|
from typing import Dict, List, Any |
|
import os |
|
import torch |
|
from transformers import AutoTokenizer, AutoModel |
|
import pandas as pd |
|
import time |
|
import numpy as np |
|
|
|
class EndpointHandler: |
|
def __init__(self, path="insilicomedicine/precious3-gpt"): |
|
|
|
self.model = AutoModel.from_pretrained(path, trust_remote_code=True).to('cuda') |
|
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) |
|
self.model.config.pad_token_id = self.tokenizer.pad_token_id |
|
self.model.config.bos_token_id = self.tokenizer.bos_token_id |
|
self.model.config.eos_token_id = self.tokenizer.eos_token_id |
|
|
|
unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv') |
|
self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()] |
|
self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()] |
|
|
|
|
|
def create_prompt(self, prompt_config): |
|
|
|
prompt = "[BOS]" |
|
|
|
multi_modal_prefix = '' |
|
|
|
for k, v in prompt_config.items(): |
|
if k=='instruction': |
|
prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v]) |
|
elif k=='up': |
|
if v: |
|
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>' |
|
elif k=='down': |
|
if v: |
|
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>' |
|
elif k=='age': |
|
if isinstance(v, int): |
|
if prompt_config['species'].strip() == 'human': |
|
prompt+=f'<{k}_individ>{v} </{k}_individ>' |
|
elif prompt_config['species'].strip() == 'macaque': |
|
prompt+=f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>' |
|
else: |
|
if v: |
|
prompt+=f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>' |
|
else: |
|
prompt+=f'<{k}></{k}>' |
|
return prompt |
|
|
|
def custom_generate(self, |
|
input_ids, |
|
device, |
|
max_new_tokens, |
|
mode, |
|
temperature=0.8, |
|
top_p=0.2, top_k=3550, |
|
n_next_tokens=50, num_return_sequences=1, random_seed=137): |
|
|
|
torch.manual_seed(random_seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
outputs = [] |
|
next_token_compounds = [] |
|
|
|
for _ in range(num_return_sequences): |
|
start_time = time.time() |
|
generated_sequence = [] |
|
current_token = input_ids.clone() |
|
|
|
for _ in range(max_new_tokens): |
|
|
|
logits = self.model.forward( |
|
input_ids=current_token |
|
)[0] |
|
|
|
|
|
if temperature != 1.0: |
|
logits = logits / temperature |
|
|
|
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) |
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
|
|
if top_k > 0: |
|
sorted_indices_to_remove[..., top_k:] = 1 |
|
|
|
|
|
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device) |
|
|
|
logits = logits.where(sorted_indices_to_remove, inf_tensor) |
|
|
|
|
|
|
|
if current_token[0][-1] == self.tokenizer.encode('<drug>')[0] and len(next_token_compounds)==0: |
|
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices) |
|
|
|
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0) |
|
|
|
|
|
|
|
generated_sequence.append(next_token.item()) |
|
|
|
|
|
if next_token == self.tokenizer.eos_token_id: |
|
break |
|
|
|
|
|
current_token = torch.cat((current_token, next_token), dim=-1) |
|
print(time.time()-start_time) |
|
outputs.append(generated_sequence) |
|
|
|
|
|
processed_outputs = {"up": [], "down": []} |
|
if mode in ['meta2diff', 'meta2diff2compound']: |
|
for output in outputs: |
|
up_split_index = output.index(self.tokenizer.convert_tokens_to_ids('</up>')) |
|
generated_up_raw = [i.strip() for i in self.tokenizer.convert_ids_to_tokens(output[:up_split_index])] |
|
generated_up = sorted(set(generated_up_raw) & set(self.unique_genes_p3), key = generated_up_raw.index) |
|
processed_outputs['up'].append(generated_up) |
|
|
|
down_split_index = output.index(self.tokenizer.convert_tokens_to_ids('</down>')) |
|
generated_down_raw = [i.strip() for i in self.tokenizer.convert_ids_to_tokens(output[up_split_index:down_split_index+1])] |
|
generated_down = sorted(set(generated_down_raw) & set(self.unique_genes_p3), key = generated_down_raw.index) |
|
processed_outputs['down'].append(generated_down) |
|
|
|
else: |
|
processed_outputs = outputs |
|
|
|
predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds] |
|
predicted_compounds = [] |
|
for j in predicted_compounds_ids: |
|
predicted_compounds.append([i.strip() for i in j]) |
|
return processed_outputs, predicted_compounds, random_seed |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
""" |
|
Args: |
|
data (:dict:): |
|
The payload with the text prompt and generation parameters. |
|
""" |
|
|
|
device = "cuda" |
|
parameters = data.pop("parameters", None) |
|
config_data = data.pop("inputs", None) |
|
mode = data.pop('mode', 'Not specified') |
|
|
|
prompt = self.create_prompt(config_data) |
|
|
|
inputs = self.tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
|
|
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0]) |
|
try: |
|
|
|
generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(input_ids = input_ids, |
|
max_new_tokens=max_new_tokens, mode=mode, |
|
device=device, **parameters) |
|
next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation] |
|
|
|
if mode == "meta2diff": |
|
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']} |
|
out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed} |
|
elif mode == "meta2diff2compound": |
|
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']} |
|
out = { |
|
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, |
|
"message": "Done!", "input": prompt, 'random_seed': out_seed} |
|
elif mode == "diff2compound": |
|
outputs = generated_sequence |
|
out = { |
|
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, |
|
"message": "Done!", "input": prompt, 'random_seed': out_seed} |
|
else: |
|
out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"} |
|
|
|
except Exception as e: |
|
print(e) |
|
outputs, next_token_generation = [None], [None] |
|
out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 137} |
|
|
|
return out |