stefan-insilico commited on
Commit
fd9b5bc
1 Parent(s): 6887a13

Added mosaicml/mpt-7b code

Browse files
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ __pycache__/
2
+ .ipynb_checkpoints
3
+
4
+
mpt_7b/LICENSE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright 2024 Databricks
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
mpt_7b/README.md ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - Composer
5
+ - MosaicML
6
+ - llm-foundry
7
+ - StreamingDatasets
8
+ datasets:
9
+ - mc4
10
+ - c4
11
+ - togethercomputer/RedPajama-Data-1T
12
+ - bigcode/the-stack
13
+ - allenai/s2orc
14
+ inference: false
15
+ ---
16
+
17
+ # MPT-7B
18
+
19
+ MPT-7B is a decoder-style transformer pretrained from scratch on 1T tokens of English text and code.
20
+ This model was trained by [MosaicML](https://www.mosaicml.com).
21
+
22
+ MPT-7B is part of the family of MosaicPretrainedTransformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
23
+
24
+ These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing
25
+ positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)).
26
+ Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence.
27
+ MPT models can also be served efficiently with both standard HuggingFace pipelines and NVIDIA's [FasterTransformer](https://github.com/NVIDIA/FasterTransformer).
28
+
29
+ This model uses the MosaicML LLM codebase, which can be found in the [llm-foundry repository](https://github.com/mosaicml/llm-foundry). It was trained by MosaicML’s NLP team on the [MosaicML platform](https://www.mosaicml.com/training) for LLM pretraining, finetuning, and inference.
30
+
31
+ ### How is this model different?
32
+
33
+ MPT-7B is
34
+
35
+ * **Licensed for the possibility of commercial use** (unlike [LLaMA](https://arxiv.org/abs/2302.13971)).
36
+ * **Trained on a large amount of data** (1T tokens like [LLaMA](https://arxiv.org/abs/2302.13971) vs. 300B for [Pythia](https://github.com/EleutherAI/pythia), 300B for [OpenLLaMA](https://github.com/openlm-research/open_llama), and 800B for [StableLM](https://github.com/Stability-AI/StableLM)).
37
+ * **Prepared to handle extremely long inputs** thanks to [ALiBi](https://arxiv.org/abs/2108.12409) (we finetuned [MPT-7B-StoryWriter-65k+](https://huggingface.co/mosaicml/mpt-7b-storywriter) on up to 65k inputs and can handle up to 84k vs. 2k-4k for other open source models).
38
+ * **Capable of fast training and inference** (via [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) and [FasterTransformer](https://github.com/NVIDIA/FasterTransformer))
39
+ * **Equipped with highly efficient open-source training code** via the [llm-foundry repository](https://github.com/mosaicml/llm-foundry)
40
+
41
+ ### Models finetuned off MPT-7B:
42
+
43
+ The following models are finetuned on MPT-7B:
44
+
45
+ * [MPT-7B-StoryWriter-65k+](https://huggingface.co/mosaicml/mpt-7b-storywriter): a model designed to read and write fictional stories with super long context lengths.
46
+ Built by finetuning MPT-7B with a context length of 65k tokens on a filtered fiction subset of the [books3 dataset](https://huggingface.co/datasets/the_pile_books3).
47
+ At inference time, thanks to [ALiBi](https://arxiv.org/abs/2108.12409), MPT-7B-StoryWriter-65k+ can extrapolate even beyond 65k tokens.
48
+ We demonstrate generations as long as 80k tokens on a single A100-80GB GPU in our [blogpost](www.mosaicml.com/blog/mpt-7b).
49
+ * License: Apache 2.0
50
+
51
+ * [MPT-7B-Instruct](https://huggingface.co/mosaicml/mpt-7b-instruct): a model for short-form instruction following.
52
+ Built by finetuning MPT-7B on a [dataset](https://huggingface.co/datasets/mosaicml/dolly_hhrlhf) we also release, derived from the [Databricks Dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) and the [Anthropic Helpful and Harmless (HH-RLHF)](https://huggingface.co/datasets/Anthropic/hh-rlhf) datasets.
53
+ * License: Apache 2.0
54
+
55
+ * [MPT-7B-Chat](https://huggingface.co/mosaicml/mpt-7b-chat): a chatbot-like model for dialogue generation.
56
+ Built by finetuning MPT-7B on the [ShareGPT-Vicuna](https://huggingface.co/datasets/jeffwan/sharegpt_vicuna), [HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3),
57
+ [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), and [Evol-Instruct](https://huggingface.co/datasets/victor123/evol_instruct_70k) datasets.
58
+ * License: _CC-By-NC-SA-4.0_
59
+
60
+ ## Model Date
61
+
62
+ May 5, 2023
63
+
64
+ ## Model License
65
+
66
+ Apache-2.0
67
+
68
+ ## Documentation
69
+
70
+ * [Blog post: Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs](https://www.mosaicml.com/blog/mpt-7b)
71
+ * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
72
+ * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
73
+
74
+
75
+ ## How to Use
76
+
77
+ This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning.
78
+
79
+ ```python
80
+ import transformers
81
+ model = transformers.AutoModelForCausalLM.from_pretrained(
82
+ 'mosaicml/mpt-7b',
83
+ trust_remote_code=True
84
+ )
85
+ ```
86
+ Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
87
+ This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
88
+ `MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
89
+
90
+ To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
91
+ ```python
92
+ import torch
93
+ import transformers
94
+
95
+ name = 'mosaicml/mpt-7b'
96
+
97
+ config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
98
+ config.attn_config['attn_impl'] = 'triton'
99
+ config.init_device = 'cuda:0' # For fast initialization directly on GPU!
100
+
101
+ model = transformers.AutoModelForCausalLM.from_pretrained(
102
+ name,
103
+ config=config,
104
+ torch_dtype=torch.bfloat16, # Load model weights in bfloat16
105
+ trust_remote_code=True
106
+ )
107
+ ```
108
+
109
+ Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
110
+
111
+ ```python
112
+ import transformers
113
+
114
+ name = 'mosaicml/mpt-7b'
115
+
116
+ config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
117
+ config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096
118
+
119
+ model = transformers.AutoModelForCausalLM.from_pretrained(
120
+ name,
121
+ config=config,
122
+ trust_remote_code=True
123
+ )
124
+ ```
125
+
126
+ This model was trained with the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
127
+
128
+ ```python
129
+ from transformers import AutoTokenizer
130
+ tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
131
+ ```
132
+
133
+ The model can then be used, for example, within a text-generation pipeline.
134
+ Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
135
+
136
+ ```python
137
+ from transformers import pipeline
138
+
139
+ pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
140
+
141
+ with torch.autocast('cuda', dtype=torch.bfloat16):
142
+ print(
143
+ pipe('Here is a recipe for vegan banana bread:\n',
144
+ max_new_tokens=100,
145
+ do_sample=True,
146
+ use_cache=True))
147
+ ```
148
+
149
+ ## Model Description
150
+
151
+ The architecture is a modification of a standard decoder-only transformer.
152
+
153
+ The model has been modified from a standard transformer in the following ways:
154
+ * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
155
+ * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
156
+ * It does not use biases
157
+
158
+
159
+ | Hyperparameter | Value |
160
+ |----------------|-------|
161
+ |n_parameters | 6.7B |
162
+ |n_layers | 32 |
163
+ | n_heads | 32 |
164
+ | d_model | 4096 |
165
+ | vocab size | 50432 |
166
+ | sequence length | 2048 |
167
+
168
+
169
+
170
+ ## Training Data
171
+
172
+ ### Streaming Datasets
173
+
174
+ Data was formatted using the MosaicML [StreamingDataset](https://github.com/mosaicml/streaming) library to host our data in object storage and efficiently stream it to our compute cluster during training.
175
+ StreamingDataset obviates the need to download the whole dataset before starting training, and allows instant resumption of training from any point in the dataset.
176
+
177
+
178
+ ### Data Mix
179
+
180
+ The model was trained for 1T tokens (with batch size 1760 and sequence length 2048). It was trained on the following data mix:
181
+
182
+
183
+ | Data Source | Number of Tokens in Source | Proportion | Effective Number of Tokens | Epochs |
184
+ |-------------|----------------------------|------------|----------------------------|--------|
185
+ | mC4 3.1.0 - English | 417.99 B | 0.33 | 330 B | 0.14 |
186
+ | C4 - English - SemDedup 80% | 100.42 B | 0.299 | 299 B | 2.98 |
187
+ | RedPajama - CommonCrawl | 878.45 B | 0.1 | 100 B | 0.11 |
188
+ | The Stack - Selected Languages | 463.78 B | 0.1 | 100 B | 0.22 |
189
+ | RedPajama - Wikipedia - En | 4.87 B | 0.04 | 40 B | 8.21 |
190
+ | The Stack - Markdown | 107.07 B | 0.035 | 35 B | 0.33 |
191
+ | S2ORC | 48.85 B | 0.033 | 33 B | 0.68 |
192
+ | RedPajama - Books | 26.02 B | 0.03 | 30B | 1.15 |
193
+ | RedPajama - arXiv | 28.10 B | 0.019 | 19 B | 0.68 |
194
+ | RedPajama - StackExchange | 20.54 B | 0.014 | 14 B |0.68 |
195
+
196
+ Samples for each batch were selected from one of the datasets with the probability specified above.
197
+ The examples were shuffled within each dataset, and each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length.
198
+
199
+ The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. This BPE tokenizer has a number of desirable characteristics,
200
+ most of which are relevant for tokenizing code:
201
+ (1) It was trained on a diverse mix of data that includes code (The Pile)
202
+ (2) It applies consistent space delimitation, unlike the GPT2 tokenizer which tokenizes inconsistently depending on the presence of prefix spaces
203
+ (3) It contains tokens for repeated space characters, which allows superior compression of text with large amounts of repeated space characters.
204
+
205
+ The model vocabulary size of 50432 was set to be a multiple of 128 (as in [MEGATRON-LM](https://arxiv.org/abs/1909.08053)), model flop utilization (MFU) increased by up to four percentage points.
206
+
207
+ ### Training Configuration
208
+
209
+ This model was trained on 440 A100-40GBs for about 9.5 days using the [MosaicML Platform](https://www.mosaicml.com/platform).
210
+ The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer.
211
+
212
+ ## Limitations and Biases
213
+
214
+ _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
215
+
216
+ MPT-7B (Base) is **not** intended for deployment without finetuning.
217
+ It should not be used for human-facing interactions without further guardrails and user consent.
218
+
219
+ MPT-7B can produce factually incorrect output, and should not be relied on to produce factually accurate information.
220
+ MPT-7B was trained on various public datasets.
221
+ While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
222
+
223
+
224
+ ## MosaicML Platform
225
+
226
+ If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b).
227
+
228
+ ## Disclaimer
229
+
230
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
231
+
232
+ ## Citation
233
+
234
+ Please cite this model using the following format:
235
+
236
+ ```
237
+ @online{MosaicML2023Introducing,
238
+ author = {MosaicML NLP Team},
239
+ title = {Introducing MPT-7B: A New Standard for Open-Source,
240
+ Commercially Usable LLMs},
241
+ year = {2023},
242
+ url = {www.mosaicml.com/blog/mpt-7b},
243
+ note = {Accessed: 2023-05-05},
244
+ urldate = {2023-05-05}
245
+ }
246
+ ```
mpt_7b/adapt_tokenizer.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+ from transformers import AutoTokenizer, PreTrainedTokenizerBase
3
+ NUM_SENTINEL_TOKENS: int = 100
4
+
5
+ def adapt_tokenizer_for_denoising(tokenizer: PreTrainedTokenizerBase) -> None:
6
+ """Adds sentinel tokens and padding token (if missing).
7
+
8
+ Expands the tokenizer vocabulary to include sentinel tokens
9
+ used in mixture-of-denoiser tasks as well as a padding token.
10
+
11
+ All added tokens are added as special tokens. No tokens are
12
+ added if sentinel tokens and padding token already exist.
13
+ """
14
+ sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]
15
+ tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
16
+ if tokenizer.pad_token is None:
17
+ tokenizer.add_tokens('<pad>', special_tokens=True)
18
+ tokenizer.pad_token = '<pad>'
19
+ assert tokenizer.pad_token_id is not None
20
+ sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)])
21
+ _sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
22
+ tokenizer.sentinel_token_ids = _sentinel_token_ids
23
+
24
+ class AutoTokenizerForMOD(AutoTokenizer):
25
+ """AutoTokenizer + Adaptation for MOD.
26
+
27
+ A simple wrapper around AutoTokenizer to make instantiating
28
+ an MOD-adapted tokenizer a bit easier.
29
+
30
+ MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
31
+ a padding token, and a property to get the token ids of the
32
+ sentinel tokens.
33
+ """
34
+
35
+ @classmethod
36
+ def from_pretrained(cls, *args: Any, **kwargs: Any) -> PreTrainedTokenizerBase:
37
+ """See `AutoTokenizer.from_pretrained` docstring."""
38
+ tokenizer = super().from_pretrained(*args, **kwargs)
39
+ adapt_tokenizer_for_denoising(tokenizer)
40
+ return tokenizer
mpt_7b/attention.py ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Attention layers."""
2
+ import math
3
+ import warnings
4
+ from typing import Any, Optional
5
+ import torch
6
+ import torch.nn as nn
7
+ import transformers
8
+ from einops import rearrange
9
+ from packaging import version
10
+ from torch import nn
11
+ from .fc import FC_CLASS_REGISTRY
12
+ from .norm import NORM_CLASS_REGISTRY
13
+
14
+ def is_flash_v2_installed(v2_version: str='2.0.0'):
15
+ assert version.parse(v2_version) >= version.parse('2.0.0')
16
+ try:
17
+ import flash_attn as flash_attn
18
+ except:
19
+ return False
20
+ return version.parse(flash_attn.__version__) >= version.parse(v2_version)
21
+
22
+ def is_flash_v1_installed():
23
+ try:
24
+ import flash_attn as flash_attn
25
+ except:
26
+ return False
27
+ return version.parse(flash_attn.__version__) < version.parse('2.0.0')
28
+
29
+ def is_transformers_version_gte(hf_version: str) -> bool:
30
+ return version.parse(transformers.__version__) >= version.parse(hf_version)
31
+
32
+ def check_alibi_support(attention_impl: str) -> bool:
33
+ return attention_impl != 'flash' or is_flash_v2_installed(v2_version='v2.4.2')
34
+ if is_flash_v1_installed():
35
+ import transformers
36
+ transformers.utils.is_flash_attn_available = lambda : False
37
+ from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
38
+
39
+ def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool:
40
+ if original_is_causal and num_query_tokens != num_key_tokens:
41
+ if num_query_tokens != 1:
42
+ raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
43
+ else:
44
+ return False
45
+ return original_is_causal
46
+
47
+ def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor:
48
+ """Perform repeat of kv heads along a particular dimension.
49
+
50
+ hidden.shape expected to be: (batch size, seq len, kv_n_heads, head_dim)
51
+ n_rep: amount of repetitions of kv_n_heads
52
+ Unlike torch.repeat_interleave, this function avoids allocating new memory.
53
+ """
54
+ if n_rep == 1:
55
+ return hidden
56
+ (b, s, kv_n_heads, d) = hidden.shape
57
+ hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
58
+ return hidden.reshape(b, s, kv_n_heads * n_rep, d)
59
+
60
+ def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
61
+ q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
62
+ k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
63
+ v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
64
+ if past_key_value is not None:
65
+ if len(past_key_value) != 0:
66
+ k = torch.cat([past_key_value[0], k], dim=3)
67
+ v = torch.cat([past_key_value[1], v], dim=2)
68
+ past_key_value = (k, v)
69
+ (b, _, s_q, d) = q.shape
70
+ s_k = k.size(-1)
71
+ if kv_n_heads > 1 and kv_n_heads < n_heads:
72
+ k = repeat_kv_for_gqa(k.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
73
+ v = repeat_kv_for_gqa(v.transpose(1, 2), n_heads // kv_n_heads).transpose(1, 2)
74
+ if softmax_scale is None:
75
+ softmax_scale = 1 / math.sqrt(d)
76
+ attn_weight = q.matmul(k) * softmax_scale
77
+ if attn_bias is not None:
78
+ _s_q = max(0, attn_bias.size(2) - s_q)
79
+ _s_k = max(0, attn_bias.size(3) - s_k)
80
+ attn_bias = attn_bias[:, :, _s_q:, _s_k:]
81
+ if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
82
+ raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
83
+ attn_weight = attn_weight + attn_bias
84
+ min_val = torch.finfo(q.dtype).min
85
+ if key_padding_mask is not None:
86
+ if attn_bias is not None:
87
+ warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
88
+ attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
89
+ if is_causal and (not q.size(2) == 1):
90
+ s = max(s_q, s_k)
91
+ causal_mask = attn_weight.new_ones(s, s, dtype=torch.float32)
92
+ causal_mask = causal_mask.tril()
93
+ causal_mask = causal_mask.to(torch.bool)
94
+ causal_mask = ~causal_mask
95
+ causal_mask = causal_mask[-s_q:, -s_k:]
96
+ attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
97
+ attn_weight = torch.softmax(attn_weight, dim=-1)
98
+ if dropout_p:
99
+ attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
100
+ out = attn_weight.to(v.dtype).matmul(v)
101
+ out = rearrange(out, 'b h s d -> b s (h d)')
102
+ if needs_weights:
103
+ return (out, attn_weight, past_key_value)
104
+ return (out, None, past_key_value)
105
+
106
+ def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[list[torch.dtype]]=None):
107
+ if valid_dtypes is None:
108
+ valid_dtypes = [torch.float16, torch.bfloat16]
109
+ for tensor in tensors:
110
+ if tensor.dtype not in valid_dtypes:
111
+ raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
112
+ if not tensor.is_cuda:
113
+ raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
114
+
115
+ def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False, should_repeat_kv_for_gqa: Optional[bool]=True, sliding_window_size: int=-1, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
116
+ if key_padding_mask is not None:
117
+ raise ValueError('key_padding_mask should be None for flash attn.')
118
+ del key_padding_mask
119
+ if flash_attn_padding_info is None:
120
+ raise ValueError('flash_attn_padding_info is required for flash attn.')
121
+ try:
122
+ from flash_attn import bert_padding, flash_attn_interface
123
+ except:
124
+ raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.6')
125
+ check_valid_inputs(query, key, value)
126
+ if past_key_value is not None:
127
+ if len(past_key_value) != 0:
128
+ key = torch.cat([past_key_value[0], key], dim=1)
129
+ value = torch.cat([past_key_value[1], value], dim=1)
130
+ past_key_value = (key, value)
131
+ if attn_bias is not None:
132
+ raise NotImplementedError(f'attn_bias not implemented for flash attn.')
133
+ (batch_size, seqlen) = query.shape[:2]
134
+ indices_q = flash_attn_padding_info['indices_q']
135
+ indices_k = flash_attn_padding_info['indices_k']
136
+ indices_v = flash_attn_padding_info['indices_v']
137
+ cu_seqlens_q = flash_attn_padding_info['cu_seqlens_q']
138
+ cu_seqlens_k = flash_attn_padding_info['cu_seqlens_k']
139
+ max_seqlen_q = flash_attn_padding_info['max_seqlen_q']
140
+ max_seqlen_k = flash_attn_padding_info['max_seqlen_k']
141
+ query_unpad = bert_padding.index_first_axis(rearrange(query, 'b s ... -> (b s) ...'), indices_q)
142
+ query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
143
+ key_unpad = bert_padding.index_first_axis(rearrange(key, 'b s ... -> (b s) ...'), indices_k)
144
+ key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
145
+ value_unpad = bert_padding.index_first_axis(rearrange(value, 'b s ... -> (b s) ...'), indices_v)
146
+ value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
147
+ if kv_n_heads < n_heads and (not is_flash_v2_installed()) and (not should_repeat_kv_for_gqa):
148
+ raise ValueError('For Grouped Query Attention or Multi Query Attention, should_repeat_kv_for_gqa should be set to True if not using Flash Attention v2.')
149
+ if should_repeat_kv_for_gqa:
150
+ if kv_n_heads == 1:
151
+ key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
152
+ value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
153
+ elif kv_n_heads < n_heads:
154
+ key_unpad = repeat_kv_for_gqa(key_unpad.view(1, key_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(key_unpad.size(0), n_heads, -1)
155
+ value_unpad = repeat_kv_for_gqa(value_unpad.view(1, value_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(value_unpad.size(0), n_heads, -1)
156
+ dropout_p = dropout_p if training else 0.0
157
+ reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
158
+ if is_flash_v1_installed():
159
+ output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
160
+ elif is_flash_v2_installed():
161
+ alibi_kwargs = {}
162
+ if check_alibi_support('flash'):
163
+ alibi_kwargs = {'alibi_slopes': alibi_slopes}
164
+ elif alibi_slopes is not None:
165
+ raise ValueError('alibi_slopes is only supported for flash-attn>=2.4.2')
166
+ output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights, window_size=(sliding_window_size, sliding_window_size), **alibi_kwargs)
167
+ else:
168
+ raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.4.2 is required.')
169
+ output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
170
+ return (output, None, past_key_value)
171
+
172
+ def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
173
+ try:
174
+ from .flash_attn_triton import flash_attn_func
175
+ except:
176
+ _installed = False
177
+ if version.parse(torch.__version__) < version.parse('2.0.0'):
178
+ _installed = True
179
+ try:
180
+ from flash_attn.flash_attn_triton import flash_attn_func
181
+ except:
182
+ _installed = False
183
+ if not _installed:
184
+ raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.')
185
+ check_valid_inputs(query, key, value)
186
+ if past_key_value is not None:
187
+ if len(past_key_value) != 0:
188
+ key = torch.cat([past_key_value[0], key], dim=1)
189
+ value = torch.cat([past_key_value[1], value], dim=1)
190
+ past_key_value = (key, value)
191
+ if attn_bias is not None:
192
+ _s_q = max(0, attn_bias.size(2) - query.size(1))
193
+ _s_k = max(0, attn_bias.size(3) - key.size(1))
194
+ attn_bias = attn_bias[:, :, _s_q:, _s_k:]
195
+ if dropout_p:
196
+ raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
197
+ dropout_p = dropout_p if training else 0.0
198
+ if needs_weights:
199
+ raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
200
+ if key_padding_mask is not None:
201
+ warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
202
+ (b_size, s_k) = key_padding_mask.shape[:2]
203
+ if attn_bias is None:
204
+ attn_bias = query.new_zeros(b_size, 1, 1, s_k)
205
+ attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
206
+ query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
207
+ key = rearrange(key, 'b s (h d) -> b s h d', h=kv_n_heads)
208
+ value = rearrange(value, 'b s (h d) -> b s h d', h=kv_n_heads)
209
+ if kv_n_heads == 1:
210
+ key = key.repeat(1, 1, n_heads, 1)
211
+ value = value.repeat(1, 1, n_heads, 1)
212
+ elif kv_n_heads < n_heads:
213
+ key = repeat_kv_for_gqa(key, n_heads // kv_n_heads)
214
+ value = repeat_kv_for_gqa(value, n_heads // kv_n_heads)
215
+ reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
216
+ attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
217
+ output = attn_output.view(*attn_output.shape[:2], -1)
218
+ return (output, None, past_key_value)
219
+
220
+ class GroupedQueryAttention(nn.Module):
221
+ """Grouped Query Attention (GQA) is a generalization of Multi-head (MHA).
222
+
223
+ and Multi-query attention (MQA).
224
+
225
+ This allows the user to set a variable of number of kv_n_heads, rather than
226
+ just n_heads or 1, as in MHA and MQA. Using torch or triton attention
227
+ implementation enables user to also use additive bias.
228
+ """
229
+
230
+ def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
231
+ super().__init__()
232
+ self.attn_impl = attn_impl
233
+ self.clip_qkv = clip_qkv
234
+ self.qk_ln = qk_ln
235
+ self.qk_gn = qk_gn
236
+ self.d_model = d_model
237
+ self.n_heads = n_heads
238
+ self.kv_n_heads = kv_n_heads
239
+ self.sliding_window_size = sliding_window_size
240
+ self.head_dim = d_model // n_heads
241
+ if self.kv_n_heads <= 0:
242
+ raise ValueError('kv_n_heads should be greater than zero.')
243
+ if self.kv_n_heads > self.n_heads:
244
+ raise ValueError('The number of KV heads should be less than or equal to Q heads.')
245
+ if self.n_heads % self.kv_n_heads != 0:
246
+ raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.')
247
+ if qk_ln and qk_gn:
248
+ raise ValueError('Only one of qk_ln and qk_gn can be set to True.')
249
+ self.softmax_scale = softmax_scale
250
+ if self.softmax_scale is None:
251
+ self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
252
+ self.attn_dropout_p = attn_pdrop
253
+ fc_kwargs: dict[str, Any] = {'bias': bias}
254
+ if fc_type != 'te':
255
+ fc_kwargs['device'] = device
256
+ self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs)
257
+ fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)]
258
+ self.Wqkv._fused = (0, fuse_splits)
259
+ if self.qk_ln or self.qk_gn:
260
+ norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
261
+ norm_size = self.head_dim if qk_gn else d_model
262
+ self.q_ln = norm_class(norm_size, device=device)
263
+ if qk_ln:
264
+ norm_size = self.head_dim * kv_n_heads
265
+ self.k_ln = norm_class(norm_size, device=device)
266
+ if self.attn_impl == 'flash':
267
+ self.attn_fn = flash_attn_fn
268
+ elif self.attn_impl == 'triton':
269
+ self.attn_fn = triton_flash_attn_fn
270
+ elif self.attn_impl == 'torch':
271
+ self.attn_fn = scaled_multihead_dot_product_attention
272
+ else:
273
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
274
+ self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
275
+ self.out_proj._is_residual = True
276
+
277
+ def forward(self, x: torch.Tensor, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[dict]=None, is_causal: bool=True, needs_weights: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
278
+ qkv = self.Wqkv(x)
279
+ if self.clip_qkv:
280
+ qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
281
+ (query, key, value) = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2)
282
+ key_padding_mask = attention_mask
283
+ if self.qk_ln or self.qk_gn:
284
+ (q_shape, k_shape) = (query.shape, key.shape)
285
+ if self.qk_gn:
286
+ (b, s) = query.shape[:2]
287
+ query = query.view(b, s, self.n_heads, -1)
288
+ key = key.view(b, s, self.kv_n_heads, -1)
289
+ dtype = query.dtype
290
+ query = self.q_ln(query).to(dtype).view(q_shape)
291
+ key = self.k_ln(key).to(dtype).view(k_shape)
292
+ if rotary_emb_w_meta_info is not None:
293
+ rotary_emb = rotary_emb_w_meta_info['rotary_emb']
294
+ seq_len = rotary_emb_w_meta_info['seq_len']
295
+ offset_info = rotary_emb_w_meta_info['offset_info']
296
+ (bsz, seqlen) = query.shape[:2]
297
+ query = query.view(bsz, seqlen, -1, self.head_dim)
298
+ key = key.view(bsz, seqlen, -1, self.head_dim)
299
+ if rotary_emb_w_meta_info['impl'] == 'dail':
300
+ value = value.view(bsz, seqlen, -1, self.head_dim)
301
+ kv = torch.stack([key, value], dim=2)
302
+ (query, kv) = rotary_emb(query, kv, seqlen_offset=offset_info, max_seqlen=seq_len)
303
+ [key, value] = torch.unbind(kv, dim=2)
304
+ value = value.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
305
+ elif rotary_emb_w_meta_info['impl'] == 'hf':
306
+ (cos, sin) = rotary_emb(value, seq_len)
307
+ if is_transformers_version_gte('4.36'):
308
+ (query, key) = apply_rotary_pos_emb(query, key, cos, sin, offset_info, unsqueeze_dim=2)
309
+ else:
310
+ query = query.transpose(1, 2)
311
+ key = key.transpose(1, 2)
312
+ (query, key) = apply_rotary_pos_emb(query, key, cos, sin, offset_info)
313
+ query = query.transpose(1, 2)
314
+ key = key.transpose(1, 2)
315
+ query = query.view(bsz, seqlen, self.d_model)
316
+ key = key.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
317
+ extra_attn_kwargs = {}
318
+ if self.attn_impl == 'flash':
319
+ key_padding_mask = None
320
+ extra_attn_kwargs = {'should_repeat_kv_for_gqa': not is_flash_v2_installed(), 'sliding_window_size': self.sliding_window_size, 'alibi_slopes': alibi_slopes, 'flash_attn_padding_info': flash_attn_padding_info}
321
+ (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, **extra_attn_kwargs)
322
+ return (self.out_proj(context), attn_weights, past_key_value)
323
+
324
+ class MultiheadAttention(GroupedQueryAttention):
325
+ """Multi-head self attention.
326
+
327
+ Using torch or triton attention implementation enables user to also use
328
+ additive bias.
329
+ """
330
+
331
+ def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
332
+ super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
333
+
334
+ class MultiQueryAttention(GroupedQueryAttention):
335
+ """Multi-Query self attention.
336
+
337
+ Using torch or triton attention implementation enables user to also use
338
+ additive bias.
339
+ """
340
+
341
+ def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
342
+ super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
343
+
344
+ def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[tuple[int, int, int, int]]:
345
+ if attn_impl == 'flash':
346
+ return None
347
+ elif attn_impl in ['torch', 'triton']:
348
+ if alibi:
349
+ if (prefix_lm or not causal) or use_sequence_id:
350
+ return (1, n_heads, seq_len, seq_len)
351
+ return (1, n_heads, 1, seq_len)
352
+ elif prefix_lm or use_sequence_id:
353
+ return (1, 1, seq_len, seq_len)
354
+ return None
355
+ else:
356
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
357
+
358
+ def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_len: int, causal: bool=False, alibi: bool=False, alibi_bias_max: int=8) -> Optional[torch.Tensor]:
359
+ if attn_impl == 'flash':
360
+ return None
361
+ elif attn_impl in ['torch', 'triton']:
362
+ if alibi:
363
+ (device, dtype) = (attn_bias.device, attn_bias.dtype)
364
+ attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
365
+ return attn_bias
366
+ else:
367
+ raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
368
+
369
+ def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None, return_1d: bool=False) -> torch.Tensor:
370
+ _n_heads = 2 ** math.ceil(math.log2(n_heads))
371
+ m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
372
+ m = m.mul(alibi_bias_max / _n_heads)
373
+ slopes = 1.0 / torch.pow(2, m)
374
+ if _n_heads != n_heads:
375
+ slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
376
+ if return_1d:
377
+ return slopes
378
+ return slopes.view(1, n_heads, 1, 1)
379
+
380
+ def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor:
381
+ alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
382
+ if full:
383
+ alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
384
+ alibi_bias = alibi_bias.abs().mul(-1)
385
+ slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
386
+ alibi_bias = alibi_bias * slopes
387
+ return alibi_bias.to(dtype=dtype)
388
+ ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention, 'grouped_query_attention': GroupedQueryAttention}
mpt_7b/blocks.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """GPT Blocks used for the GPT Model."""
2
+ from typing import Any, Dict, Optional, Tuple
3
+ import torch
4
+ import torch.nn as nn
5
+ from .attention import ATTN_CLASS_REGISTRY
6
+ from .ffn import FFN_CLASS_REGISTRY, build_ffn
7
+ from .norm import NORM_CLASS_REGISTRY
8
+ try:
9
+ from flash_attn.bert_padding import unpad_input, pad_input
10
+ except:
11
+ (unpad_input, pad_input) = (None, None)
12
+ attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'qk_gn': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'sliding_window_size': -1, 'alibi': False, 'alibi_bias_max': 8, 'rope': False, 'rope_theta': 10000, 'rope_impl': 'dail', 'rope_dail_config': {'type': 'original', 'pos_idx_in_fp32': True, 'xpos_scale_base': 512}, 'rope_hf_config': {'type': 'no_scaling', 'factor': 1.0}}
13
+
14
+ class MPTBlock(nn.Module):
15
+
16
+ def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
17
+ if attn_config is None:
18
+ attn_config = attn_config_defaults
19
+ if ffn_config is None:
20
+ ffn_config = {'ffn_type': 'mptmlp'}
21
+ del kwargs
22
+ super().__init__()
23
+ norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
24
+ assert isinstance(attn_config['attn_type'], str)
25
+ attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
26
+ args_to_exclude_in_attn_class = {'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max', 'rope', 'rope_theta', 'rope_impl', 'rope_dail_config', 'rope_hf_config'}
27
+ attn_config_subset_for_attn_class = {k: v for (k, v) in attn_config.items() if k not in args_to_exclude_in_attn_class}
28
+ self.norm_1 = norm_class(d_model, device=device)
29
+ self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
30
+ self.norm_2 = None
31
+ if not getattr(FFN_CLASS_REGISTRY[ffn_config['ffn_type']], '_has_norm', False):
32
+ self.norm_2 = norm_class(d_model, device=device)
33
+ self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
34
+ self.resid_attn_dropout = nn.Dropout(resid_pdrop)
35
+ self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
36
+ self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
37
+
38
+ def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[Dict]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
39
+ a = self.norm_1(x)
40
+ (b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions, alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
41
+ x = x + self.resid_attn_dropout(b)
42
+ m = x
43
+ if self.norm_2 is not None:
44
+ m = self.norm_2(x)
45
+ (batch_size, seq_len) = m.size()[:2]
46
+ indices = None
47
+ if not self.use_pad_tok_in_ffn:
48
+ assert unpad_input is not None
49
+ (m, indices, _, _) = unpad_input(m, attention_mask)
50
+ n = self.ffn(m)
51
+ if not self.use_pad_tok_in_ffn:
52
+ assert pad_input is not None
53
+ n = pad_input(n, indices, batch_size, seq_len)
54
+ x = x + self.resid_ffn_dropout(n)
55
+ return (x, attn_weights, past_key_value)
mpt_7b/configuration_mpt.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A HuggingFace-style model configuration."""
2
+ import warnings
3
+ from typing import Any, Dict, Optional, Union
4
+ from transformers import PretrainedConfig
5
+ from .attention import check_alibi_support, is_flash_v1_installed, is_flash_v2_installed
6
+ from .blocks import attn_config_defaults
7
+ from .fc import FC_CLASS_REGISTRY
8
+ from .norm import LPLayerNorm
9
+ from .ffn import FFN_CLASS_REGISTRY
10
+ from .warnings import VersionedDeprecationWarning
11
+ ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
12
+ init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
13
+
14
+ class MPTConfig(PretrainedConfig):
15
+ model_type = 'mpt'
16
+
17
+ def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: Union[int, float]=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', tie_word_embeddings: bool=True, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
18
+ """The MPT configuration class.
19
+
20
+ Args:
21
+ d_model (int): The size of the embedding dimension of the model.
22
+ n_heads (int): The number of attention heads.
23
+ n_layers (int): The number of layers in the model.
24
+ expansion_ratio (Union[int, float]): The ratio of the up/down scale in the ffn.
25
+ max_seq_len (int): The maximum sequence length of the model.
26
+ vocab_size (int): The size of the vocabulary.
27
+ resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
28
+ emb_pdrop (float): The dropout probability for the embedding layer.
29
+ learned_pos_emb (bool): Whether to use learned positional embeddings
30
+ attn_config (Dict): A dictionary used to configure the model's attention module:
31
+ attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention, grouped_query_attention
32
+ attn_pdrop (float): The dropout probability for the attention layers.
33
+ attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
34
+ qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
35
+ qk_gn (bool): Whether to apply group normalization to the queries and keys in the attention layer.
36
+ clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
37
+ this value.
38
+ softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
39
+ use the default scale of ``1/sqrt(d_keys)``.
40
+ prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
41
+ extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
42
+ can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
43
+ attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
44
+ When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
45
+ which sub-sequence each token belongs to.
46
+ Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
47
+ sliding_window_size (int): Window size for sliding window local attention. Defaults to -1, which means no sliding window. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size, i + seqlen_k - seqlen_q + window_size] inclusive. Only works for flash attention v2.3.0 or higher.
48
+ alibi (bool): Whether to use the alibi bias instead of position embeddings.
49
+ alibi_bias_max (int): The maximum value of the alibi bias.
50
+ rope (bool): Whether to use rotary positional embeddings.
51
+ rope_theta (int): The base frequency for rope.
52
+ rope_impl (str): The implementation of rope to use. One of 'hf' (to use the implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) or 'dail' (to use the implementation from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py).
53
+ rope_dail_config (Dict): The configuration for the dail implementation of rope.
54
+ type (str): The type of rotary position embedding to use. Options: 'original' (for https://arxiv.org/pdf/2104.09864.pdf), 'xpos' (for https://arxiv.org/pdf/2212.10554.pdf).
55
+ pos_idx_in_fp32 (bool): If True, the position indices [0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. A consequence could be, for example, that bf16 rounds position 1995 to 2000, which leads to them having the same positional embedding.
56
+ xpos_scale_base (float): The scale base for XPos (if using XPos).
57
+ rope_hf_config (Dict): A dictionary used to configure rope's scaling behavior (when scaling beyond the training length).
58
+ type (str): Can be one of 'no_scaling', 'linear', or 'dynamic'. 'no_scaling' uses the default implementation for rotary embeddings, 'linear' uses linear scaling as proposed by the Reddit user /u/kaiokendev, and 'dynamic' uses Dynamic NTK scaling as proposed by the Reddit users /u/bloc97 and /u/emozilla.
59
+ factor (float): Scaling factor to use if using 'linear' or 'dynamic' as rope_scaling.type.
60
+ kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
61
+ ffn_config (Dict): A dictionary used to configure the model's ffn module:
62
+ ffn_type (str): type of ffn to use. Options: mptmlp, mptglu, te_ln_mlp
63
+ init_device (str): The device to use for parameter initialization.
64
+ logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
65
+ no_bias (bool): Whether to use bias in all layers.
66
+ embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
67
+ norm_type (str): choose type of norm to use
68
+ use_cache (bool): Whether or not the model should return the last key/values attentions
69
+ init_config (Dict): A dictionary used to configure the model initialization:
70
+ init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
71
+ 'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
72
+ 'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
73
+ init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
74
+ emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
75
+ emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
76
+ used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
77
+ init_std (float): The standard deviation of the normal distribution used to initialize the model,
78
+ if using the baseline_ parameter initialization scheme.
79
+ init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
80
+ fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
81
+ init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
82
+ ---
83
+ See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
84
+ fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
85
+ tie_word_embeddings (bool): Whether to tie the input embedding and output layers.
86
+ use_pad_tok_in_ffn (bool): Whether to forward the pad token in the feedforward networks.
87
+ """
88
+ self.d_model = d_model
89
+ self.n_heads = n_heads
90
+ self.n_layers = n_layers
91
+ self.expansion_ratio = expansion_ratio
92
+ self.max_seq_len = max_seq_len
93
+ self.vocab_size = vocab_size
94
+ self.resid_pdrop = resid_pdrop
95
+ self.emb_pdrop = emb_pdrop
96
+ self.learned_pos_emb = learned_pos_emb
97
+ self.attn_config = attn_config
98
+ self.ffn_config = ffn_config
99
+ self.init_device = init_device
100
+ self.logit_scale = logit_scale
101
+ self.no_bias = no_bias
102
+ self.embedding_fraction = embedding_fraction
103
+ self.norm_type = norm_type
104
+ self.use_cache = use_cache
105
+ self.init_config = init_config
106
+ self.fc_type = fc_type
107
+ self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
108
+ if 'name' in kwargs:
109
+ del kwargs['name']
110
+ if 'loss_fn' in kwargs:
111
+ del kwargs['loss_fn']
112
+ if self.attn_config.get('alibi', False) or self.attn_config.get('rope', False):
113
+ self.learned_pos_emb = False
114
+ warnings.warn(f'alibi or rope is turned on, setting `learned_pos_emb` to `False.`')
115
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
116
+ self._validate_config()
117
+
118
+ def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
119
+ for (k, v) in config_defaults.items():
120
+ if k not in config:
121
+ config[k] = v
122
+ elif isinstance(v, dict):
123
+ config[k] = self._set_config_defaults(config[k] if config[k] is not None else {}, v)
124
+ return config
125
+
126
+ def _validate_config(self) -> None:
127
+ self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
128
+ self.ffn_config = self._set_config_defaults(self.ffn_config, ffn_config_defaults)
129
+ self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
130
+ if self.d_model % self.n_heads != 0:
131
+ raise ValueError('d_model must be divisible by n_heads')
132
+ if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
133
+ raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
134
+ if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
135
+ raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
136
+ if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
137
+ raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
138
+ if self.attn_config['attn_impl'] == 'flash' and is_flash_v1_installed():
139
+ warnings.warn(VersionedDeprecationWarning('Support for Flash Attention v1 is deprecated. Please upgrade to Flash Attention v2.4.2. To install Flash Attention v2.4.2, please run `pip install -e ".[gpu-flash2]"` from the root directory of the llm-foundry repository.', remove_version='0.6.0'))
140
+ if self.attn_config['attn_impl'] == 'triton' and (not self.attn_config['prefix_lm']):
141
+ warnings.warn(UserWarning('If not using a Prefix Language Model, we recommend setting "attn_impl" to "flash" instead of "triton".'))
142
+ if self.attn_config['alibi'] and (not check_alibi_support(self.attn_config['attn_impl'])):
143
+ raise NotImplementedError('alibi only implemented with torch, triton, and flash (v2.4.2 or higher) attention.')
144
+ if self.attn_config['attn_uses_sequence_id'] and (not (self.attn_config['attn_impl'] in ['torch', 'triton'] or (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.1.2')))):
145
+ raise NotImplementedError('attn_uses_sequence_id only implemented with torch, triton, and flash (v2.1.2 or higher) attention.')
146
+ if self.attn_config['rope'] and self.attn_config['rope_impl'] not in ['dail', 'hf']:
147
+ raise ValueError('If rope is being used then rope_impl should be either "dail", or "hf".')
148
+ if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'hf' and (self.attn_config['rope_hf_config']['type'] not in ['no_scaling', 'linear', 'dynamic']):
149
+ raise ValueError('If using hf implementation of rope, the type should be one of "no_scaling", "linear" or "dynamic".')
150
+ if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'dail':
151
+ if self.attn_config['rope_dail_config']['type'] not in ['original', 'xpos']:
152
+ raise ValueError('If using the dail implementation of rope, the type should be one of "original" or "xpos".')
153
+ if not is_flash_v2_installed(v2_version='2.0.1'):
154
+ raise ImportError('If using the dail implementation of rope, the flash_attn library v2.0.1 or higher must be installed. Please check the instructions at https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#what-kinds-of-positional-embeddings-does-llm-foundry-support')
155
+ if self.attn_config['sliding_window_size'] != -1 and (not (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.3.0'))):
156
+ raise NotImplementedError('sliding window only implemented with flash attention v2.3.0 or higher.')
157
+ if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
158
+ raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
159
+ if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
160
+ raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
161
+ if self.init_config.get('name', None) is None:
162
+ raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
163
+ if not (self.learned_pos_emb or self.attn_config['alibi'] or self.attn_config['rope']):
164
+ warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi or rope.')
165
+ if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
166
+ try:
167
+ import transformer_engine.pytorch as te
168
+ del te
169
+ except:
170
+ raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
171
+ if self.ffn_config['ffn_type'] == 'mptgeglu':
172
+ raise ValueError('API CHANGE: `ffn_type=="mptgeglu"` changed to `ffn_type=="mptglu"`. ' + 'See [#829](https://github.com/mosaicml/llm-foundry/pull/829) for details.')
173
+ elif self.ffn_config['ffn_type'] in ['mptmlp', 'mptglu']:
174
+ self.ffn_config['fc_type'] = self.fc_type
175
+ elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
176
+ self.ffn_config['bias'] = not self.no_bias
177
+ if 'ffn_act_fn' in self.ffn_config.keys():
178
+ raise ValueError(f'Transformer Engine block does not support custom activation functions.')
179
+ if not self.use_pad_tok_in_ffn:
180
+ try:
181
+ from flash_attn.bert_padding import unpad_input, pad_input
182
+ except:
183
+ raise ImportError('In order to set `use_pad_tok_in_ffn=False`, please install flash-attn==1.0.9 or flash-attn==2.3.6')
mpt_7b/custom_embedding.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+ from torch import Tensor
4
+
5
+ class SharedEmbedding(nn.Embedding):
6
+
7
+ def forward(self, input: Tensor, unembed: bool=False) -> Tensor:
8
+ if unembed:
9
+ return F.linear(input, self.weight)
10
+ return super().forward(input)
mpt_7b/fc.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+ FC_CLASS_REGISTRY = {'torch': nn.Linear}
3
+ try:
4
+ import transformer_engine.pytorch as te
5
+ FC_CLASS_REGISTRY['te'] = te.Linear
6
+ except:
7
+ pass
mpt_7b/ffn.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MPT Blocks used for the MPT Model."""
2
+ import logging
3
+ from copy import deepcopy
4
+ from functools import partial
5
+ from typing import Any, Callable, Optional, Union
6
+ import torch
7
+ import torch.nn as nn
8
+ from .fc import FC_CLASS_REGISTRY
9
+ try:
10
+ import transformer_engine.pytorch as te
11
+ except:
12
+ te = None
13
+ log = logging.getLogger(__name__)
14
+ _FFN_ACT_FN_DEFAULT = {'name': 'gelu', 'approximate': 'none'}
15
+
16
+ def resolve_ffn_act_fn(config: Optional[dict]=None) -> Callable[[torch.Tensor], torch.Tensor]:
17
+ """Resolve the activation function for the feed-forward network.
18
+
19
+ Args:
20
+ config (Optional[dict]): The configuration dictionary for the activation function.
21
+ The dict config must specify the 'name' of a torch.nn.functional activation
22
+ function. All of other key values pairs are bound to the function as a partial.
23
+
24
+ Returns:
25
+ Callable[[torch.Tensor], torch.Tensor]: The activation function.
26
+ """
27
+ if config is None:
28
+ config = _FFN_ACT_FN_DEFAULT
29
+ config = deepcopy(config)
30
+ name = config.pop('name')
31
+ if not hasattr(torch.nn.functional, name):
32
+ raise ValueError(f'Unrecognised activation function name ({name}).')
33
+ act = getattr(torch.nn.functional, name)
34
+ return partial(act, **config)
35
+ _DEFAULT_ACT_FN = resolve_ffn_act_fn(_FFN_ACT_FN_DEFAULT)
36
+
37
+ def resolve_ffn_hidden_size(d_model: int, expansion_ratio: Union[int, float], ffn_hidden_size: Optional[int]=None) -> int:
38
+ """Resolve the hidden size of the feed-forward network.
39
+
40
+ Args:
41
+ d_model (int): The dimension of the input and output of the feed-forward network.
42
+ expansion_ratio (Union[int, float]): The expansion ratio of the feed-forward network.
43
+ ffn_hidden_size (Optional[int]): The hidden size of the feed-forward network.
44
+
45
+ Returns:
46
+ int: The hidden size of the feed-forward network.
47
+ """
48
+ if ffn_hidden_size is not None:
49
+ log.info(f'`expansion_ratio` (={expansion_ratio}) ignored when `ffn_hidden_size` (={ffn_hidden_size}) is specified.')
50
+ else:
51
+ ffn_hidden_size = int(d_model * expansion_ratio)
52
+ if ffn_hidden_size != d_model * expansion_ratio:
53
+ raise ValueError(f'`d_model * expansion_ratio` must be an integer (d_model={d_model!r}; expansion_ratio={expansion_ratio!r}; d_model * expansion_ratio={d_model * expansion_ratio!r}).')
54
+ return ffn_hidden_size
55
+
56
+ class MPTMLP(nn.Module):
57
+
58
+ def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True):
59
+ super().__init__()
60
+ ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size)
61
+ self.fc_kwargs: dict[str, Any] = {'bias': bias}
62
+ if fc_type != 'te':
63
+ self.fc_kwargs['device'] = device
64
+ self.up_proj = FC_CLASS_REGISTRY[fc_type](d_model, ffn_hidden_size, **self.fc_kwargs)
65
+ self.act = act_fn
66
+ self.down_proj = FC_CLASS_REGISTRY[fc_type](ffn_hidden_size, d_model, **self.fc_kwargs)
67
+ self.down_proj._is_residual = True
68
+
69
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
70
+ return self.down_proj(self.act(self.up_proj(x)))
71
+
72
+ class MPTGLU(MPTMLP):
73
+
74
+ def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True):
75
+ super().__init__(d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, ffn_hidden_size=ffn_hidden_size, act_fn=act_fn, device=device, bias=bias)
76
+ self.gate_proj = FC_CLASS_REGISTRY[fc_type](d_model, self.up_proj.out_features, **self.fc_kwargs)
77
+
78
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
79
+ return self.down_proj(self.act(self.gate_proj(x)) * self.up_proj(x))
80
+ FFN_CLASS_REGISTRY = {'mptmlp': MPTMLP, 'mptglu': MPTGLU}
81
+ if te is not None:
82
+ te.LayerNormMLP._has_norm = True
83
+ FFN_CLASS_REGISTRY['te_ln_mlp'] = te.LayerNormMLP
84
+
85
+ def build_ffn(d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, ffn_act_fn: Optional[dict]=None, device: Optional[str]=None, bias: bool=True, **kwargs: Any) -> nn.Module:
86
+ ffn_type = kwargs.pop('ffn_type')
87
+ if ffn_type in ['mptmlp', 'mptglu']:
88
+ if len(kwargs) > 0:
89
+ raise ValueError(f'MPTMLP (or MPTGLU) got an unexpected keyword argument: {kwargs}')
90
+ return FFN_CLASS_REGISTRY[ffn_type](d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, act_fn=resolve_ffn_act_fn(ffn_act_fn), ffn_hidden_size=ffn_hidden_size, device=device, bias=bias)
91
+ elif ffn_type == 'te_ln_mlp':
92
+ assert te is not None
93
+ ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size)
94
+ if ffn_act_fn is not None:
95
+ raise ValueError(f'Transformer Engine block does not support custom activation functions.')
96
+ return te.LayerNormMLP(hidden_size=d_model, ffn_hidden_size=ffn_hidden_size, bias=bias, **kwargs)
97
+ raise ValueError(f'ffn_type={ffn_type!r} not recognized.')
mpt_7b/flash_attn_triton.py ADDED
@@ -0,0 +1,484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
3
+ update imports to use 'triton_pre_mlir'
4
+
5
+ *Experimental* implementation of FlashAttention in Triton.
6
+ Tested with triton==2.0.0.dev20221202.
7
+ Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
8
+ other than 64:
9
+ https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
10
+ We'll update this implementation with the new Triton backend once this is fixed.
11
+
12
+ We use the FlashAttention implementation from Phil Tillet a starting point.
13
+ https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
14
+
15
+ Changes:
16
+ - Implement both causal and non-causal attention.
17
+ - Implement both self-attention and cross-attention.
18
+ - Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
19
+ - Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
20
+ - Support attention bias.
21
+ - Speed up the forward pass a bit, and only store the LSE instead of m and l.
22
+ - Make the backward for d=128 much faster by reducing register spilling.
23
+ - Optionally parallelize the backward pass across seqlen_k, to deal with the case of
24
+ small batch size * nheads.
25
+
26
+ Caution:
27
+ - This is an *experimental* implementation. The forward pass should be quite robust but
28
+ I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
29
+ - This implementation has only been tested on A100.
30
+ - If you plan to use headdim other than 64 and 128, you should test for race conditions
31
+ (due to the Triton compiler), as done in tests/test_flash_attn.py
32
+ "test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
33
+ for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
34
+ that there are none left for other head dimensions.
35
+
36
+ Differences between this Triton version and the CUDA version:
37
+ - Triton version doesn't support dropout.
38
+ - Triton forward is generally faster than CUDA forward, while Triton backward is
39
+ generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
40
+ than CUDA forward + backward.
41
+ - Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
42
+ - Triton version supports attention bias, while CUDA version doesn't.
43
+ """
44
+ import math
45
+ import torch
46
+ import triton_pre_mlir as triton
47
+ import triton_pre_mlir.language as tl
48
+
49
+ @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
50
+ @triton.jit
51
+ def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
52
+ start_m = tl.program_id(0)
53
+ off_hb = tl.program_id(1)
54
+ off_b = off_hb // nheads
55
+ off_h = off_hb % nheads
56
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
57
+ offs_n = tl.arange(0, BLOCK_N)
58
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
59
+ q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
60
+ k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
61
+ v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
62
+ if BIAS_TYPE == 'vector':
63
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
64
+ elif BIAS_TYPE == 'matrix':
65
+ b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
66
+ t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
67
+ lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
68
+ m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
69
+ acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
70
+ if EVEN_M & EVEN_N:
71
+ if EVEN_HEADDIM:
72
+ q = tl.load(q_ptrs)
73
+ else:
74
+ q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
75
+ elif EVEN_HEADDIM:
76
+ q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
77
+ else:
78
+ q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
79
+ end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
80
+ for start_n in range(0, end_n, BLOCK_N):
81
+ start_n = tl.multiple_of(start_n, BLOCK_N)
82
+ if EVEN_N & EVEN_M:
83
+ if EVEN_HEADDIM:
84
+ k = tl.load(k_ptrs + start_n * stride_kn)
85
+ else:
86
+ k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
87
+ elif EVEN_HEADDIM:
88
+ k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
89
+ else:
90
+ k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
91
+ qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
92
+ qk += tl.dot(q, k, trans_b=True)
93
+ if not EVEN_N:
94
+ qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf'))
95
+ if IS_CAUSAL:
96
+ qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf'))
97
+ if BIAS_TYPE != 'none':
98
+ if BIAS_TYPE == 'vector':
99
+ if EVEN_N:
100
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
101
+ else:
102
+ bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32)
103
+ bias = bias[None, :]
104
+ elif BIAS_TYPE == 'matrix':
105
+ if EVEN_M & EVEN_N:
106
+ bias = tl.load(b_ptrs + start_n).to(tl.float32)
107
+ else:
108
+ bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32)
109
+ qk = qk * softmax_scale + bias
110
+ m_ij = tl.maximum(tl.max(qk, 1), lse_i)
111
+ p = tl.exp(qk - m_ij[:, None])
112
+ else:
113
+ m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
114
+ p = tl.exp(qk * softmax_scale - m_ij[:, None])
115
+ l_ij = tl.sum(p, 1)
116
+ acc_o_scale = tl.exp(m_i - m_ij)
117
+ tl.store(t_ptrs, acc_o_scale)
118
+ acc_o_scale = tl.load(t_ptrs)
119
+ acc_o = acc_o * acc_o_scale[:, None]
120
+ if EVEN_N & EVEN_M:
121
+ if EVEN_HEADDIM:
122
+ v = tl.load(v_ptrs + start_n * stride_vn)
123
+ else:
124
+ v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
125
+ elif EVEN_HEADDIM:
126
+ v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
127
+ else:
128
+ v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
129
+ p = p.to(v.dtype)
130
+ acc_o += tl.dot(p, v)
131
+ m_i = m_ij
132
+ l_i_new = tl.exp(lse_i - m_ij) + l_ij
133
+ lse_i = m_ij + tl.log(l_i_new)
134
+ o_scale = tl.exp(m_i - lse_i)
135
+ tl.store(t_ptrs, o_scale)
136
+ o_scale = tl.load(t_ptrs)
137
+ acc_o = acc_o * o_scale[:, None]
138
+ start_m = tl.program_id(0)
139
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
140
+ lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
141
+ tl.store(lse_ptrs, lse_i)
142
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
143
+ out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
144
+ if EVEN_M:
145
+ if EVEN_HEADDIM:
146
+ tl.store(out_ptrs, acc_o)
147
+ else:
148
+ tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
149
+ elif EVEN_HEADDIM:
150
+ tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
151
+ else:
152
+ tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
153
+
154
+ @triton.jit
155
+ def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr):
156
+ start_m = tl.program_id(0)
157
+ off_hb = tl.program_id(1)
158
+ off_b = off_hb // nheads
159
+ off_h = off_hb % nheads
160
+ offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
161
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
162
+ o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
163
+ do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
164
+ delta = tl.sum(o * do, axis=1)
165
+ tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
166
+
167
+ @triton.jit
168
+ def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr):
169
+ if EVEN_N & EVEN_M:
170
+ if EVEN_HEADDIM:
171
+ tl.store(dv_ptrs, dv)
172
+ tl.store(dk_ptrs, dk)
173
+ else:
174
+ tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
175
+ tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
176
+ elif EVEN_HEADDIM:
177
+ tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
178
+ tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
179
+ else:
180
+ tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
181
+ tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
182
+
183
+ @triton.jit
184
+ def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
185
+ begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
186
+ offs_qm = begin_m + tl.arange(0, BLOCK_M)
187
+ offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
188
+ offs_m = tl.arange(0, BLOCK_M)
189
+ offs_d = tl.arange(0, BLOCK_HEADDIM)
190
+ q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
191
+ k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
192
+ v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
193
+ do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
194
+ dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
195
+ if BIAS_TYPE == 'vector':
196
+ b_ptrs = Bias + offs_n
197
+ elif BIAS_TYPE == 'matrix':
198
+ b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
199
+ dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
200
+ dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
201
+ if begin_m >= seqlen_q:
202
+ dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
203
+ dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
204
+ _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
205
+ return
206
+ if EVEN_N & EVEN_M:
207
+ if EVEN_HEADDIM:
208
+ k = tl.load(k_ptrs)
209
+ v = tl.load(v_ptrs)
210
+ else:
211
+ k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
212
+ v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
213
+ elif EVEN_HEADDIM:
214
+ k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
215
+ v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
216
+ else:
217
+ k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
218
+ v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
219
+ num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
220
+ for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
221
+ start_m = tl.multiple_of(start_m, BLOCK_M)
222
+ offs_m_curr = start_m + offs_m
223
+ if EVEN_M & EVEN_HEADDIM:
224
+ q = tl.load(q_ptrs)
225
+ elif EVEN_HEADDIM:
226
+ q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
227
+ else:
228
+ q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
229
+ qk = tl.dot(q, k, trans_b=True)
230
+ if not EVEN_N:
231
+ qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
232
+ if IS_CAUSAL:
233
+ qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float('-inf'))
234
+ if BIAS_TYPE != 'none':
235
+ tl.debug_barrier()
236
+ if BIAS_TYPE == 'vector':
237
+ if EVEN_N:
238
+ bias = tl.load(b_ptrs).to(tl.float32)
239
+ else:
240
+ bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
241
+ bias = bias[None, :]
242
+ elif BIAS_TYPE == 'matrix':
243
+ if EVEN_M & EVEN_N:
244
+ bias = tl.load(b_ptrs).to(tl.float32)
245
+ else:
246
+ bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32)
247
+ qk = qk * softmax_scale + bias
248
+ if not EVEN_M & EVEN_HEADDIM:
249
+ tl.debug_barrier()
250
+ lse_i = tl.load(LSE + offs_m_curr)
251
+ if BIAS_TYPE == 'none':
252
+ p = tl.exp(qk * softmax_scale - lse_i[:, None])
253
+ else:
254
+ p = tl.exp(qk - lse_i[:, None])
255
+ if EVEN_M & EVEN_HEADDIM:
256
+ do = tl.load(do_ptrs)
257
+ else:
258
+ do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
259
+ dv += tl.dot(p.to(do.dtype), do, trans_a=True)
260
+ if not EVEN_M & EVEN_HEADDIM:
261
+ tl.debug_barrier()
262
+ dp = tl.dot(do, v, trans_b=True)
263
+ if not EVEN_HEADDIM:
264
+ tl.debug_barrier()
265
+ Di = tl.load(D + offs_m_curr)
266
+ ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
267
+ dk += tl.dot(ds, q, trans_a=True)
268
+ if not EVEN_M & EVEN_HEADDIM:
269
+ tl.debug_barrier()
270
+ if not ATOMIC_ADD:
271
+ if EVEN_M & EVEN_HEADDIM:
272
+ dq = tl.load(dq_ptrs, eviction_policy='evict_last')
273
+ dq += tl.dot(ds, k)
274
+ tl.store(dq_ptrs, dq, eviction_policy='evict_last')
275
+ elif EVEN_HEADDIM:
276
+ dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last')
277
+ dq += tl.dot(ds, k)
278
+ tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last')
279
+ else:
280
+ dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last')
281
+ dq += tl.dot(ds, k)
282
+ tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last')
283
+ else:
284
+ dq = tl.dot(ds, k)
285
+ if EVEN_M & EVEN_HEADDIM:
286
+ tl.atomic_add(dq_ptrs, dq)
287
+ elif EVEN_HEADDIM:
288
+ tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
289
+ else:
290
+ tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
291
+ dq_ptrs += BLOCK_M * stride_dqm
292
+ q_ptrs += BLOCK_M * stride_qm
293
+ do_ptrs += BLOCK_M * stride_dom
294
+ if BIAS_TYPE == 'matrix':
295
+ b_ptrs += BLOCK_M * stride_bm
296
+ dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
297
+ dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
298
+ _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
299
+
300
+ def init_to_zero(name):
301
+ return lambda nargs: nargs[name].zero_()
302
+
303
+ @triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
304
+ @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']})
305
+ @triton.jit
306
+ def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
307
+ off_hb = tl.program_id(1)
308
+ off_b = off_hb // nheads
309
+ off_h = off_hb % nheads
310
+ Q += off_b * stride_qb + off_h * stride_qh
311
+ K += off_b * stride_kb + off_h * stride_kh
312
+ V += off_b * stride_vb + off_h * stride_vh
313
+ DO += off_b * stride_dob + off_h * stride_doh
314
+ DQ += off_b * stride_dqb + off_h * stride_dqh
315
+ DK += off_b * stride_dkb + off_h * stride_dkh
316
+ DV += off_b * stride_dvb + off_h * stride_dvh
317
+ if BIAS_TYPE != 'none':
318
+ Bias += off_b * stride_bb + off_h * stride_bh
319
+ D += off_hb * seqlen_q_rounded
320
+ LSE += off_hb * seqlen_q_rounded
321
+ if not SEQUENCE_PARALLEL:
322
+ num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
323
+ for start_n in range(0, num_block_n):
324
+ _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
325
+ else:
326
+ start_n = tl.program_id(0)
327
+ _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
328
+
329
+ def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
330
+ (batch, seqlen_q, nheads, d) = q.shape
331
+ (_, seqlen_k, _, _) = k.shape
332
+ assert k.shape == (batch, seqlen_k, nheads, d)
333
+ assert v.shape == (batch, seqlen_k, nheads, d)
334
+ assert d <= 128, 'FlashAttention only support head dimensions up to 128'
335
+ assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
336
+ assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
337
+ assert q.is_cuda and k.is_cuda and v.is_cuda
338
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
339
+ has_bias = bias is not None
340
+ bias_type = 'none'
341
+ if has_bias:
342
+ assert bias.dtype in [q.dtype, torch.float]
343
+ assert bias.is_cuda
344
+ assert bias.dim() == 4
345
+ if bias.stride(-1) != 1:
346
+ bias = bias.contiguous()
347
+ if bias.shape[2:] == (1, seqlen_k):
348
+ bias_type = 'vector'
349
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
350
+ bias_type = 'matrix'
351
+ else:
352
+ raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
353
+ bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
354
+ bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
355
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
356
+ lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
357
+ tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
358
+ o = torch.empty_like(q)
359
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
360
+ BLOCK = 128
361
+ num_warps = 4 if d <= 64 else 8
362
+ grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
363
+ _fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1)
364
+ return (o, lse, softmax_scale)
365
+
366
+ def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
367
+ if do.stride(-1) != 1:
368
+ do = do.contiguous()
369
+ (batch, seqlen_q, nheads, d) = q.shape
370
+ (_, seqlen_k, _, _) = k.shape
371
+ assert d <= 128
372
+ seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
373
+ assert lse.shape == (batch, nheads, seqlen_q_rounded)
374
+ assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
375
+ assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
376
+ softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
377
+ dq_accum = torch.empty_like(q, dtype=torch.float32)
378
+ delta = torch.empty_like(lse)
379
+ BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
380
+ grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads)
381
+ _bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM)
382
+ has_bias = bias is not None
383
+ bias_type = 'none'
384
+ if has_bias:
385
+ assert bias.dtype in [q.dtype, torch.float]
386
+ assert bias.is_cuda
387
+ assert bias.dim() == 4
388
+ assert bias.stride(-1) == 1
389
+ if bias.shape[2:] == (1, seqlen_k):
390
+ bias_type = 'vector'
391
+ elif bias.shape[2:] == (seqlen_q, seqlen_k):
392
+ bias_type = 'matrix'
393
+ else:
394
+ raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)')
395
+ bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
396
+ bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
397
+ grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads)
398
+ _bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM)
399
+ dq.copy_(dq_accum)
400
+
401
+ class FlashAttnQKVPackedFunc(torch.autograd.Function):
402
+
403
+ @staticmethod
404
+ def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
405
+ """
406
+ qkv: (batch, seqlen, 3, nheads, headdim)
407
+ bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
408
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
409
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
410
+ """
411
+ if qkv.stride(-1) != 1:
412
+ qkv = qkv.contiguous()
413
+ (o, lse, ctx.softmax_scale) = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale)
414
+ ctx.save_for_backward(qkv, o, lse, bias)
415
+ ctx.causal = causal
416
+ return o
417
+
418
+ @staticmethod
419
+ def backward(ctx, do):
420
+ (qkv, o, lse, bias) = ctx.saved_tensors
421
+ assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet'
422
+ with torch.inference_mode():
423
+ dqkv = torch.empty_like(qkv)
424
+ _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
425
+ return (dqkv, None, None, None)
426
+ flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
427
+
428
+ class FlashAttnKVPackedFunc(torch.autograd.Function):
429
+
430
+ @staticmethod
431
+ def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
432
+ """
433
+ q: (batch, seqlen_q, nheads, headdim)
434
+ kv: (batch, seqlen_k, 2, nheads, headdim)
435
+ bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
436
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
437
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
438
+ """
439
+ (q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
440
+ (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale)
441
+ ctx.save_for_backward(q, kv, o, lse, bias)
442
+ ctx.causal = causal
443
+ return o
444
+
445
+ @staticmethod
446
+ def backward(ctx, do):
447
+ (q, kv, o, lse, bias) = ctx.saved_tensors
448
+ if len(ctx.needs_input_grad) >= 3:
449
+ assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet'
450
+ with torch.inference_mode():
451
+ dq = torch.empty_like(q)
452
+ dkv = torch.empty_like(kv)
453
+ _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
454
+ return (dq, dkv, None, None, None)
455
+ flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
456
+
457
+ class FlashAttnFunc(torch.autograd.Function):
458
+
459
+ @staticmethod
460
+ def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
461
+ """
462
+ q: (batch_size, seqlen_q, nheads, headdim)
463
+ k, v: (batch_size, seqlen_k, nheads, headdim)
464
+ bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
465
+ For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
466
+ ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
467
+ """
468
+ (q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
469
+ (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
470
+ ctx.save_for_backward(q, k, v, o, lse, bias)
471
+ ctx.causal = causal
472
+ return o
473
+
474
+ @staticmethod
475
+ def backward(ctx, do):
476
+ (q, k, v, o, lse, bias) = ctx.saved_tensors
477
+ assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet'
478
+ with torch.inference_mode():
479
+ dq = torch.empty_like(q)
480
+ dk = torch.empty_like(k)
481
+ dv = torch.empty_like(v)
482
+ _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale)
483
+ return (dq, dk, dv, None, None, None)
484
+ flash_attn_func = FlashAttnFunc.apply
mpt_7b/hf_prefixlm_converter.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Converts Huggingface Causal LM to Prefix LM.
2
+
3
+ Conversion does lightweight surgery on a HuggingFace
4
+ Causal LM to convert it to a Prefix LM.
5
+
6
+ Prefix LMs accepts a `bidirectional_mask` input in `forward`
7
+ and treat the input prompt as the prefix in `generate`.
8
+ """
9
+ from types import MethodType
10
+ from typing import Any, List, MutableMapping, Optional, Tuple, Union
11
+ import torch
12
+ from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
13
+ from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
14
+ from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
15
+ from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
16
+ _SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
17
+ CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
18
+
19
+ def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
20
+ """Converts a GPT-style Causal LM to a Prefix LM.
21
+
22
+ Supported HuggingFace model classes:
23
+ - `GPT2LMHeadModel`
24
+ - `GPTNeoForCausalLM`
25
+ - `GPTNeoXForCausalLM`
26
+ - `GPTJForCausalLM`
27
+
28
+ See `convert_hf_causal_lm_to_prefix_lm` for more details.
29
+ """
30
+ if hasattr(model, '_prefix_lm_converted'):
31
+ return model
32
+ assert isinstance(model, _SUPPORTED_GPT_MODELS)
33
+ assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models'
34
+
35
+ def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
36
+ """Helper that gets a list of the model's attention modules.
37
+
38
+ Each module has a `bias` buffer used for causal masking. The Prefix LM
39
+ conversion adds logic to dynamically manipulate these biases to support
40
+ Prefix LM attention masking.
41
+ """
42
+ attn_modules = []
43
+ if isinstance(model, GPTNeoXForCausalLM):
44
+ blocks = model.gpt_neox.layers
45
+ else:
46
+ blocks = model.transformer.h
47
+ for block in blocks:
48
+ if isinstance(model, GPTNeoForCausalLM):
49
+ if block.attn.attention_type != 'global':
50
+ continue
51
+ attn_module = block.attn.attention
52
+ elif isinstance(model, GPTNeoXForCausalLM):
53
+ attn_module = block.attention
54
+ else:
55
+ attn_module = block.attn
56
+ attn_modules.append(attn_module)
57
+ return attn_modules
58
+ setattr(model, '_original_forward', getattr(model, 'forward'))
59
+ setattr(model, '_original_generate', getattr(model, 'generate'))
60
+
61
+ def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
62
+ """Wraps original forward to enable PrefixLM attention."""
63
+
64
+ def call_og_forward():
65
+ if isinstance(self, GPTNeoXForCausalLM):
66
+ return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
67
+ else:
68
+ return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
69
+ if bidirectional_mask is None:
70
+ return call_og_forward()
71
+ assert isinstance(bidirectional_mask, torch.Tensor)
72
+ attn_modules = _get_attn_modules(model)
73
+ (b, s) = bidirectional_mask.shape
74
+ max_length = attn_modules[0].bias.shape[-1]
75
+ if s > max_length:
76
+ raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).')
77
+ assert s <= max_length
78
+ if s < max_length:
79
+ pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device)
80
+ bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
81
+ bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
82
+ for attn_module in attn_modules:
83
+ assert isinstance(attn_module.bias, torch.Tensor)
84
+ attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
85
+ output = call_og_forward()
86
+ for attn_module in attn_modules:
87
+ attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
88
+ return output
89
+
90
+ def generate(self: CAUSAL_GPT_TYPES, *args: Any, **kwargs: Any):
91
+ """Wraps original generate to enable PrefixLM attention."""
92
+ attn_modules = _get_attn_modules(model)
93
+ for attn_module in attn_modules:
94
+ attn_module.bias.data[:] = 1
95
+ output = self._original_generate(*args, **kwargs)
96
+ for attn_module in attn_modules:
97
+ attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
98
+ return output
99
+ setattr(model, 'forward', MethodType(forward, model))
100
+ setattr(model, 'generate', MethodType(generate, model))
101
+ setattr(model, '_prefix_lm_converted', True)
102
+ return model
103
+ _SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS
104
+ CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
105
+
106
+ def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
107
+ """Converts a HuggingFace Causal LM to a Prefix LM.
108
+
109
+ Supported HuggingFace model classes:
110
+ - `GPT2LMHeadModel`
111
+ - `GPTNeoForCausalLM`
112
+ - `GPTNeoXForCausalLM`
113
+ - `GPTJForCausalLM`
114
+
115
+ Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
116
+ `generate` method and/or select underlying methods depending on the model class.
117
+
118
+ These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
119
+
120
+ Notes on training:
121
+ To actually train the converted model as a Prefix LM, training batches will need to indicate
122
+ the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
123
+
124
+ **This is not a standard input and requires custom layers either within or after your dataloader.**
125
+
126
+ In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
127
+ such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
128
+ That is, the prefix portion of the sequence should not generate any loss. Loss should only be
129
+ generated by the target portion of the sequence.
130
+
131
+ Notes on `GPTNeoForCausalLM`:
132
+ To simplify the implementation, "global" and "local" attention layers are handled differently.
133
+ For "global" layers, we handle conversion as described above. For "local" layers, which use a
134
+ causal attention mask within a restricted local window, we do not alter the masking.
135
+
136
+ Notes on `forward` method conversion:
137
+ After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
138
+ which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
139
+ belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
140
+ 0 indicates token positions belonging to the target.
141
+
142
+ The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
143
+ causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
144
+ the causal masks before returning the result.
145
+
146
+ Notes on `generate` method conversion:
147
+ After conversion, the `generate` method will have the same signature but will internally
148
+ convert all causal masks to be purely bidirectional, call the original `generate` method, and
149
+ (where appropriate) reset the causal masks before returning the result.
150
+
151
+ This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
152
+ "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
153
+ each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
154
+ another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
155
+ previously-generated tokens (also as expected in a Prefix LM).
156
+
157
+ To preserve the API, the original methods are renamed to `_original_forward` and
158
+ `_original_generate`, and replaced with new `forward` and `generate` methods that wrap
159
+ them, respectively. Although implementation details vary by model class.
160
+ """
161
+ if isinstance(model, _SUPPORTED_GPT_MODELS):
162
+ return _convert_gpt_causal_lm_to_prefix_lm(model)
163
+ else:
164
+ raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
165
+
166
+ def add_bidirectional_mask_if_missing(batch: MutableMapping):
167
+ """Attempts to add bidirectional_mask to batch if missing.
168
+
169
+ Raises:
170
+ KeyError if bidirectional_mask is missing and can't be inferred
171
+ """
172
+ if 'bidirectional_mask' not in batch:
173
+ if batch.get('mode', None) == 'icl_task':
174
+ batch['bidirectional_mask'] = batch['attention_mask'].clone()
175
+ for (i, continuation_indices) in enumerate(batch['continuation_indices']):
176
+ batch['bidirectional_mask'][i, continuation_indices] = 0
177
+ elif 'labels' in batch and 'attention_mask' in batch:
178
+ batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask'])
179
+ else:
180
+ raise KeyError('No bidirectional_mask in batch and not sure how to construct one.')
mpt_7b/meta_init_context.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from contextlib import contextmanager
2
+ from typing import Any, Callable, Optional
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+ @contextmanager
7
+ def init_empty_weights(include_buffers: bool=False):
8
+ """Meta initialization context manager.
9
+
10
+ A context manager under which models are initialized with all parameters
11
+ on the meta device, therefore creating an empty model. Useful when just
12
+ initializing the model would blow the available RAM.
13
+
14
+ Args:
15
+ include_buffers (`bool`, *optional*, defaults to `False`): Whether or
16
+ not to also put all buffers on the meta device while initializing.
17
+
18
+ Example:
19
+ ```python
20
+ import torch.nn as nn
21
+
22
+ # Initialize a model with 100 billions parameters in no time and without using any RAM.
23
+ with init_empty_weights():
24
+ tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
25
+ ```
26
+
27
+ <Tip warning={true}>
28
+
29
+ Any model created under this context manager has no weights. As such you can't do something like
30
+ `model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
31
+
32
+ </Tip>
33
+ """
34
+ with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f:
35
+ yield f
36
+
37
+ @contextmanager
38
+ def init_on_device(device: torch.device, include_buffers: bool=False):
39
+ """Device initialization context manager.
40
+
41
+ A context manager under which models are initialized with all parameters
42
+ on the specified device.
43
+
44
+ Args:
45
+ device (`torch.device`): Device to initialize all parameters on.
46
+ include_buffers (`bool`, *optional*, defaults to `False`): Whether or
47
+ not to also put all buffers on the meta device while initializing.
48
+
49
+ Example:
50
+ ```python
51
+ import torch.nn as nn
52
+
53
+ with init_on_device(device=torch.device("cuda")):
54
+ tst = nn.Liner(100, 100) # on `cuda` device
55
+ ```
56
+ """
57
+ old_register_parameter = nn.Module.register_parameter
58
+ if include_buffers:
59
+ old_register_buffer = nn.Module.register_buffer
60
+
61
+ def register_empty_parameter(self: torch.nn.Module, name: str, param: Optional[torch.nn.Parameter]):
62
+ old_register_parameter(self, name, param)
63
+ if param is not None:
64
+ parameter = self._parameters[name]
65
+ assert parameter is not None
66
+ param_cls = type(parameter)
67
+ kwargs = parameter.__dict__
68
+ self._parameters[name] = param_cls(parameter.to(device), **kwargs)
69
+
70
+ def register_empty_buffer(self: torch.nn.Module, name: str, tensor: Optional[torch.Tensor], persistent: bool=True):
71
+ old_register_buffer(self, name, tensor, persistent=persistent)
72
+ if tensor is not None:
73
+ named_buffer = self._buffers[name]
74
+ assert named_buffer is not None
75
+ self._buffers[name] = named_buffer.to(device)
76
+ if include_buffers:
77
+ tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
78
+ else:
79
+ tensor_constructors_to_patch = {}
80
+
81
+ def patch_tensor_constructor(fn: Callable):
82
+
83
+ def wrapper(*args: Any, **kwargs: Any):
84
+ kwargs['device'] = device
85
+ return fn(*args, **kwargs)
86
+ return wrapper
87
+ try:
88
+ nn.Module.register_parameter = register_empty_parameter
89
+ if include_buffers:
90
+ nn.Module.register_buffer = register_empty_buffer
91
+ for torch_function_name in tensor_constructors_to_patch.keys():
92
+ setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
93
+ yield
94
+ finally:
95
+ nn.Module.register_parameter = old_register_parameter
96
+ if include_buffers:
97
+ nn.Module.register_buffer = old_register_buffer
98
+ for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items():
99
+ setattr(torch, torch_function_name, old_torch_function)
mpt_7b/modeling_mpt.py ADDED
@@ -0,0 +1,519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A simple, flexible implementation of a GPT model.
2
+
3
+ Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
4
+ """
5
+ from __future__ import annotations
6
+ import math
7
+ import warnings
8
+ from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ from .attention import is_flash_v1_installed, is_flash_v2_installed
13
+ if is_flash_v2_installed():
14
+ try:
15
+ from flash_attn import bert_padding
16
+ from flash_attn.layers.rotary import RotaryEmbedding as DAILRotaryEmbedding
17
+ except Exception as e:
18
+ raise e
19
+ if is_flash_v1_installed():
20
+ try:
21
+ from flash_attn import bert_padding
22
+ except Exception as e:
23
+ raise e
24
+ from transformers import PreTrainedModel, PreTrainedTokenizerBase
25
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
26
+ from transformers.models.llama.modeling_llama import LlamaDynamicNTKScalingRotaryEmbedding as HFDynamicNTKScalingRotaryEmbedding
27
+ from transformers.models.llama.modeling_llama import LlamaLinearScalingRotaryEmbedding as HFLinearScalingRotaryEmbedding
28
+ from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding as HFRotaryEmbedding
29
+ from .attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes
30
+ from .blocks import MPTBlock
31
+ from .custom_embedding import SharedEmbedding
32
+ from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
33
+ from .ffn import FFN_CLASS_REGISTRY as FFN_CLASS_REGISTRY
34
+ from .ffn import MPTMLP as MPTMLP
35
+ from .ffn import build_ffn as build_ffn
36
+ from .norm import NORM_CLASS_REGISTRY
37
+ from .configuration_mpt import MPTConfig
38
+ from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
39
+ from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
40
+ from .meta_init_context import init_empty_weights
41
+ from .param_init_fns import generic_param_init_fn_, MODEL_INIT_REGISTRY
42
+ try:
43
+ from .flash_attn_triton import flash_attn_func as flash_attn_func
44
+ except:
45
+ pass
46
+ import logging
47
+ log = logging.getLogger(__name__)
48
+
49
+ def gen_rotary_embedding(rope_head_dim: int, rope_impl: str, rope_theta: int, rope_dail_config: dict, rope_hf_config: dict, max_seq_len: int):
50
+ if rope_impl == 'dail':
51
+ return DAILRotaryEmbedding(dim=rope_head_dim, base=rope_theta, interleaved=False, scale_base=rope_dail_config['xpos_scale_base'] if rope_dail_config['type'] == 'xpos' else None, pos_idx_in_fp32=rope_dail_config['pos_idx_in_fp32'], device='cpu')
52
+ elif rope_impl == 'hf':
53
+ if rope_hf_config['type'] == 'no_scaling':
54
+ return HFRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, device='cpu')
55
+ elif rope_hf_config['type'] == 'linear':
56
+ return HFLinearScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu')
57
+ elif rope_hf_config['type'] == 'dynamic':
58
+ return HFDynamicNTKScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu')
59
+ raise ValueError('rope_impl needs to be either dail or hf')
60
+
61
+ def gen_attention_mask_in_length(sequence_id: Union[None, torch.Tensor], S: int, attn_uses_sequence_id: bool, attn_impl: str, attention_mask: Union[torch.Tensor, None]):
62
+ """Generates the attention mask used for sequence masking in FA v2.
63
+
64
+ Only supports sequence id based sparse attention for no attention masking or attention masking with right padding.
65
+ In case of left padding:
66
+ 1. Training with left padding is not supported in MPT (see https://github.com/mosaicml/llm-foundry/blob/1eecd4cb8e734499f77f6a35f657b8b20c0adfcb/llmfoundry/models/mpt/modeling_mpt.py#L407).
67
+ 2. For generation with left padding, we only have a single sequence id per sample, so we don't need sequence id based sparse attention.
68
+
69
+ Args:
70
+ sequence_id (Union[None, torch.Tensor]): Tensor containing the sequence id for each token. Shape (batch_size, seq_len).
71
+ S (int): Sequence length
72
+ attn_uses_sequence_id (bool): Whether the attention uses sequence id based masking.
73
+ attn_impl (str): Attention implementation. This function is only creates attention_mask_in_length for flash attention.
74
+ attention_mask (Union[torch.Tensor, None]): Attention mask tensor of shape (batch_size, seq_len)
75
+
76
+ Returns:
77
+ attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
78
+ ```
79
+ [
80
+ [2, 3, 0, 0, 0, 0],
81
+ [3, 2, 0, 0, 0, 0],
82
+ [6, 0, 0, 0, 0, 0]
83
+ ]
84
+ ```
85
+ , which refers to the 3D-attention mask:
86
+ ```
87
+ [
88
+ [
89
+ [1, 0, 0, 0, 0, 0],
90
+ [1, 1, 0, 0, 0, 0],
91
+ [0, 0, 1, 0, 0, 0],
92
+ [0, 0, 1, 1, 0, 0],
93
+ [0, 0, 1, 1, 1, 0],
94
+ [0, 0, 0, 0, 0, 1]
95
+ ],
96
+ [
97
+ [1, 0, 0, 0, 0, 0],
98
+ [1, 1, 0, 0, 0, 0],
99
+ [1, 1, 1, 0, 0, 0],
100
+ [0, 0, 0, 1, 0, 0],
101
+ [0, 0, 0, 1, 1, 0],
102
+ [0, 0, 0, 0, 0, 1]
103
+ ],
104
+ [
105
+ [1, 0, 0, 0, 0, 0],
106
+ [1, 1, 0, 0, 0, 0],
107
+ [1, 1, 1, 0, 0, 0],
108
+ [1, 1, 1, 1, 0, 0],
109
+ [1, 1, 1, 1, 1, 0],
110
+ [1, 1, 1, 1, 1, 1]
111
+ ]
112
+ ]
113
+ ```.
114
+ (The description above is taken verbatim from https://github.com/Dao-AILab/flash-attention/blob/9356a1c0389660d7e231ff3163c1ac17d9e3824a/flash_attn/bert_padding.py#L125 .)
115
+ """
116
+ attention_mask_in_length = None
117
+ if sequence_id is not None and attn_uses_sequence_id and (attn_impl == 'flash'):
118
+ if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0]:
119
+ raise NotImplementedError('Left padding is not supported with flash attention when attn_uses_sequence_id is set to True.')
120
+ if S != sequence_id.shape[-1]:
121
+ raise ValueError(f'Sequence length ({S}) does not match length of sequences in sequence_id ({sequence_id.shape[-1]}).')
122
+ if attention_mask is not None:
123
+ sequence_id = sequence_id.masked_fill(~attention_mask, 0)
124
+ attention_mask_in_length = torch.nn.functional.one_hot(sequence_id)
125
+ if attention_mask is not None:
126
+ attention_mask_in_length = attention_mask_in_length.masked_fill(~attention_mask.unsqueeze(-1), 0)
127
+ attention_mask_in_length = attention_mask_in_length.sum(dim=1)
128
+ attention_mask_in_length = torch.nn.functional.pad(attention_mask_in_length, (0, S - attention_mask_in_length.shape[-1]), mode='constant', value=0)
129
+ return attention_mask_in_length
130
+
131
+ def gen_flash_attn_padding_info(bsz: int, S: int, past_key_len: int, device: torch.device, attention_mask_in_length: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None):
132
+ flash_attn_padding_info = {}
133
+ if attention_mask_in_length is None:
134
+ key_padding_mask = attention_mask
135
+ if key_padding_mask is None:
136
+ key_padding_mask = torch.ones((bsz, past_key_len + S), dtype=torch.bool, device=device)
137
+ query_padding_mask = key_padding_mask[:, -S:]
138
+ unpadding_function = bert_padding.unpad_input
139
+ else:
140
+ key_padding_mask = attention_mask_in_length
141
+ query_padding_mask = attention_mask_in_length
142
+ unpadding_function = bert_padding.unpad_input_for_concatenated_sequences
143
+ (_, indices_q, cu_seqlens_q, max_seqlen_q) = unpadding_function(torch.empty(bsz, S, 1, device=device), query_padding_mask)
144
+ (_, indices_k, cu_seqlens_k, max_seqlen_k) = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask)
145
+ (_, indices_v, _, _) = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask)
146
+ flash_attn_padding_info['indices_q'] = indices_q
147
+ flash_attn_padding_info['indices_k'] = indices_k
148
+ flash_attn_padding_info['indices_v'] = indices_v
149
+ flash_attn_padding_info['cu_seqlens_q'] = cu_seqlens_q
150
+ flash_attn_padding_info['cu_seqlens_k'] = cu_seqlens_k
151
+ flash_attn_padding_info['max_seqlen_q'] = max_seqlen_q
152
+ flash_attn_padding_info['max_seqlen_k'] = max_seqlen_k
153
+ return flash_attn_padding_info
154
+
155
+ def apply_sequence_id(attn_bias: torch.Tensor, sequence_id: torch.LongTensor, max_seq_len: int) -> torch.Tensor:
156
+ seq_len = sequence_id.shape[-1]
157
+ if seq_len > max_seq_len:
158
+ raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={max_seq_len}')
159
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
160
+ cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
161
+ min_val = torch.finfo(attn_bias.dtype).min
162
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
163
+ return attn_bias
164
+
165
+ class MPTPreTrainedModel(PreTrainedModel):
166
+ config_class = MPTConfig
167
+ base_model_prefix = 'model'
168
+ _no_split_modules = ['MPTBlock']
169
+
170
+ def _fsdp_wrap_fn(self: Union[MPTModel, MPTForCausalLM], module: nn.Module) -> bool:
171
+ return isinstance(module, MPTBlock)
172
+
173
+ class MPTModel(MPTPreTrainedModel):
174
+
175
+ def __init__(self, config: MPTConfig):
176
+ config._validate_config()
177
+ super().__init__(config)
178
+ self.attn_impl = config.attn_config['attn_impl']
179
+ self.prefix_lm = config.attn_config['prefix_lm']
180
+ self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
181
+ self.alibi = config.attn_config['alibi']
182
+ self.alibi_bias_max = config.attn_config['alibi_bias_max']
183
+ self.learned_pos_emb = config.learned_pos_emb
184
+ if config.init_device == 'mixed':
185
+ if dist.get_local_rank() == 0:
186
+ config.init_device = 'cpu'
187
+ else:
188
+ config.init_device = 'meta'
189
+ if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
190
+ norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
191
+ raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
192
+ norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
193
+ self.embedding_fraction = config.embedding_fraction
194
+ self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
195
+ if self.learned_pos_emb:
196
+ self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
197
+ self.emb_drop = nn.Dropout(config.emb_pdrop)
198
+ self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
199
+ self.norm_f = norm_class(config.d_model, device=config.init_device)
200
+ self.rope = config.attn_config['rope']
201
+ self.rope_impl = None
202
+ if self.rope:
203
+ self.rope_impl = config.attn_config['rope_impl']
204
+ self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len)
205
+ if config.init_device != 'meta':
206
+ log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
207
+ self.apply(self.param_init_fn)
208
+ self.is_causal = not self.prefix_lm
209
+ self._attn_bias_initialized = False
210
+ self.attn_bias = None
211
+ self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
212
+ if config.no_bias:
213
+ for module in self.modules():
214
+ if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
215
+ log.info(f'Removing bias from module={module!r}.')
216
+ module.register_parameter('bias', None)
217
+ if hasattr(module, 'use_bias'):
218
+ log.info(f'Setting use_bias=False for module={module!r}.')
219
+ module.use_bias = False
220
+ log.debug(self)
221
+ log.debug(f"Using {self.config.init_config['name']} initialization.")
222
+
223
+ def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
224
+ return self.wte
225
+
226
+ def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
227
+ self.wte = value
228
+
229
+ @torch.no_grad()
230
+ def _attn_bias(self, device: torch.device, dtype: torch.dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None) -> Tuple[Optional[torch.Tensor], Optional[torch.ByteTensor]]:
231
+ if not self._attn_bias_initialized:
232
+ if self.attn_bias_shape:
233
+ self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
234
+ self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
235
+ self._attn_bias_initialized = True
236
+ if self.attn_impl == 'flash':
237
+ return (self.attn_bias, attention_mask)
238
+ if self.attn_bias is not None:
239
+ self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
240
+ attn_bias = self.attn_bias
241
+ if self.prefix_lm:
242
+ assert isinstance(attn_bias, torch.Tensor)
243
+ assert isinstance(prefix_mask, torch.Tensor)
244
+ attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
245
+ if self.attn_uses_sequence_id and sequence_id is not None:
246
+ assert isinstance(attn_bias, torch.Tensor)
247
+ attn_bias = apply_sequence_id(attn_bias, sequence_id, self.config.max_seq_len)
248
+ if attention_mask is not None:
249
+ s_k = attention_mask.shape[-1]
250
+ if attn_bias is None:
251
+ attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
252
+ else:
253
+ _s_k = max(0, attn_bias.size(-1) - s_k)
254
+ attn_bias = attn_bias[:, :, :, _s_k:]
255
+ if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
256
+ raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
257
+ min_val = torch.finfo(attn_bias.dtype).min
258
+ attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
259
+ return (attn_bias, attention_mask)
260
+
261
+ def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor:
262
+ (s_k, s_q) = attn_bias.shape[-2:]
263
+ if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
264
+ raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
265
+ seq_len = prefix_mask.shape[-1]
266
+ if seq_len > self.config.max_seq_len:
267
+ raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
268
+ attn_bias = attn_bias[..., :seq_len, :seq_len]
269
+ causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
270
+ prefix = prefix_mask.view(-1, 1, 1, seq_len)
271
+ cannot_attend = ~torch.logical_or(causal, prefix.bool())
272
+ min_val = torch.finfo(attn_bias.dtype).min
273
+ attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
274
+ return attn_bias
275
+
276
+ def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast:
277
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
278
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
279
+ if attention_mask is not None:
280
+ attention_mask = attention_mask.bool()
281
+ if prefix_mask is not None:
282
+ prefix_mask = prefix_mask.bool()
283
+ if not return_dict:
284
+ raise NotImplementedError('return_dict False is not implemented yet for MPT')
285
+ if output_attentions:
286
+ if self.attn_impl != 'torch':
287
+ raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
288
+ if self.training and attention_mask is not None and (attention_mask[:, 0].sum() != attention_mask.shape[0]):
289
+ raise NotImplementedError('MPT does not support training with left padding.')
290
+ if self.prefix_lm and prefix_mask is None:
291
+ raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
292
+ if self.training:
293
+ if self.attn_uses_sequence_id and sequence_id is None:
294
+ raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
295
+ elif self.attn_uses_sequence_id is False and sequence_id is not None:
296
+ warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
297
+ if input_ids is not None and inputs_embeds is not None:
298
+ raise ValueError('You cannot specify both input_ids and inputs_embeds.')
299
+ elif input_ids is not None:
300
+ bsz = input_ids.size(0)
301
+ S = input_ids.size(1)
302
+ x = self.wte(input_ids)
303
+ input_device = input_ids.device
304
+ elif inputs_embeds is not None:
305
+ bsz = inputs_embeds.size(0)
306
+ S = inputs_embeds.size(1)
307
+ x = inputs_embeds
308
+ input_device = inputs_embeds.device
309
+ else:
310
+ raise ValueError('You must specify input_ids or inputs_embeds')
311
+ assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
312
+ rotary_emb_w_meta_info = None
313
+ past_position = 0
314
+ if past_key_values is not None:
315
+ if len(past_key_values) != self.config.n_layers:
316
+ raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
317
+ past_position = past_key_values[0][0].size(1)
318
+ if self.attn_impl == 'torch':
319
+ past_position = past_key_values[0][0].size(3)
320
+ if self.learned_pos_emb or self.rope:
321
+ if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
322
+ raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
323
+ if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
324
+ pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
325
+ if attention_mask is not None:
326
+ pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
327
+ if self.learned_pos_emb:
328
+ x = x + self.wpe(pos)
329
+ elif self.rope and self.rope_impl == 'hf':
330
+ rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
331
+ elif self.rope and self.rope_impl == 'dail':
332
+ rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}
333
+ if self.embedding_fraction == 1:
334
+ x = self.emb_drop(x)
335
+ else:
336
+ x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
337
+ assert isinstance(self.emb_drop, nn.Module)
338
+ x = self.emb_drop(x_shrunk)
339
+ (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
340
+ attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask)
341
+ alibi_slopes = None
342
+ if self.alibi and self.attn_impl == 'flash':
343
+ alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)
344
+ presents = () if use_cache else None
345
+ if use_cache and past_key_values is None:
346
+ past_key_values = [() for _ in range(self.config.n_layers)]
347
+ all_hidden_states = () if output_hidden_states else None
348
+ all_self_attns = () if output_attentions else None
349
+ flash_attn_padding_info = {}
350
+ if self.attn_impl == 'flash':
351
+ flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
352
+ for (b_idx, block) in enumerate(self.blocks):
353
+ if output_hidden_states:
354
+ assert all_hidden_states is not None
355
+ all_hidden_states = all_hidden_states + (x,)
356
+ past_key_value = past_key_values[b_idx] if past_key_values is not None else None
357
+ (x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
358
+ if presents is not None:
359
+ presents += (present,)
360
+ if output_attentions:
361
+ assert all_self_attns is not None
362
+ all_self_attns = all_self_attns + (attn_weights,)
363
+ x = self.norm_f(x)
364
+ if output_hidden_states:
365
+ assert all_hidden_states is not None
366
+ all_hidden_states = all_hidden_states + (x,)
367
+ return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attns)
368
+
369
+ def param_init_fn(self, module: nn.Module) -> None:
370
+ init_fn_name = self.config.init_config['name']
371
+ MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
372
+
373
+ def fsdp_wrap_fn(self, module: nn.Module) -> bool:
374
+ return _fsdp_wrap_fn(self, module)
375
+
376
+ def activation_checkpointing_fn(self, module: nn.Module) -> bool:
377
+ return isinstance(module, MPTBlock)
378
+
379
+ class MPTForCausalLM(MPTPreTrainedModel):
380
+
381
+ def __init__(self, config: MPTConfig):
382
+ super().__init__(config)
383
+ log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
384
+ self.transformer: MPTModel = MPTModel(config)
385
+ self.lm_head = None
386
+ if not config.tie_word_embeddings:
387
+ self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
388
+ self.lm_head._fsdp_wrap = True
389
+ for child in self.transformer.children():
390
+ if isinstance(child, torch.nn.ModuleList):
391
+ continue
392
+ if isinstance(child, torch.nn.Module):
393
+ child._fsdp_wrap = True
394
+ self.logit_scale = None
395
+ if config.logit_scale is not None:
396
+ logit_scale = config.logit_scale
397
+ if isinstance(logit_scale, str):
398
+ if logit_scale == 'inv_sqrt_d_model':
399
+ logit_scale = 1 / math.sqrt(config.d_model)
400
+ else:
401
+ raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
402
+ self.logit_scale = logit_scale
403
+
404
+ def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
405
+ return self.transformer.get_input_embeddings()
406
+
407
+ def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
408
+ self.transformer.set_input_embeddings(value)
409
+
410
+ def get_output_embeddings(self) -> Union[SharedEmbedding, nn.Embedding, nn.Linear]:
411
+ if self.lm_head is not None:
412
+ return self.lm_head
413
+ return self.transformer.get_input_embeddings()
414
+
415
+ def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding, nn.Linear]) -> None:
416
+ if self.lm_head is not None:
417
+ self.lm_head = new_embeddings
418
+ else:
419
+ if not isinstance(new_embeddings, (SharedEmbedding, nn.Embedding)):
420
+ raise ValueError('new_embeddings must be an instance of SharedEmbedding ' + f'or nn.Embedding, but got {type(new_embeddings)}.')
421
+ warnings.warn('Using `set_output_embeddings` to set the embedding layer of ' + 'MPTForCausalLM with tied weights. Given weights are tied, ' + 'using `set_input_embeddings` is recommended over using ' + '`set_output_embeddings`.')
422
+ self.transformer.set_input_embeddings(new_embeddings)
423
+
424
+ def tie_weights(self) -> None:
425
+ self.lm_head = None
426
+
427
+ def set_decoder(self, decoder: MPTModel) -> None:
428
+ self.transformer = decoder
429
+
430
+ def get_decoder(self) -> MPTModel:
431
+ return self.transformer
432
+
433
+ def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast:
434
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
435
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
436
+ outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, inputs_embeds=inputs_embeds)
437
+ if self.lm_head is not None:
438
+ logits = self.lm_head(outputs.last_hidden_state)
439
+ else:
440
+ out = outputs.last_hidden_state
441
+ out = out.to(self.transformer.wte.weight.device)
442
+ logits = self.transformer.wte(out, True)
443
+ if self.logit_scale is not None:
444
+ if self.logit_scale == 0:
445
+ warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
446
+ logits *= self.logit_scale
447
+ loss = None
448
+ if labels is not None:
449
+ _labels = torch.roll(labels, shifts=-1)
450
+ _labels[:, -1] = -100
451
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), _labels.to(logits.device).view(-1))
452
+ return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
453
+
454
+ def param_init_fn(self, module: nn.Module) -> None:
455
+ init_fn_name = self.config.init_config['name']
456
+ MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
457
+
458
+ def fsdp_wrap_fn(self, module: nn.Module) -> bool:
459
+ return _fsdp_wrap_fn(self, module)
460
+
461
+ def activation_checkpointing_fn(self, module: nn.Module) -> bool:
462
+ act_ckpt_list = getattr(self.config, 'activation_checkpointing_target', None) or ['MPTBlock']
463
+ if isinstance(act_ckpt_list, str):
464
+ act_ckpt_list = [act_ckpt_list]
465
+ elif not isinstance(act_ckpt_list, list):
466
+ raise ValueError(f'activation_checkpointing_target must be either a single string or a list, but got {type(act_ckpt_list)}')
467
+ if 'MPTBlock' in act_ckpt_list or 'mptblock' in act_ckpt_list:
468
+ if len(act_ckpt_list) > 1:
469
+ log.info('Activation checkpointing MPTBlock only (ignoring other sub-block modules specified in activation_checkpointing_target).')
470
+ return isinstance(module, MPTBlock)
471
+ mod_types = ()
472
+ for mod_name in act_ckpt_list:
473
+ if mod_name.lower() == 'mptblock':
474
+ mod_types += (MPTBlock,)
475
+ elif mod_name in ATTN_CLASS_REGISTRY:
476
+ mod_types += (ATTN_CLASS_REGISTRY[mod_name],)
477
+ elif mod_name in FFN_CLASS_REGISTRY:
478
+ mod_types += (FFN_CLASS_REGISTRY[mod_name],)
479
+ elif mod_name in NORM_CLASS_REGISTRY:
480
+ mod_types += (NORM_CLASS_REGISTRY[mod_name],)
481
+ else:
482
+ msg = ', '.join(list(ATTN_CLASS_REGISTRY.keys()) + list(FFN_CLASS_REGISTRY.keys()) + list(NORM_CLASS_REGISTRY.keys()) + ['MPTBlock'])
483
+ raise ValueError(f'{mod_name} (specified in activation_checkpointing_target) is not a recognized option out of available options {msg}.')
484
+ return isinstance(module, mod_types)
485
+
486
+ def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]:
487
+ attention_mask = kwargs['attention_mask'].bool()
488
+ if attention_mask[:, -1].sum() != attention_mask.shape[0]:
489
+ raise NotImplementedError('MPT does not support generation with right padding.')
490
+ if self.transformer.attn_uses_sequence_id and self.training:
491
+ sequence_id = torch.zeros_like(input_ids[:1])
492
+ else:
493
+ sequence_id = None
494
+ if past_key_values is not None:
495
+ input_ids = input_ids[:, -1].unsqueeze(-1)
496
+ if self.transformer.prefix_lm:
497
+ prefix_mask = torch.ones_like(attention_mask)
498
+ if kwargs.get('use_cache') == False:
499
+ raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
500
+ else:
501
+ prefix_mask = None
502
+ if inputs_embeds is not None and past_key_values is None:
503
+ model_inputs = {'inputs_embeds': inputs_embeds}
504
+ else:
505
+ model_inputs = {'input_ids': input_ids}
506
+ model_inputs.update({'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)})
507
+ return model_inputs
508
+
509
+ @staticmethod
510
+ def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
511
+ """Used by HuggingFace generate when using beam search with kv-caching.
512
+
513
+ See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
514
+ for an example in transformers.
515
+ """
516
+ reordered_past = []
517
+ for layer_past in past_key_values:
518
+ reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
519
+ return reordered_past
mpt_7b/norm.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Optional, Type, Union
2
+ import torch
3
+
4
+ def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor:
5
+ if torch.is_autocast_enabled():
6
+ if tensor.device.type == 'cuda':
7
+ dtype = torch.get_autocast_gpu_dtype()
8
+ elif tensor.device.type == 'cpu':
9
+ dtype = torch.get_autocast_cpu_dtype()
10
+ else:
11
+ raise NotImplementedError()
12
+ return tensor.to(dtype=dtype)
13
+ return tensor
14
+
15
+ class LPLayerNorm(torch.nn.LayerNorm):
16
+
17
+ def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None):
18
+ super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
19
+
20
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
21
+ module_device = x.device
22
+ downcast_x = _cast_if_autocast_enabled(x)
23
+ downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
24
+ downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
25
+ with torch.autocast(enabled=False, device_type=module_device.type):
26
+ return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
27
+
28
+ def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor:
29
+ output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
30
+ if weight is not None:
31
+ return output * weight
32
+ return output
33
+
34
+ class RMSNorm(torch.nn.Module):
35
+
36
+ def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
37
+ super().__init__()
38
+ self.eps = eps
39
+ if weight:
40
+ self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device))
41
+ else:
42
+ self.register_parameter('weight', None)
43
+
44
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
45
+ return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
46
+
47
+ class LPRMSNorm(RMSNorm):
48
+
49
+ def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None):
50
+ super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
51
+
52
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
53
+ downcast_x = _cast_if_autocast_enabled(x)
54
+ downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
55
+ with torch.autocast(enabled=False, device_type=x.device.type):
56
+ return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
57
+ NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
mpt_7b/param_init_fns.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import warnings
3
+ from collections.abc import Sequence
4
+ from functools import partial
5
+ from typing import Any, Callable, Optional, Tuple, Union
6
+ import torch
7
+ from torch import nn
8
+ from .fc import FC_CLASS_REGISTRY
9
+ from .norm import NORM_CLASS_REGISTRY
10
+ try:
11
+ import transformer_engine.pytorch as te
12
+ except:
13
+ te = None
14
+
15
+ def torch_default_param_init_fn_(module: nn.Module, **kwargs: Any) -> None:
16
+ del kwargs
17
+ if hasattr(module, 'reset_parameters') and isinstance(module.reset_parameters, Callable):
18
+ module.reset_parameters()
19
+
20
+ def fused_init_helper_(module: nn.Module, init_fn_: Callable) -> None:
21
+ _fused = getattr(module, '_fused', None)
22
+ if _fused is None:
23
+ raise RuntimeError(f'Internal logic error')
24
+ assert isinstance(module.weight, torch.Tensor)
25
+ (dim, splits) = _fused
26
+ splits = (0, *splits, module.weight.size(dim))
27
+ for (s, e) in zip(splits[:-1], splits[1:]):
28
+ slice_indices = [slice(None)] * module.weight.ndim
29
+ slice_indices[dim] = slice(s, e)
30
+ init_fn_(module.weight[slice_indices])
31
+
32
+ def generic_param_init_fn_(module: nn.Module, init_fn_: Callable, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
33
+ del kwargs
34
+ init_div_is_residual = init_div_is_residual
35
+ if init_div_is_residual is False:
36
+ div_is_residual = 1.0
37
+ elif init_div_is_residual is True:
38
+ div_is_residual = math.sqrt(2 * n_layers)
39
+ elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
40
+ div_is_residual = init_div_is_residual
41
+ elif init_div_is_residual.isnumeric():
42
+ div_is_residual = float(init_div_is_residual)
43
+ else:
44
+ div_is_residual = 1.0
45
+ raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
46
+ if isinstance(module, tuple(set(FC_CLASS_REGISTRY.values()))):
47
+ if hasattr(module, '_fused'):
48
+ fused_init_helper_(module, init_fn_)
49
+ else:
50
+ init_fn_(module.weight)
51
+ if module.bias is not None:
52
+ assert isinstance(module.bias, torch.Tensor)
53
+ torch.nn.init.zeros_(module.bias)
54
+ if init_div_is_residual is not False and getattr(module, '_is_residual', False):
55
+ with torch.no_grad():
56
+ module.weight.div_(div_is_residual)
57
+ elif isinstance(module, nn.Embedding):
58
+ if emb_init_std is not None:
59
+ std = emb_init_std
60
+ if std == 0:
61
+ warnings.warn(f'Embedding layer initialized to 0.')
62
+ emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
63
+ elif emb_init_uniform_lim is not None:
64
+ lim = emb_init_uniform_lim
65
+ if isinstance(lim, Sequence):
66
+ if len(lim) > 2:
67
+ raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.')
68
+ if lim[0] == lim[1]:
69
+ warnings.warn(f'Embedding layer initialized to {lim[0]}.')
70
+ else:
71
+ if lim == 0:
72
+ warnings.warn(f'Embedding layer initialized to 0.')
73
+ lim = [-lim, lim]
74
+ (a, b) = lim
75
+ emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
76
+ else:
77
+ emb_init_fn_ = init_fn_
78
+ emb_init_fn_(module.weight)
79
+ elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
80
+ if hasattr(module, 'weight') and isinstance(module.weight, torch.Tensor):
81
+ torch.nn.init.ones_(module.weight)
82
+ if hasattr(module, 'bias') and isinstance(module.bias, torch.Tensor):
83
+ torch.nn.init.zeros_(module.bias)
84
+ elif isinstance(module, nn.MultiheadAttention):
85
+ if module._qkv_same_embed_dim:
86
+ assert module.in_proj_weight is not None
87
+ assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None)
88
+ assert d_model is not None
89
+ _d = d_model
90
+ splits = (0, _d, 2 * _d, 3 * _d)
91
+ for (s, e) in zip(splits[:-1], splits[1:]):
92
+ init_fn_(module.in_proj_weight[s:e])
93
+ else:
94
+ assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None)
95
+ assert module.in_proj_weight is None
96
+ init_fn_(module.q_proj_weight)
97
+ init_fn_(module.k_proj_weight)
98
+ init_fn_(module.v_proj_weight)
99
+ if module.in_proj_bias is not None:
100
+ torch.nn.init.zeros_(module.in_proj_bias)
101
+ if module.bias_k is not None:
102
+ torch.nn.init.zeros_(module.bias_k)
103
+ if module.bias_v is not None:
104
+ torch.nn.init.zeros_(module.bias_v)
105
+ init_fn_(module.out_proj.weight)
106
+ if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False):
107
+ with torch.no_grad():
108
+ module.out_proj.weight.div_(div_is_residual)
109
+ if module.out_proj.bias is not None:
110
+ torch.nn.init.zeros_(module.out_proj.bias)
111
+ elif te is not None and isinstance(module, te.LayerNormMLP):
112
+ if isinstance(module.layer_norm_weight, torch.Tensor):
113
+ torch.nn.init.ones_(module.layer_norm_weight)
114
+ if isinstance(module.layer_norm_bias, torch.Tensor):
115
+ torch.nn.init.zeros_(module.layer_norm_bias)
116
+ init_fn_(module.fc1_weight)
117
+ if module.fc1_bias is not None:
118
+ assert isinstance(module.fc1_bias, torch.Tensor)
119
+ torch.nn.init.zeros_(module.fc1_bias)
120
+ init_fn_(module.fc2_weight)
121
+ if module.fc2_bias is not None:
122
+ assert isinstance(module.fc2_bias, torch.Tensor)
123
+ torch.nn.init.zeros_(module.fc2_bias)
124
+ with torch.no_grad():
125
+ module.fc2_weight.div_(div_is_residual)
126
+ else:
127
+ for _ in module.parameters(recurse=False):
128
+ raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
129
+
130
+ def _normal_init_(std: float, mean: float=0.0) -> Callable:
131
+ return partial(torch.nn.init.normal_, mean=mean, std=std)
132
+
133
+ def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
134
+ del kwargs
135
+ init_fn_ = _normal_init_(std=std)
136
+ generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
137
+
138
+ def baseline_param_init_fn_(module: nn.Module, init_std: Optional[float], n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
139
+ del kwargs
140
+ if init_std is None:
141
+ raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
142
+ _normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
143
+
144
+ def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
145
+ del kwargs
146
+ std = math.sqrt(2 / (5 * d_model))
147
+ _normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
148
+
149
+ def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, **kwargs: Any) -> None:
150
+ """From section 2.3.1 of GPT-NeoX-20B:
151
+
152
+ An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
153
+ see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
154
+ and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
155
+ """
156
+ del kwargs
157
+ residual_div = n_layers / math.sqrt(10)
158
+ small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
159
+
160
+ def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
161
+ del kwargs
162
+ kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
163
+ generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
164
+
165
+ def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', **kwargs: Any) -> None:
166
+ del kwargs
167
+ kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
168
+ generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
169
+
170
+ def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
171
+ del kwargs
172
+ xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
173
+ generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
174
+
175
+ def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, **kwargs: Any) -> None:
176
+ del kwargs
177
+ xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
178
+ generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim)
179
+ MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
mpt_7b/requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ einops==0.5.0
2
+ triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir_sm90#subdirectory=python
mpt_7b/warnings.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class VersionedDeprecationWarning(DeprecationWarning):
2
+ """A custom deprecation warning class that includes version information.
3
+
4
+ Attributes:
5
+ message (str): The deprecation message describing why the feature is deprecated.
6
+ remove_version (str): The version in which the feature will be removed.
7
+
8
+ Example:
9
+ >>> def deprecated_function():
10
+ ... warnings.warn(
11
+ ... VersionedDeprecationWarning(
12
+ ... "Function XYZ is deprecated.",
13
+ ... after_version="2.0.0"
14
+ ... )
15
+ ... )
16
+ ...
17
+ >>> deprecated_function()
18
+ DeprecationWarning: Function XYZ is deprecated. It will be removed in version 2.0.0.
19
+ """
20
+
21
+ def __init__(self, message: str, remove_version: str) -> None:
22
+ super().__init__(message + f' It will be removed in version {remove_version}.')