": [
|
799 |
+
"import pandas as pd\n",
|
800 |
+
"\n",
|
801 |
+
"df = pd.DataFrame([\n",
|
802 |
+
" {'eval_loss': 1.4175914525985718, 'eval_wer': 0.8282476024411508, 'eval_runtime': 5.6701, 'eval_samples_per_second': 25.044, 'eval_steps_per_second': 0.882, 'epoch': 41.67},\n",
|
803 |
+
" {'eval_loss': 1.791098952293396, 'eval_wer': 0.7733217088055798, 'eval_runtime': 5.4161, 'eval_samples_per_second': 26.218, 'eval_steps_per_second': 0.923, 'epoch': 125.0},\n",
|
804 |
+
" {'eval_loss': 1.761537790298462, 'eval_wer': 0.8169136878814298, 'eval_runtime': 5.7426, 'eval_samples_per_second': 24.728, 'eval_steps_per_second': 0.871, 'epoch': 166.67},\n",
|
805 |
+
" {'eval_loss': 1.9240303039550781, 'eval_wer': 0.8456843940714909, 'eval_runtime': 5.3949, 'eval_samples_per_second': 26.321, 'eval_steps_per_second': 0.927, 'epoch': 208.33},\n",
|
806 |
+
"])"
|
807 |
+
]
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"cell_type": "code",
|
811 |
+
"execution_count": 13,
|
812 |
+
"metadata": {},
|
813 |
+
"outputs": [],
|
814 |
+
"source": [
|
815 |
+
"# !zip -r wav2vec2-large-xls-r-300m-odia.zip wav2vec2-large-xls-r-300m-odia/\n",
|
816 |
+
"# !rm wav2vec2-large-xls-r-300m-odia.zip"
|
817 |
+
]
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"cell_type": "code",
|
821 |
+
"execution_count": 10,
|
822 |
+
"metadata": {},
|
823 |
+
"outputs": [
|
824 |
+
{
|
825 |
+
"name": "stdout",
|
826 |
+
"output_type": "stream",
|
827 |
+
"text": [
|
828 |
+
"Filesystem Size Used Avail Use% Mounted on\n",
|
829 |
+
"overlay 3.5T 557G 2.8T 17% /\n",
|
830 |
+
"tmpfs 64M 0 64M 0% /dev\n",
|
831 |
+
"tmpfs 87G 0 87G 0% /sys/fs/cgroup\n",
|
832 |
+
"tmpfs 87G 0 87G 0% /dev/shm\n",
|
833 |
+
"/dev/md0 3.5T 557G 2.8T 17% /etc/group\n",
|
834 |
+
"tmpfs 87G 12K 87G 1% /proc/driver/nvidia\n",
|
835 |
+
"/dev/vda1 49G 6.6G 42G 14% /usr/bin/nvidia-smi\n",
|
836 |
+
"udev 87G 0 87G 0% /dev/nvidia0\n",
|
837 |
+
"tmpfs 87G 0 87G 0% /proc/acpi\n",
|
838 |
+
"tmpfs 87G 0 87G 0% /proc/scsi\n",
|
839 |
+
"tmpfs 87G 0 87G 0% /sys/firmware\n"
|
840 |
+
]
|
841 |
+
}
|
842 |
+
],
|
843 |
+
"source": [
|
844 |
+
"!df -h"
|
845 |
+
]
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"cell_type": "code",
|
849 |
+
"execution_count": 6,
|
850 |
+
"metadata": {},
|
851 |
+
"outputs": [
|
852 |
+
{
|
853 |
+
"name": "stdout",
|
854 |
+
"output_type": "stream",
|
855 |
+
"text": [
|
856 |
+
"Downloading and preparing dataset common_voice/hy-AM to /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/hy-AM/7.0.0/33e08856cfa0d0665e837bcad73ffd920a0bc713ce8c5fffb55dbdf1c084d5ba...\n"
|
857 |
+
]
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"data": {
|
861 |
+
"application/vnd.jupyter.widget-view+json": {
|
862 |
+
"model_id": "490374439642421092bd3b4fad8f2023",
|
863 |
+
"version_major": 2,
|
864 |
+
"version_minor": 0
|
865 |
+
},
|
866 |
+
"text/plain": [
|
867 |
+
"Downloading: 0%| | 0.00/59.0M [00:00<?, ?B/s]"
|
868 |
+
]
|
869 |
+
},
|
870 |
+
"metadata": {},
|
871 |
+
"output_type": "display_data"
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"data": {
|
875 |
+
"application/vnd.jupyter.widget-view+json": {
|
876 |
+
"model_id": "",
|
877 |
+
"version_major": 2,
|
878 |
+
"version_minor": 0
|
879 |
+
},
|
880 |
+
"text/plain": [
|
881 |
+
"0 examples [00:00, ? examples/s]"
|
882 |
+
]
|
883 |
+
},
|
884 |
+
"metadata": {},
|
885 |
+
"output_type": "display_data"
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"data": {
|
889 |
+
"application/vnd.jupyter.widget-view+json": {
|
890 |
+
"model_id": "",
|
891 |
+
"version_major": 2,
|
892 |
+
"version_minor": 0
|
893 |
+
},
|
894 |
+
"text/plain": [
|
895 |
+
"0 examples [00:00, ? examples/s]"
|
896 |
+
]
|
897 |
+
},
|
898 |
+
"metadata": {},
|
899 |
+
"output_type": "display_data"
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"data": {
|
903 |
+
"application/vnd.jupyter.widget-view+json": {
|
904 |
+
"model_id": "",
|
905 |
+
"version_major": 2,
|
906 |
+
"version_minor": 0
|
907 |
+
},
|
908 |
+
"text/plain": [
|
909 |
+
"0 examples [00:00, ? examples/s]"
|
910 |
+
]
|
911 |
+
},
|
912 |
+
"metadata": {},
|
913 |
+
"output_type": "display_data"
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"data": {
|
917 |
+
"application/vnd.jupyter.widget-view+json": {
|
918 |
+
"model_id": "",
|
919 |
+
"version_major": 2,
|
920 |
+
"version_minor": 0
|
921 |
+
},
|
922 |
+
"text/plain": [
|
923 |
+
"0 examples [00:00, ? examples/s]"
|
924 |
+
]
|
925 |
+
},
|
926 |
+
"metadata": {},
|
927 |
+
"output_type": "display_data"
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"data": {
|
931 |
+
"application/vnd.jupyter.widget-view+json": {
|
932 |
+
"model_id": "",
|
933 |
+
"version_major": 2,
|
934 |
+
"version_minor": 0
|
935 |
+
},
|
936 |
+
"text/plain": [
|
937 |
+
"0 examples [00:00, ? examples/s]"
|
938 |
+
]
|
939 |
+
},
|
940 |
+
"metadata": {},
|
941 |
+
"output_type": "display_data"
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"name": "stdout",
|
945 |
+
"output_type": "stream",
|
946 |
+
"text": [
|
947 |
+
"Dataset common_voice downloaded and prepared to /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/hy-AM/7.0.0/33e08856cfa0d0665e837bcad73ffd920a0bc713ce8c5fffb55dbdf1c084d5ba. Subsequent calls will reuse this data.\n"
|
948 |
+
]
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"name": "stderr",
|
952 |
+
"output_type": "stream",
|
953 |
+
"text": [
|
954 |
+
"Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/hy-AM/7.0.0/33e08856cfa0d0665e837bcad73ffd920a0bc713ce8c5fffb55dbdf1c084d5ba)\n"
|
955 |
+
]
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"name": "stdout",
|
959 |
+
"output_type": "stream",
|
960 |
+
"text": [
|
961 |
+
"554\n"
|
962 |
+
]
|
963 |
+
}
|
964 |
+
],
|
965 |
+
"source": [
|
966 |
+
"from datasets import load_dataset, load_metric, Audio\n",
|
967 |
+
"\n",
|
968 |
+
"common_voice_train = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"hy-AM\", use_auth_token=True, split=\"train+validation\")\n",
|
969 |
+
"common_voice_test = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"hy-AM\", use_auth_token=True, split=\"test\")\n",
|
970 |
+
"\n",
|
971 |
+
"print(len(common_voice_train))"
|
972 |
+
]
|
973 |
+
},
|
974 |
+
{
|
975 |
+
"cell_type": "code",
|
976 |
+
"execution_count": 10,
|
977 |
+
"metadata": {},
|
978 |
+
"outputs": [
|
979 |
+
{
|
980 |
+
"data": {
|
981 |
+
"text/plain": [
|
982 |
+
"3462.5"
|
983 |
+
]
|
984 |
+
},
|
985 |
+
"execution_count": 10,
|
986 |
+
"metadata": {},
|
987 |
+
"output_type": "execute_result"
|
988 |
+
}
|
989 |
+
],
|
990 |
+
"source": [
|
991 |
+
"len(common_voice_train) * 200 / 32"
|
992 |
+
]
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"cell_type": "code",
|
996 |
+
"execution_count": 11,
|
997 |
+
"metadata": {},
|
998 |
+
"outputs": [],
|
999 |
+
"source": [
|
1000 |
+
"common_voice_train = common_voice_train.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"segment\", \"up_votes\"])\n",
|
1001 |
+
"common_voice_test = common_voice_test.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"segment\", \"up_votes\"])"
|
1002 |
+
]
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"cell_type": "code",
|
1006 |
+
"execution_count": 12,
|
1007 |
+
"metadata": {},
|
1008 |
+
"outputs": [],
|
1009 |
+
"source": [
|
1010 |
+
"from datasets import ClassLabel\n",
|
1011 |
+
"import random\n",
|
1012 |
+
"import pandas as pd\n",
|
1013 |
+
"from IPython.display import display, HTML\n",
|
1014 |
+
"\n",
|
1015 |
+
"def show_random_elements(dataset, num_examples=10):\n",
|
1016 |
+
" assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
|
1017 |
+
" picks = []\n",
|
1018 |
+
" for _ in range(num_examples):\n",
|
1019 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
1020 |
+
" while pick in picks:\n",
|
1021 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
1022 |
+
" picks.append(pick)\n",
|
1023 |
+
" \n",
|
1024 |
+
" df = pd.DataFrame(dataset[picks])\n",
|
1025 |
+
" display(HTML(df.to_html()))"
|
1026 |
+
]
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"cell_type": "code",
|
1030 |
+
"execution_count": 13,
|
1031 |
+
"metadata": {},
|
1032 |
+
"outputs": [
|
1033 |
+
{
|
1034 |
+
"data": {
|
1035 |
+
"text/html": [
|
1036 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1037 |
+
" <thead>\n",
|
1038 |
+
" <tr style=\"text-align: right;\">\n",
|
1039 |
+
" <th></th>\n",
|
1040 |
+
" <th>sentence</th>\n",
|
1041 |
+
" </tr>\n",
|
1042 |
+
" </thead>\n",
|
1043 |
+
" <tbody>\n",
|
1044 |
+
" <tr>\n",
|
1045 |
+
" <th>0</th>\n",
|
1046 |
+
" <td>Ռեմիի մանկությունն անցնում է աղքատության և չքավորության մեջ։</td>\n",
|
1047 |
+
" </tr>\n",
|
1048 |
+
" <tr>\n",
|
1049 |
+
" <th>1</th>\n",
|
1050 |
+
" <td>Տղան դուրս չի գալիս կոմայից և մահանում է։</td>\n",
|
1051 |
+
" </tr>\n",
|
1052 |
+
" <tr>\n",
|
1053 |
+
" <th>2</th>\n",
|
1054 |
+
" <td>Հին հունական ողբերգության խորոսի տեքստերը հնչել են ասերգությամբ։</td>\n",
|
1055 |
+
" </tr>\n",
|
1056 |
+
" <tr>\n",
|
1057 |
+
" <th>3</th>\n",
|
1058 |
+
" <td>Այս դեպքում բուժումը վիրահատական է, իսկ դեղանյութն քիչ է արդյունավետ։</td>\n",
|
1059 |
+
" </tr>\n",
|
1060 |
+
" <tr>\n",
|
1061 |
+
" <th>4</th>\n",
|
1062 |
+
" <td>Կինը շատ զարմացավ, բայց կարեց այն։</td>\n",
|
1063 |
+
" </tr>\n",
|
1064 |
+
" <tr>\n",
|
1065 |
+
" <th>5</th>\n",
|
1066 |
+
" <td>Նախանձի և կատաղության մարմնավորում է։</td>\n",
|
1067 |
+
" </tr>\n",
|
1068 |
+
" <tr>\n",
|
1069 |
+
" <th>6</th>\n",
|
1070 |
+
" <td>Սովորել է տեղի միջնակարգ դպրոցում։</td>\n",
|
1071 |
+
" </tr>\n",
|
1072 |
+
" <tr>\n",
|
1073 |
+
" <th>7</th>\n",
|
1074 |
+
" <td>Կարելի է տեսնել, որ լուծումը կատարվել է տարբեր չափերով։</td>\n",
|
1075 |
+
" </tr>\n",
|
1076 |
+
" <tr>\n",
|
1077 |
+
" <th>8</th>\n",
|
1078 |
+
" <td>Մարմնի փոխադարձ խնամքը կարող է զուգակցվել յուրահատուկ ձայներով։</td>\n",
|
1079 |
+
" </tr>\n",
|
1080 |
+
" <tr>\n",
|
1081 |
+
" <th>9</th>\n",
|
1082 |
+
" <td>Նրա ծնողները ամենահայտնի և շատ սիրելի հերոսներ են։</td>\n",
|
1083 |
+
" </tr>\n",
|
1084 |
+
" </tbody>\n",
|
1085 |
+
"</table>"
|
1086 |
+
],
|
1087 |
+
"text/plain": [
|
1088 |
+
"<IPython.core.display.HTML object>"
|
1089 |
+
]
|
1090 |
+
},
|
1091 |
+
"metadata": {},
|
1092 |
+
"output_type": "display_data"
|
1093 |
+
}
|
1094 |
+
],
|
1095 |
+
"source": [
|
1096 |
+
"show_random_elements(common_voice_train.remove_columns([\"path\", \"audio\"]), num_examples=10)"
|
1097 |
+
]
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"cell_type": "code",
|
1101 |
+
"execution_count": 14,
|
1102 |
+
"metadata": {},
|
1103 |
+
"outputs": [],
|
1104 |
+
"source": [
|
1105 |
+
"import re\n",
|
1106 |
+
"chars_to_remove_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\“\\%\\‘\\”\\�\\'\\’\\–]'\n",
|
1107 |
+
"\n",
|
1108 |
+
"def remove_special_characters(batch):\n",
|
1109 |
+
" batch[\"sentence\"] = re.sub(chars_to_remove_regex, '', batch[\"sentence\"]).lower()\n",
|
1110 |
+
" return batch"
|
1111 |
+
]
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"cell_type": "code",
|
1115 |
+
"execution_count": 15,
|
1116 |
+
"metadata": {},
|
1117 |
+
"outputs": [
|
1118 |
+
{
|
1119 |
+
"data": {
|
1120 |
+
"application/vnd.jupyter.widget-view+json": {
|
1121 |
+
"model_id": "0c428cc41f424758b526f216e04df4b4",
|
1122 |
+
"version_major": 2,
|
1123 |
+
"version_minor": 0
|
1124 |
+
},
|
1125 |
+
"text/plain": [
|
1126 |
+
" 0%| | 0/554 [00:00<?, ?ex/s]"
|
1127 |
+
]
|
1128 |
+
},
|
1129 |
+
"metadata": {},
|
1130 |
+
"output_type": "display_data"
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"data": {
|
1134 |
+
"application/vnd.jupyter.widget-view+json": {
|
1135 |
+
"model_id": "c943bb86f3ea4aada759fbaf939e6ec1",
|
1136 |
+
"version_major": 2,
|
1137 |
+
"version_minor": 0
|
1138 |
+
},
|
1139 |
+
"text/plain": [
|
1140 |
+
" 0%| | 0/212 [00:00<?, ?ex/s]"
|
1141 |
+
]
|
1142 |
+
},
|
1143 |
+
"metadata": {},
|
1144 |
+
"output_type": "display_data"
|
1145 |
+
}
|
1146 |
+
],
|
1147 |
+
"source": [
|
1148 |
+
"common_voice_train = common_voice_train.map(remove_special_characters)\n",
|
1149 |
+
"common_voice_test = common_voice_test.map(remove_special_characters)"
|
1150 |
+
]
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"cell_type": "code",
|
1154 |
+
"execution_count": 16,
|
1155 |
+
"metadata": {},
|
1156 |
+
"outputs": [],
|
1157 |
+
"source": [
|
1158 |
+
"def replace_hatted_characters(batch):\n",
|
1159 |
+
" batch[\"sentence\"] = re.sub('[â]', 'a', batch[\"sentence\"])\n",
|
1160 |
+
" batch[\"sentence\"] = re.sub('[î]', 'i', batch[\"sentence\"])\n",
|
1161 |
+
" batch[\"sentence\"] = re.sub('[ô]', 'o', batch[\"sentence\"])\n",
|
1162 |
+
" batch[\"sentence\"] = re.sub('[û]', 'u', batch[\"sentence\"])\n",
|
1163 |
+
" return batch"
|
1164 |
+
]
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"cell_type": "code",
|
1168 |
+
"execution_count": 17,
|
1169 |
+
"metadata": {},
|
1170 |
+
"outputs": [
|
1171 |
+
{
|
1172 |
+
"data": {
|
1173 |
+
"application/vnd.jupyter.widget-view+json": {
|
1174 |
+
"model_id": "34e4cbdef1784315ab5e030b8a4396a1",
|
1175 |
+
"version_major": 2,
|
1176 |
+
"version_minor": 0
|
1177 |
+
},
|
1178 |
+
"text/plain": [
|
1179 |
+
" 0%| | 0/554 [00:00<?, ?ex/s]"
|
1180 |
+
]
|
1181 |
+
},
|
1182 |
+
"metadata": {},
|
1183 |
+
"output_type": "display_data"
|
1184 |
+
},
|
1185 |
+
{
|
1186 |
+
"data": {
|
1187 |
+
"application/vnd.jupyter.widget-view+json": {
|
1188 |
+
"model_id": "50fb675cff214b4781c219a3eafcefc4",
|
1189 |
+
"version_major": 2,
|
1190 |
+
"version_minor": 0
|
1191 |
+
},
|
1192 |
+
"text/plain": [
|
1193 |
+
" 0%| | 0/212 [00:00<?, ?ex/s]"
|
1194 |
+
]
|
1195 |
+
},
|
1196 |
+
"metadata": {},
|
1197 |
+
"output_type": "display_data"
|
1198 |
+
}
|
1199 |
+
],
|
1200 |
+
"source": [
|
1201 |
+
"common_voice_train = common_voice_train.map(replace_hatted_characters)\n",
|
1202 |
+
"common_voice_test = common_voice_test.map(replace_hatted_characters)"
|
1203 |
+
]
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"cell_type": "code",
|
1207 |
+
"execution_count": 18,
|
1208 |
+
"metadata": {},
|
1209 |
+
"outputs": [],
|
1210 |
+
"source": [
|
1211 |
+
"def extract_all_chars(batch):\n",
|
1212 |
+
" all_text = \" \".join(batch[\"sentence\"])\n",
|
1213 |
+
" vocab = list(set(all_text))\n",
|
1214 |
+
" return {\"vocab\": [vocab], \"all_text\": [all_text]}"
|
1215 |
+
]
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"cell_type": "code",
|
1219 |
+
"execution_count": 19,
|
1220 |
+
"metadata": {},
|
1221 |
+
"outputs": [
|
1222 |
+
{
|
1223 |
+
"data": {
|
1224 |
+
"application/vnd.jupyter.widget-view+json": {
|
1225 |
+
"model_id": "d6098793a0d24b78b9045454ecfd13a1",
|
1226 |
+
"version_major": 2,
|
1227 |
+
"version_minor": 0
|
1228 |
+
},
|
1229 |
+
"text/plain": [
|
1230 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
1231 |
+
]
|
1232 |
+
},
|
1233 |
+
"metadata": {},
|
1234 |
+
"output_type": "display_data"
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"data": {
|
1238 |
+
"application/vnd.jupyter.widget-view+json": {
|
1239 |
+
"model_id": "8895c99f81514315956418f4189363ca",
|
1240 |
+
"version_major": 2,
|
1241 |
+
"version_minor": 0
|
1242 |
+
},
|
1243 |
+
"text/plain": [
|
1244 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
1245 |
+
]
|
1246 |
+
},
|
1247 |
+
"metadata": {},
|
1248 |
+
"output_type": "display_data"
|
1249 |
+
}
|
1250 |
+
],
|
1251 |
+
"source": [
|
1252 |
+
"vocab_train = common_voice_train.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=common_voice_train.column_names)\n",
|
1253 |
+
"vocab_test = common_voice_test.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=common_voice_test.column_names)"
|
1254 |
+
]
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"cell_type": "code",
|
1258 |
+
"execution_count": 20,
|
1259 |
+
"metadata": {},
|
1260 |
+
"outputs": [],
|
1261 |
+
"source": [
|
1262 |
+
"vocab_list = list(set(vocab_train[\"vocab\"][0]) | set(vocab_test[\"vocab\"][0]))"
|
1263 |
+
]
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"cell_type": "code",
|
1267 |
+
"execution_count": 21,
|
1268 |
+
"metadata": {},
|
1269 |
+
"outputs": [
|
1270 |
+
{
|
1271 |
+
"data": {
|
1272 |
+
"text/plain": [
|
1273 |
+
"{' ': 0,\n",
|
1274 |
+
" '(': 1,\n",
|
1275 |
+
" ')': 2,\n",
|
1276 |
+
" '«': 3,\n",
|
1277 |
+
" '»': 4,\n",
|
1278 |
+
" '՛': 5,\n",
|
1279 |
+
" '՝': 6,\n",
|
1280 |
+
" '՞': 7,\n",
|
1281 |
+
" 'ա': 8,\n",
|
1282 |
+
" 'բ': 9,\n",
|
1283 |
+
" 'գ': 10,\n",
|
1284 |
+
" 'դ': 11,\n",
|
1285 |
+
" 'ե': 12,\n",
|
1286 |
+
" 'զ': 13,\n",
|
1287 |
+
" 'է': 14,\n",
|
1288 |
+
" 'ը': 15,\n",
|
1289 |
+
" 'թ': 16,\n",
|
1290 |
+
" 'ժ': 17,\n",
|
1291 |
+
" 'ի': 18,\n",
|
1292 |
+
" 'լ': 19,\n",
|
1293 |
+
" 'խ': 20,\n",
|
1294 |
+
" 'ծ': 21,\n",
|
1295 |
+
" 'կ': 22,\n",
|
1296 |
+
" 'հ': 23,\n",
|
1297 |
+
" 'ձ': 24,\n",
|
1298 |
+
" 'ղ': 25,\n",
|
1299 |
+
" 'ճ': 26,\n",
|
1300 |
+
" 'մ': 27,\n",
|
1301 |
+
" 'յ': 28,\n",
|
1302 |
+
" 'ն': 29,\n",
|
1303 |
+
" 'շ': 30,\n",
|
1304 |
+
" 'ո': 31,\n",
|
1305 |
+
" 'չ': 32,\n",
|
1306 |
+
" 'պ': 33,\n",
|
1307 |
+
" 'ջ': 34,\n",
|
1308 |
+
" 'ռ': 35,\n",
|
1309 |
+
" 'ս': 36,\n",
|
1310 |
+
" 'վ': 37,\n",
|
1311 |
+
" 'տ': 38,\n",
|
1312 |
+
" 'ր': 39,\n",
|
1313 |
+
" 'ց': 40,\n",
|
1314 |
+
" 'ւ': 41,\n",
|
1315 |
+
" 'փ': 42,\n",
|
1316 |
+
" 'ք': 43,\n",
|
1317 |
+
" 'օ': 44,\n",
|
1318 |
+
" 'ֆ': 45,\n",
|
1319 |
+
" 'և': 46,\n",
|
1320 |
+
" '։': 47}"
|
1321 |
+
]
|
1322 |
+
},
|
1323 |
+
"execution_count": 21,
|
1324 |
+
"metadata": {},
|
1325 |
+
"output_type": "execute_result"
|
1326 |
+
}
|
1327 |
+
],
|
1328 |
+
"source": [
|
1329 |
+
"vocab_dict = {v: k for k, v in enumerate(sorted(vocab_list))}\n",
|
1330 |
+
"vocab_dict"
|
1331 |
+
]
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"cell_type": "code",
|
1335 |
+
"execution_count": 31,
|
1336 |
+
"metadata": {},
|
1337 |
+
"outputs": [
|
1338 |
+
{
|
1339 |
+
"name": "stdout",
|
1340 |
+
"output_type": "stream",
|
1341 |
+
"text": [
|
1342 |
+
"--2022-01-23 02:32:51-- https://raw.githubusercontent.com/huggingface/transformers/master/examples/research_projects/robust-speech-event/eval.py\n",
|
1343 |
+
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.111.133, 185.199.110.133, ...\n",
|
1344 |
+
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
|
1345 |
+
"HTTP request sent, awaiting response... 200 OK\n",
|
1346 |
+
"Length: 4419 (4.3K) [text/plain]\n",
|
1347 |
+
"Saving to: ‘eval.py’\n",
|
1348 |
+
"\n",
|
1349 |
+
"eval.py 100%[===================>] 4.32K --.-KB/s in 0s \n",
|
1350 |
+
"\n",
|
1351 |
+
"2022-01-23 02:32:51 (18.3 MB/s) - ‘eval.py’ saved [4419/4419]\n",
|
1352 |
+
"\n",
|
1353 |
+
"total 1232640\n",
|
1354 |
+
"drwxr-xr-x 2 ovh ovh 4096 Jan 22 18:04 checkpoint-5500\n",
|
1355 |
+
"drwxr-xr-x 2 ovh ovh 4096 Jan 22 18:20 checkpoint-6000\n",
|
1356 |
+
"-rw-r--r-- 1 ovh ovh 195 Jan 22 18:22 train_results.json\n",
|
1357 |
+
"-rw-r--r-- 1 ovh ovh 10758 Jan 22 18:22 trainer_state.json\n",
|
1358 |
+
"-rw-r--r-- 1 ovh ovh 222 Jan 22 18:22 eval_results.json\n",
|
1359 |
+
"-rw-r--r-- 1 ovh ovh 2033 Jan 22 18:22 config.json\n",
|
1360 |
+
"-rw-r--r-- 1 ovh ovh 395 Jan 22 18:22 all_results.json\n",
|
1361 |
+
"-rw-r--r-- 1 ovh ovh 1262165553 Jan 22 18:22 pytorch_model.bin\n",
|
1362 |
+
"-rw-r--r-- 1 ovh ovh 3055 Jan 22 18:22 training_args.bin\n",
|
1363 |
+
"-rw-r--r-- 1 ovh ovh 212 Jan 22 18:22 preprocessor_config.json\n",
|
1364 |
+
"-rw-r--r-- 1 ovh ovh 4419 Jan 23 02:32 eval.py\n"
|
1365 |
+
]
|
1366 |
+
}
|
1367 |
+
],
|
1368 |
+
"source": [
|
1369 |
+
"!wget -O eval.py https://raw.githubusercontent.com/huggingface/transformers/master/examples/research_projects/robust-speech-event/eval.py\n",
|
1370 |
+
"!cp eval.py wav2vec2-large-xls-r-300m-urdu\n",
|
1371 |
+
"!ls -ltr wav2vec2-large-xls-r-300m-urdu"
|
1372 |
+
]
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"cell_type": "code",
|
1376 |
+
"execution_count": 32,
|
1377 |
+
"metadata": {},
|
1378 |
+
"outputs": [
|
1379 |
+
{
|
1380 |
+
"name": "stdout",
|
1381 |
+
"output_type": "stream",
|
1382 |
+
"text": [
|
1383 |
+
"Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/ur/7.0.0/33e08856cfa0d0665e837bcad73ffd920a0bc713ce8c5fffb55dbdf1c084d5ba)\n",
|
1384 |
+
"Traceback (most recent call last):\n",
|
1385 |
+
" File \"eval.py\", line 128, in <module>\n",
|
1386 |
+
" main(args)\n",
|
1387 |
+
" File \"eval.py\", line 81, in main\n",
|
1388 |
+
" asr = pipeline(\"automatic-speech-recognition\", model=args.model_id)\n",
|
1389 |
+
" File \"/opt/conda/lib/python3.8/site-packages/transformers/pipelines/__init__.py\", line 590, in pipeline\n",
|
1390 |
+
" tokenizer = AutoTokenizer.from_pretrained(\n",
|
1391 |
+
" File \"/opt/conda/lib/python3.8/site-packages/transformers/models/auto/tokenization_auto.py\", line 566, in from_pretrained\n",
|
1392 |
+
" return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)\n",
|
1393 |
+
" File \"/opt/conda/lib/python3.8/site-packages/transformers/tokenization_utils_base.py\", line 1731, in from_pretrained\n",
|
1394 |
+
" raise EnvironmentError(msg)\n",
|
1395 |
+
"OSError: Can't load tokenizer for './'. Make sure that:\n",
|
1396 |
+
"\n",
|
1397 |
+
"- './' is a correct model identifier listed on 'https://huggingface.co/models'\n",
|
1398 |
+
" (make sure './' is not a path to a local directory with something else, in that case)\n",
|
1399 |
+
"\n",
|
1400 |
+
"- or './' is the correct path to a directory containing relevant tokenizer files\n",
|
1401 |
+
"\n",
|
1402 |
+
"\n"
|
1403 |
+
]
|
1404 |
+
}
|
1405 |
+
],
|
1406 |
+
"source": [
|
1407 |
+
"!cd wav2vec2-large-xls-r-300m-urdu; python eval.py --model_id ./ --dataset mozilla-foundation/common_voice_7_0 --config ur --split test --log_outputs"
|
1408 |
+
]
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"cell_type": "code",
|
1412 |
+
"execution_count": 1,
|
1413 |
+
"metadata": {},
|
1414 |
+
"outputs": [
|
1415 |
+
{
|
1416 |
+
"data": {
|
1417 |
+
"application/vnd.jupyter.widget-view+json": {
|
1418 |
+
"model_id": "24592b0be30e4eafb1949cf09d1c4fb4",
|
1419 |
+
"version_major": 2,
|
1420 |
+
"version_minor": 0
|
1421 |
+
},
|
1422 |
+
"text/plain": [
|
1423 |
+
"Downloading: 0%| | 0.00/260 [00:00<?, ?B/s]"
|
1424 |
+
]
|
1425 |
+
},
|
1426 |
+
"metadata": {},
|
1427 |
+
"output_type": "display_data"
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"data": {
|
1431 |
+
"application/vnd.jupyter.widget-view+json": {
|
1432 |
+
"model_id": "f9bf2ab0d2fa4d3f9235cc6d1ab772f1",
|
1433 |
+
"version_major": 2,
|
1434 |
+
"version_minor": 0
|
1435 |
+
},
|
1436 |
+
"text/plain": [
|
1437 |
+
"Downloading: 0%| | 0.00/574 [00:00<?, ?B/s]"
|
1438 |
+
]
|
1439 |
+
},
|
1440 |
+
"metadata": {},
|
1441 |
+
"output_type": "display_data"
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"data": {
|
1445 |
+
"application/vnd.jupyter.widget-view+json": {
|
1446 |
+
"model_id": "b0791474a34043da8057e06741472ade",
|
1447 |
+
"version_major": 2,
|
1448 |
+
"version_minor": 0
|
1449 |
+
},
|
1450 |
+
"text/plain": [
|
1451 |
+
"Downloading: 0%| | 0.00/23.0 [00:00<?, ?B/s]"
|
1452 |
+
]
|
1453 |
+
},
|
1454 |
+
"metadata": {},
|
1455 |
+
"output_type": "display_data"
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"data": {
|
1459 |
+
"application/vnd.jupyter.widget-view+json": {
|
1460 |
+
"model_id": "1ccbd582d616458b87c76ac8dc5b6b36",
|
1461 |
+
"version_major": 2,
|
1462 |
+
"version_minor": 0
|
1463 |
+
},
|
1464 |
+
"text/plain": [
|
1465 |
+
"Downloading: 0%| | 0.00/309 [00:00<?, ?B/s]"
|
1466 |
+
]
|
1467 |
+
},
|
1468 |
+
"metadata": {},
|
1469 |
+
"output_type": "display_data"
|
1470 |
+
}
|
1471 |
+
],
|
1472 |
+
"source": [
|
1473 |
+
"from transformers import AutoModelForCTC, Wav2Vec2Processor\n",
|
1474 |
+
"\n",
|
1475 |
+
"model = AutoModelForCTC.from_pretrained(\"infinitejoy/wav2vec2-large-xls-r-300m-urdu\")\n",
|
1476 |
+
"processor = Wav2Vec2Processor.from_pretrained(\"infinitejoy/wav2vec2-large-xls-r-300m-urdu\")\n",
|
1477 |
+
"\n"
|
1478 |
+
]
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"cell_type": "code",
|
1482 |
+
"execution_count": null,
|
1483 |
+
"metadata": {},
|
1484 |
+
"outputs": [],
|
1485 |
+
"source": []
|
1486 |
+
}
|
1487 |
+
],
|
1488 |
+
"metadata": {
|
1489 |
+
"accelerator": "GPU",
|
1490 |
+
"colab": {
|
1491 |
+
"authorship_tag": "ABX9TyM3OaMlm9YQtKpl28c8gBBd",
|
1492 |
+
"include_colab_link": true,
|
1493 |
+
"name": "DebugOVHTransformers.ipynb",
|
1494 |
+
"provenance": []
|
1495 |
+
},
|
1496 |
+
"kernelspec": {
|
1497 |
+
"display_name": "Python 3",
|
1498 |
+
"language": "python",
|
1499 |
+
"name": "python3"
|
1500 |
+
},
|
1501 |
+
"language_info": {
|
1502 |
+
"codemirror_mode": {
|
1503 |
+
"name": "ipython",
|
1504 |
+
"version": 3
|
1505 |
+
},
|
1506 |
+
"file_extension": ".py",
|
1507 |
+
"mimetype": "text/x-python",
|
1508 |
+
"name": "python",
|
1509 |
+
"nbconvert_exporter": "python",
|
1510 |
+
"pygments_lexer": "ipython3",
|
1511 |
+
"version": "3.8.8"
|
1512 |
+
}
|
1513 |
+
},
|
1514 |
+
"nbformat": 4,
|
1515 |
+
"nbformat_minor": 4
|
1516 |
+
}
|