precious3-gpt / handler.py
stefan-insilico's picture
Create handler.py
f189f6c verified
from typing import Dict, List, Any
import os
import torch
from transformers import AutoTokenizer, AutoModel
import pandas as pd
import time
import numpy as np
class EndpointHandler:
def __init__(self, path="insilicomedicine/precious3-gpt"):
self.model = AutoModel.from_pretrained(path, trust_remote_code=True).to('cuda')
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
self.model.config.pad_token_id = self.tokenizer.pad_token_id
self.model.config.bos_token_id = self.tokenizer.bos_token_id
self.model.config.eos_token_id = self.tokenizer.eos_token_id
unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()]
def create_prompt(self, prompt_config):
prompt = "[BOS]"
multi_modal_prefix = ''
for k, v in prompt_config.items():
if k=='instruction':
prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
elif k=='up':
if v:
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
elif k=='down':
if v:
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
elif k=='age':
if isinstance(v, int):
if prompt_config['species'].strip() == 'human':
prompt+=f'<{k}_individ>{v} </{k}_individ>'
elif prompt_config['species'].strip() == 'macaque':
prompt+=f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>'
else:
if v:
prompt+=f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
else:
prompt+=f'<{k}></{k}>'
return prompt
def custom_generate(self,
input_ids,
device,
max_new_tokens,
mode,
temperature=0.8,
top_p=0.2, top_k=3550,
n_next_tokens=50, num_return_sequences=1, random_seed=137):
torch.manual_seed(random_seed)
# Set parameters
# temperature - Higher value for more randomness, lower for more control
# top_p - Probability threshold for nucleus sampling (aka top-p sampling)
# top_k - Ignore logits below the top-k value to reduce randomness (if non-zero)
# n_next_tokens - Number of top next tokens when predicting compounds
# Generate sequences
outputs = []
next_token_compounds = []
for _ in range(num_return_sequences):
start_time = time.time()
generated_sequence = []
current_token = input_ids.clone()
for _ in range(max_new_tokens): # Maximum length of generated sequence
# Forward pass through the model
logits = self.model.forward(
input_ids=current_token
)[0]
# Apply temperature to logits
if temperature != 1.0:
logits = logits / temperature
# Apply top-p sampling (nucleus sampling)
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
if top_k > 0:
sorted_indices_to_remove[..., top_k:] = 1
# Set the logit values of the removed indices to a very small negative value
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
logits = logits.where(sorted_indices_to_remove, inf_tensor)
# Sample the next token
if current_token[0][-1] == self.tokenizer.encode('<drug>')[0] and len(next_token_compounds)==0:
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)
# Append the sampled token to the generated sequence
generated_sequence.append(next_token.item())
# Stop generation if an end token is generated
if next_token == self.tokenizer.eos_token_id:
break
# Prepare input for the next iteration
current_token = torch.cat((current_token, next_token), dim=-1)
print(time.time()-start_time)
outputs.append(generated_sequence)
# Process generated up/down lists
processed_outputs = {"up": [], "down": []}
if mode in ['meta2diff', 'meta2diff2compound']:
for output in outputs:
up_split_index = output.index(self.tokenizer.convert_tokens_to_ids('</up>'))
generated_up_raw = [i.strip() for i in self.tokenizer.convert_ids_to_tokens(output[:up_split_index])]
generated_up = sorted(set(generated_up_raw) & set(self.unique_genes_p3), key = generated_up_raw.index)
processed_outputs['up'].append(generated_up)
down_split_index = output.index(self.tokenizer.convert_tokens_to_ids('</down>'))
generated_down_raw = [i.strip() for i in self.tokenizer.convert_ids_to_tokens(output[up_split_index:down_split_index+1])]
generated_down = sorted(set(generated_down_raw) & set(self.unique_genes_p3), key = generated_down_raw.index)
processed_outputs['down'].append(generated_down)
else:
processed_outputs = outputs
predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds]
predicted_compounds = []
for j in predicted_compounds_ids:
predicted_compounds.append([i.strip() for i in j])
return processed_outputs, predicted_compounds, random_seed
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
"""
Args:
data (:dict:):
The payload with the text prompt and generation parameters.
"""
device = "cuda"
parameters = data.pop("parameters", None)
config_data = data.pop("inputs", None)
mode = data.pop('mode', 'Not specified')
prompt = self.create_prompt(config_data)
inputs = self.tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0])
try:
generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(input_ids = input_ids,
max_new_tokens=max_new_tokens, mode=mode,
device=device, **parameters)
next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation]
if mode == "meta2diff":
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed}
elif mode == "meta2diff2compound":
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
out = {
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode,
"message": "Done!", "input": prompt, 'random_seed': out_seed}
elif mode == "diff2compound":
outputs = generated_sequence
out = {
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode,
"message": "Done!", "input": prompt, 'random_seed': out_seed}
else:
out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"}
except Exception as e:
print(e)
outputs, next_token_generation = [None], [None]
out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 137}
return out