File size: 1,991 Bytes
414a77d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: cs605-nlp-assignment-2-bert-large-uncased-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cs605-nlp-assignment-2-bert-large-uncased-v2

This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4797
- Accuracy: 0.7861

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.3166642758879955e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5698        | 1.0   | 746  | 0.4877          | 0.7533   |
| 0.4247        | 2.0   | 1492 | 0.5234          | 0.7777   |
| 0.1575        | 3.0   | 2238 | 0.6654          | 0.7741   |
| 0.1178        | 4.0   | 2984 | 1.0942          | 0.7764   |
| 0.044         | 5.0   | 3730 | 1.2965          | 0.7824   |
| 0.0345        | 6.0   | 4476 | 1.1750          | 0.7861   |
| 0.0164        | 7.0   | 5222 | 1.4659          | 0.7828   |
| 0.0136        | 8.0   | 5968 | 1.4372          | 0.7848   |
| 0.0059        | 9.0   | 6714 | 1.5201          | 0.7871   |
| 0.0081        | 10.0  | 7460 | 1.4797          | 0.7861   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1