File size: 5,606 Bytes
4bf2bfe
 
9aec218
 
 
 
4bf2bfe
9aec218
 
 
 
2c5da47
9aec218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0006d44
 
 
 
9aec218
 
 
 
1d0e06e
 
 
 
 
 
 
 
 
 
 
9aec218
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
license: cc-by-nc-4.0
language:
- en
tags:
- chemistry
---

<h1 align="center"> nach0  </h1>
<h3 align="center"> Multimodal Natural and Chemical Languages Foundation Model </h3>
<p align="center">
  📃 <a href="https://arxiv.org/abs/2311.12410" target="_blank">Paper</a> • ⏬ <a href="https://huggingface.co/insilicomedicine/nach0_base" target="_blank">Base nach0</a> • ⏬ <a href="https://huggingface.co/insilicomedicine/nach0_large" target="_blank">Large nach0</a> <br>
</p>
<div align=center><img src="images/nach0_Pub_2.png" width="70%" height="70%" /></div>
<h2 id="1">Overview</h2>

- nach0 is a multi-domain and multi-task encoder-decoder LLM pre-trained on unlabeled text from scientific literature, patents, and molecule strings to incorporate a range of chemical and linguistic knowledge.

- We employed instruction tuning, where specific task-related instructions are utilized to fine-tune nach0 for the final set of tasks. To train nach0 effectively, we leverage the NeMo framework, enabling efficient parallel optimization of both base and large model versions. 

- Extensive experiments demonstrate that our model outperforms state-of-the-art baselines on single-domain and cross-domain tasks. Furthermore, it can generate high-quality outputs in molecular and textual formats, showcasing its effectiveness in multi-domain setups.

<h2 id="1">Tasks</h2>
Datasets used for training and evaluation. Colour represents the type of tasks. Yellow and blue datasets are single-domain, typically requiring regression/classification losses or generation in the target domain (natural language or SMILES strings). Gradients from yellow to blue represent cross-domain generation tasks that require natural language input and SMILES output, or vise versa.
<div align=center><img src="images/nach0_Pub_1.png" width="70%" height="70%" /></div>

<h2> Model Usage Guide</h2>

To use model for the inference follow the steps bellow:

1. Preprocess the input by replacing the atom tokens with special tokens. 

  ```python
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
  import re
  from rdkit.Chem import MolFromSmiles
  import string
  from rdkit import RDLogger
  RDLogger.DisableLog('rdApp.*')
  atoms_tokens = ['Ag','Al','As','Au','B','Ba','Bi','Br','C','Ca',
                'Cd','Cl','Co','Cr','Cs','Cu','F','Fe','Ga','Gd',
                'Ge','H','Hg','I','In','K','Li','M','Mg','Mn',
                'Mo','N','Na','O','P','Pt','Ru','S','Sb','Sc',
                'Se','Si','Sn','V','W','Z','Zn','c','e','n','o','p','s']
  atoms_tokens = sorted(atoms_tokens, key=lambda s: len(s), reverse=True)
  SMI_REGEX_PATTERN = r"(\[|\]|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9]|" + \
                                                                    '|'.join(atoms_tokens) + ")"
  regex = re.compile(SMI_REGEX_PATTERN)
  def clean_output_sequence(output_sequence):
      return output_sequence.replace('</s>', '').replace('<sm_', '').replace(' sm_', '').replace('>', '').strip()
  def add_special_symbols(text):
    output = []
    for word in text.split():
        tokens = [token for token in regex.findall(word)]
        if len(tokens) > 4 and (word == ''.join(tokens)) and MolFromSmiles(word):
            output.append(''.join(['<sm_'+t+'>' for t in tokens]))
        else:
            output.append(word)
    return ' '.join(output)
  PROMPT = """Given the following reactants and reagents, please provide a possible product. 
            CCN(CC)CC.CCN=C=NCCCN(C)C.CN(C)C=O.Cl.NC1=CC=C(Cl)C=C1N.O.O=C(O)CCCCCNC(=O)C=C1C2=CC=CC=C2C2=CC=CC=C12.OC1=CC=CC2=C1N=NN2.[Cl-].[Na+]"""
  PROMPT = add_special_symbols(PROMPT)
  ```
2. Load the model checkoint

  ```python
    model = AutoModelForSeq2SeqLM.from_pretrained('insilicomedicine/nach0_base')
    tokenizer = AutoTokenizer.from_pretrained('insilicomedicine/nach0_base')
  ```

3. Generate response to prompt and replace special tokens with corresponding atom tokens
  ```python
  input_text_ids = tokenizer(PROMPT, padding="longest", max_length=512, truncation=True, return_tensors="pt")
  generated_text_ids = model.generate(**input_text_ids, do_sample=True, top_k=100, top_p=0.95, max_length=512)
  generated_text = tokenizer.batch_decode(generated_text_ids, skip_special_tokens=True)[0]
  generated_text = clean_output_sequence(generated_text)
  ```
  ```python
  # NC1=CC=C(Cl)C=C1NC(=O)CCCCCNC(=O)C=C1C2=CC=CC=C2C2=CC=CC=C12
  ```


<h3> Usage and License</h3>
Please note that all model weights are exclusively licensed for research purposes. The accompanying dataset is licensed under CC BY 4.0, which permits solely non-commercial usage.
We emphatically urge all users to adhere to the highest ethical standards when using our models, including maintaining fairness, transparency, and responsibility in their research. Any usage that may lead to harm or pose a detriment to society is strictly forbidden.

<h3> References</h3>
If you use our repository, please cite the following related paper:

```
@article{D4SC00966E,
    author ="Livne, Micha and Miftahutdinov, Zulfat and Tutubalina, Elena and Kuznetsov, Maksim and Polykovskiy, Daniil and Brundyn, Annika and Jhunjhunwala, Aastha and Costa, Anthony and Aliper, Alex and Aspuru-Guzik, Alán and Zhavoronkov, Alex",
    title  ="nach0: multimodal natural and chemical languages foundation model",
    journal  ="Chem. Sci.",
    year  ="2024",
    volume  ="15",
    issue  ="22",
    pages  ="8380-8389",
    publisher  ="The Royal Society of Chemistry",
    doi  ="10.1039/D4SC00966E",
    url  ="http://dx.doi.org/10.1039/D4SC00966E",
}
```