stefan-insilico's picture
Update handler.py
6daea16 verified
from typing import Dict, List, Any, Tuple, Optional
import os
import torch
from transformers import AutoTokenizer, PreTrainedTokenizerFast
import pandas as pd
import time
import numpy as np
from precious3_gpt_multi_modal import Precious3MPTForCausalLM
class EndpointHandler:
def __init__(self, path: str = ""):
"""
Initializes the EndpointHandler with the specified model type and device.
Args:
path (str): Path to the pretrained model directory.
"""
self.device = 'cuda'
self.path = path
# Load model and tokenizer from path
self.model = self._load_model(path)
print('Model loaded')
self.tokenizer = AutoTokenizer.from_pretrained("insilicomedicine/precious3-gpt-multi-modal", trust_remote_code=True)
print('Tokenizer loaded')
# Set token IDs in model configuration
self._set_model_token_ids()
# Load unique entities and embeddings
self.unique_compounds_p3, self.unique_genes_p3 = self._load_unique_entities()
self.emb_gpt_genes, self.emb_hgt_genes = self._load_embeddings()
print('Embeddings loaded')
def _load_model(self, path: str) -> Precious3MPTForCausalLM:
""" Load model based on specified model type. """
return Precious3MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to(self.device)
def _set_model_token_ids(self):
""" Set predefined token IDs in the model config. """
self.model.config.pad_token_id = self.tokenizer.pad_token_id
self.model.config.bos_token_id = self.tokenizer.bos_token_id
self.model.config.eos_token_id = self.tokenizer.eos_token_id
def _load_unique_entities(self) -> Tuple[List[str], List[str]]:
""" Load unique entities from online CSV and return lists of compounds and genes. """
unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
unique_compounds = [i.strip() for i in unique_entities_p3[unique_entities_p3.type == 'compound'].entity.to_list()]
unique_genes = [i.strip() for i in unique_entities_p3[unique_entities_p3.type == 'gene'].entity.to_list()]
return unique_compounds, unique_genes
def _load_embeddings(self) -> Tuple[Dict[str, Any], Dict[str, Any]]:
""" Load gene embeddings and return as dictionaries. """
emb_gpt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_gpt_genes.pickle')
emb_hgt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_hgt_genes.pickle')
return (dict(zip(emb_gpt_genes.gene_symbol.tolist(), emb_gpt_genes.embs.tolist())),
dict(zip(emb_hgt_genes.gene_symbol.tolist(), emb_hgt_genes.embs.tolist())))
def create_prompt(self, prompt_config: Dict[str, Any]) -> str:
"""
Create a prompt string based on the provided configuration.
Args:
prompt_config (Dict[str, Any]): Configuration dict containing prompt variables.
Returns:
str: The formatted prompt string.
"""
prompt = "[BOS]"
multi_modal_prefix = '<modality0><modality1><modality2><modality3>' * 3
for k, v in prompt_config.items():
if k == 'instruction':
prompt += f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
elif k == 'up':
if v:
prompt += f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
elif k == 'down':
if v:
prompt += f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
elif k == 'age':
if isinstance(v, int):
prompt += f'<{k}_individ>{v} </{k}_individ>' if prompt_config['species'].strip() == 'human' else f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>'
else:
if v:
prompt += f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
else:
prompt += f'<{k}></{k}>'
print('Generated prompt:', prompt)
return prompt
def custom_generate(self,
input_ids: torch.Tensor,
acc_embs_up_kg_mean: Optional[np.ndarray],
acc_embs_down_kg_mean: Optional[np.ndarray],
acc_embs_up_txt_mean: Optional[np.ndarray],
acc_embs_down_txt_mean: Optional[np.ndarray],
device: str,
max_new_tokens: int,
mode: str,
temperature: float = 0.8,
top_p: float = 0.2,
top_k: int = 3550,
n_next_tokens: int = 50,
num_return_sequences: int = 1,
random_seed: int = 137) -> Tuple[Dict[str, List], List[List], int]:
"""
Generate sequences based on input ids and accumulated embeddings.
Args:
input_ids (torch.Tensor): Input token IDs for generation.
acc_embs_up_kg_mean (Optional[np.ndarray]): Accumulated embeddings for UP genes (KG mean).
acc_embs_down_kg_mean (Optional[np.ndarray]): Accumulated embeddings for DOWN genes (KG mean).
acc_embs_up_txt_mean (Optional[np.ndarray]): Accumulated embeddings for UP genes (Text mean).
acc_embs_down_txt_mean (Optional[np.ndarray]): Accumulated embeddings for DOWN genes (Text mean).
device (str): The device to perform computation on.
max_new_tokens (int): Maximum number of new tokens to generate.
mode (str): Mode of generation to determine behavior.
temperature (float): Temperature for randomness in sampling.
top_p (float): Top-p (nucleus) sampling threshold.
top_k (int): Top-k sampling threshold.
n_next_tokens (int): Number of tokens to consider for predicting compounds.
num_return_sequences (int): Number of sequences to return.
random_seed (int): Random seed for reproducibility.
Returns:
Tuple[Dict[str, List], List[List], int]: Processed outputs, predicted compounds, and the random seed.
"""
torch.manual_seed(random_seed)
# Prepare modality embeddings
modality0_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) if isinstance(acc_embs_up_kg_mean, np.ndarray) else None
modality1_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device) if isinstance(acc_embs_down_kg_mean, np.ndarray) else None
modality2_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) if isinstance(acc_embs_up_txt_mean, np.ndarray) else None
modality3_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device) if isinstance(acc_embs_down_txt_mean, np.ndarray) else None
# Initialize outputs
outputs = []
next_token_compounds = []
next_token_up_genes = []
next_token_down_genes = []
# Generate requested sequences
for _ in range(num_return_sequences):
start_time = time.time()
generated_sequence = []
current_token = input_ids.clone()
next_token = current_token[0][-1]
generated_tokens_counter = 0
while generated_tokens_counter < max_new_tokens - 1:
# Stop if EOS token is generated
if next_token == self.tokenizer.eos_token_id:
generated_sequence.append(current_token)
break
# Forward pass through the model
logits = self.model.forward(
input_ids=current_token,
modality0_emb=modality0_emb,
modality0_token_id=self.tokenizer.encode('<modality0>')[0],
modality1_emb=modality1_emb,
modality1_token_id=self.tokenizer.encode('<modality1>')[0],
modality2_emb=modality2_emb,
modality2_token_id=self.tokenizer.encode('<modality2>')[0],
modality3_emb=modality3_emb,
modality3_token_id=self.tokenizer.encode('<modality3>')[0],
)[0]
# Adjust logits based on temperature
if temperature != 1.0:
logits = logits / temperature
# Apply nucleus sampling (top-p)
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
if top_k > 0:
sorted_indices_to_remove[..., top_k:] = 1
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
logits = logits.where(sorted_indices_to_remove, inf_tensor)
# Handle sampling based on current token
if current_token[0][-1] == self.tokenizer.encode('<drug>')[0] and len(next_token_compounds) == 0:
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][-1, :].flatten(), n_next_tokens).indices)
if current_token[0][-1] == self.tokenizer.encode('<up>')[0] and len(next_token_up_genes) == 0:
TODO: SET N-NEXT-TOKENS AS PARAM FOR GENES
n_next_tokens_4_genes = 250
top_k_up_genes = torch.topk(torch.softmax(logits, dim=-1)[0][-1, :].flatten(), n_next_tokens_4_genes).indices
next_token_up_genes.append(top_k_up_genes)
generated_tokens_counter += len(top_k_up_genes)
current_token = torch.cat((current_token, top_k_up_genes.unsqueeze(0),
torch.tensor([self.tokenizer.encode('</up>')[0]]).unsqueeze(0).to(device)), dim=-1)
continue
if current_token[0][-1] == self.tokenizer.encode('<down>')[0] and len(next_token_down_genes) == 0:
TODO: SET N-NEXT-TOKENS AS PARAM FOR GENES
n_next_tokens_4_genes = 250
top_k_down_genes = torch.topk(torch.softmax(logits, dim=-1)[0][-1, :].flatten(), n_next_tokens_4_genes).indices
next_token_down_genes.append(top_k_down_genes)
generated_tokens_counter += len(top_k_down_genes)
current_token = torch.cat((current_token, top_k_down_genes.unsqueeze(0),
torch.tensor([self.tokenizer.encode('</down>')[0]]).unsqueeze(0).to(device)), dim=-1)
continue
# Sample the next token
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[-1, :].unsqueeze(0)
current_token = torch.cat((current_token, next_token), dim=-1)
generated_tokens_counter += 1
print("Generation time:", time.time() - start_time)
outputs.append(generated_sequence)
# Process generated results
processed_outputs = self.process_generated_outputs(next_token_up_genes, next_token_down_genes, mode)
predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds]
predicted_compounds = [[i.strip() for i in j] for j in predicted_compounds_ids]
return processed_outputs, predicted_compounds, random_seed
def process_generated_outputs(self, next_token_up_genes: List[List], next_token_down_genes: List[List], mode: str) -> Dict[str, List]:
"""
Process generated outputs for UP and DOWN genes based on the mode.
Args:
next_token_up_genes (List[List]): List of tokens generated for UP genes.
next_token_down_genes (List[List]): List of tokens generated for DOWN genes.
mode (str): Generation mode.
Returns:
Dict[str, List]: Processed outputs based on the model mode.
"""
processed_outputs = {"up": [], "down": []}
if mode in ['meta2diff', 'meta2diff2compound']:
processed_outputs['up'] = self._get_unique_genes(next_token_up_genes)
processed_outputs['down'] = self._get_unique_genes(next_token_down_genes)
else:
processed_outputs = {"generated_sequences": []} # Placeholder if not specific mode
return processed_outputs
def _get_unique_genes(self, tokens: List[List]) -> List[List[str]]:
"""
Get unique gene symbols from generated tokens.
Args:
tokens (List[List]): List of token IDs.
Returns:
List[List[str]]: List of unique gene symbols for each token sequence.
"""
predicted_genes = []
predicted_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in tokens]
for j in predicted_genes_tokens:
generated_sample = [i.strip() for i in j]
# Intersection with existing genes to validate
predicted_genes.append(sorted(set(generated_sample) & set(self.unique_genes_p3), key=generated_sample.index))
return predicted_genes
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""
Handles incoming requests to the endpoint, processing data and generating responses.
Args:
data (Dict[str, Any]): The payload with the text prompt and generation parameters.
Returns:
Dict[str, Any]: The resulting output dictionary for the request.
"""
data = data.copy()
parameters = data.pop("parameters", None)
config_data = data.pop("inputs", None)
mode = data.pop('mode', 'Not specified')
config_data_copy = config_data.copy()
prompt = self.create_prompt(config_data_copy)
if mode != "diff2compound":
prompt += "<up>"
inputs = self.tokenizer(prompt, return_tensors="pt")
if 3 in inputs['input_ids'][0]:
decoded_tokens = self.tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])
print(f"\n>>> Warning! There are unknown tokens in prompt: {''.join(decoded_tokens)} \n")
input_ids = inputs["input_ids"].to(self.device)
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0])
acc_embs_up1_mean, acc_embs_up2_mean, acc_embs_down1_mean, acc_embs_down2_mean = self._get_accumulated_embeddings(config_data)
generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(
input_ids=input_ids,
acc_embs_up_kg_mean=acc_embs_up1_mean,
acc_embs_down_kg_mean=acc_embs_down1_mean,
acc_embs_up_txt_mean=acc_embs_up2_mean,
acc_embs_down_txt_mean=acc_embs_down2_mean,
max_new_tokens=max_new_tokens, mode=mode,
device=self.device, **parameters
)
next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key=i.index) for i in raw_next_token_generation]
out = self._prepare_output(generated_sequence, next_token_generation, mode, prompt, out_seed)
return out
def _get_accumulated_embeddings(self, config_data: Dict[str, List[str]]) -> Tuple[Optional[np.ndarray], Optional[np.ndarray], Optional[np.ndarray], Optional[np.ndarray]]:
"""
Retrieve accumulated embeddings for UP and DOWN genes.
Args:
config_data (Dict[str, List[str]]): Configuration dictionary with gene information.
Returns:
Tuple[Optional[np.ndarray], ...]: Mean accumulated embeddings for UP and DOWN genes.
"""
acc_embs_up1 = []
acc_embs_up2 = []
if 'up' in config_data:
for gs in config_data['up']:
try:
acc_embs_up1.append(self.emb_hgt_genes[gs])
acc_embs_up2.append(self.emb_gpt_genes[gs])
except Exception as e:
pass
acc_embs_up1_mean = np.array(acc_embs_up1).mean(0) if acc_embs_up1 else None
acc_embs_up2_mean = np.array(acc_embs_up2).mean(0) if acc_embs_up2 else None
acc_embs_down1 = []
acc_embs_down2 = []
if 'down' in config_data:
for gs in config_data['down']:
try:
acc_embs_down1.append(self.emb_hgt_genes[gs])
acc_embs_down2.append(self.emb_gpt_genes[gs])
except Exception as e:
pass
# for gs in config_data['down']:
# acc_embs_down1.append(self.emb_hgt_genes.get(gs))
# acc_embs_down2.append(self.emb_gpt_genes.get(gs))
acc_embs_down1_mean = np.array(acc_embs_down1).mean(0) if acc_embs_down1 else None
acc_embs_down2_mean = np.array(acc_embs_down2).mean(0) if acc_embs_down2 else None
return acc_embs_up1_mean, acc_embs_up2_mean, acc_embs_down1_mean, acc_embs_down2_mean
def _prepare_output(self, generated_sequence: Any, next_token_generation: List[List], mode: str, prompt: str, out_seed: int) -> Dict[str, Any]:
"""
Prepare the output dictionary based on the mode of operation.
Args:
generated_sequence (Any): The generated sequences from the model.
next_token_generation (List[List]): The next tokens generated.
mode (str): Mode of operation.
prompt (str): The input prompt that was used.
out_seed (int): Random seed used in generation.
Returns:
Dict[str, Any]: Output dictionary with structured results.
"""
try:
outputs = {}
if mode == "meta2diff":
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed}
elif mode == "meta2diff2compound":
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
out = {
"output": outputs, "compounds": next_token_generation, "mode": mode,
"message": "Done!", "input": prompt, 'random_seed': out_seed}
elif mode == "diff2compound":
outputs = generated_sequence
out = {
"output": outputs, "compounds": next_token_generation, "mode": mode,
"message": "Done!", "input": prompt, 'random_seed': out_seed}
else:
out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"}
except Exception as e:
print(e)
outputs, next_token_generation = [None], [None]
out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 137}
return out