Text Generation
Transformers
PyTorch
internlm
agent
tool
custom_code
lovesnowbest commited on
Commit
7845963
1 Parent(s): ef4771b

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "</s>": 2,
3
+ "<s>": 1,
4
+ "<unk>": 0
5
+ }
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternLMForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_internlm.InternLMConfig",
7
+ "AutoModelForCausalLM": "modeling_internlm.InternLMForCausalLM",
8
+ "AutoModel": "modeling_internlm.InternLMForCausalLM"
9
+ },
10
+ "bias": false,
11
+ "bos_token_id": 1,
12
+ "eos_token_id": 2,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_position_embeddings": 8192,
18
+ "model_type": "internlm",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 32,
22
+ "pad_token_id": 2,
23
+ "rms_norm_eps": 1e-05,
24
+ "rope_scaling": {
25
+ "factor": 1.0,
26
+ "type": "dynamic"
27
+ },
28
+ "rope_theta": 10000,
29
+ "tie_word_embeddings": false,
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.34.0",
32
+ "use_cache": true,
33
+ "vocab_size": 32000
34
+ }
configuration_internlm.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) InternLM. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ InternLM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
+
29
+
30
+ class InternLMConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`InternLMModel`]. It is used to instantiate
33
+ an InternLM model according to the specified arguments, defining the model architecture. Instantiating a
34
+ configuration with the defaults will yield a similar configuration to that of the InternLM-7B.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the InternLM model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`InternLMModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 11008):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ num_key_value_heads (`int`, *optional*):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
59
+ `num_attention_heads`.
60
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
+ The non-linear activation function (function or string) in the decoder.
62
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
63
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
64
+ just in case (e.g., 512 or 1024 or 2048).
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
73
+ Whether to tie weight embeddings
74
+ Example:
75
+
76
+ ```python
77
+ >>> from transformers import InternLMModel, InternLMConfig
78
+
79
+ >>> # Initializing a InternLM internlm-7b style configuration
80
+ >>> configuration = InternLMConfig()
81
+
82
+ >>> # Initializing a model from the internlm-7b style configuration
83
+ >>> model = InternLMModel(configuration)
84
+
85
+ >>> # Accessing the model configuration
86
+ >>> configuration = model.config
87
+ ```"""
88
+ model_type = "internlm"
89
+ _auto_class = "AutoConfig"
90
+
91
+ def __init__( # pylint: disable=W0102
92
+ self,
93
+ vocab_size=103168,
94
+ hidden_size=4096,
95
+ intermediate_size=11008,
96
+ num_hidden_layers=32,
97
+ num_attention_heads=32,
98
+ num_key_value_heads=None,
99
+ hidden_act="silu",
100
+ max_position_embeddings=2048,
101
+ initializer_range=0.02,
102
+ rms_norm_eps=1e-6,
103
+ use_cache=True,
104
+ pad_token_id=0,
105
+ bos_token_id=1,
106
+ eos_token_id=2,
107
+ tie_word_embeddings=False,
108
+ bias=True,
109
+ rope_theta=10000,
110
+ rope_scaling=None,
111
+ **kwargs,
112
+ ):
113
+ self.vocab_size = vocab_size
114
+ self.max_position_embeddings = max_position_embeddings
115
+ self.hidden_size = hidden_size
116
+ self.intermediate_size = intermediate_size
117
+ self.num_hidden_layers = num_hidden_layers
118
+ self.num_attention_heads = num_attention_heads
119
+ self.bias = bias
120
+
121
+ if num_key_value_heads is None:
122
+ num_key_value_heads = num_attention_heads
123
+ self.num_key_value_heads = num_key_value_heads
124
+
125
+ self.hidden_act = hidden_act
126
+ self.initializer_range = initializer_range
127
+ self.rms_norm_eps = rms_norm_eps
128
+ self.use_cache = use_cache
129
+ self.rope_theta = rope_theta
130
+ self.rope_scaling = rope_scaling
131
+ self._rope_scaling_validation()
132
+ super().__init__(
133
+ pad_token_id=pad_token_id,
134
+ bos_token_id=bos_token_id,
135
+ eos_token_id=eos_token_id,
136
+ tie_word_embeddings=tie_word_embeddings,
137
+ **kwargs,
138
+ )
139
+
140
+ def _rope_scaling_validation(self):
141
+ """
142
+ Validate the `rope_scaling` configuration.
143
+ """
144
+ if self.rope_scaling is None:
145
+ return
146
+
147
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
148
+ raise ValueError(
149
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
150
+ f"got {self.rope_scaling}"
151
+ )
152
+ rope_scaling_type = self.rope_scaling.get("type", None)
153
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
154
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
155
+ raise ValueError(
156
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
157
+ )
158
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
159
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.34.0"
7
+ }
modeling_internlm.py ADDED
@@ -0,0 +1,1118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) InternLM. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch InternLM model."""
21
+ import math
22
+ import queue
23
+ import threading
24
+ from typing import List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+ from transformers.activations import ACT2FN
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ SequenceClassifierOutputWithPast,
35
+ )
36
+ from transformers.modeling_utils import PreTrainedModel
37
+ from transformers.utils import (
38
+ add_start_docstrings,
39
+ add_start_docstrings_to_model_forward,
40
+ logging,
41
+ replace_return_docstrings,
42
+ )
43
+
44
+ try:
45
+ from transformers.generation.streamers import BaseStreamer
46
+ except: # noqa # pylint: disable=bare-except
47
+ BaseStreamer = None
48
+
49
+ from .configuration_internlm import InternLMConfig
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+ _CONFIG_FOR_DOC = "InternLMConfig"
54
+
55
+
56
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
57
+ def _make_causal_mask(
58
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
59
+ ):
60
+ """
61
+ Make causal mask used for bi-directional self-attention.
62
+ """
63
+ bsz, tgt_len = input_ids_shape
64
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
65
+ mask_cond = torch.arange(mask.size(-1), device=device)
66
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
67
+ mask = mask.to(dtype)
68
+
69
+ if past_key_values_length > 0:
70
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
71
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
72
+
73
+
74
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
75
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
76
+ """
77
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
78
+ """
79
+ bsz, src_len = mask.size()
80
+ tgt_len = tgt_len if tgt_len is not None else src_len
81
+
82
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
83
+
84
+ inverted_mask = 1.0 - expanded_mask
85
+
86
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
87
+
88
+
89
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
90
+ """
91
+ (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
92
+ """
93
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
94
+ if n_rep == 1:
95
+ return hidden_states
96
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
97
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
98
+
99
+
100
+ class InternLMRMSNorm(nn.Module):
101
+ """RMSNorm implemention."""
102
+
103
+ def __init__(self, hidden_size, eps=1e-6):
104
+ """
105
+ InternLMRMSNorm is equivalent to T5LayerNorm
106
+ """
107
+ super().__init__()
108
+ self.weight = nn.Parameter(torch.ones(hidden_size))
109
+ self.variance_epsilon = eps
110
+
111
+ def forward(self, hidden_states):
112
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
113
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
114
+
115
+ # convert into half-precision if necessary
116
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
117
+ hidden_states = hidden_states.to(self.weight.dtype)
118
+
119
+ return self.weight * hidden_states
120
+
121
+
122
+ class InternLMRotaryEmbedding(torch.nn.Module):
123
+ """Implement InternLM's rotary embedding.
124
+
125
+ Args:
126
+ dim (int): Characteristic dimension of each self-attentional head.
127
+ max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
128
+ base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
129
+ device (Any, optional): Running device. Defaults to None.
130
+ """
131
+
132
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
133
+ super().__init__()
134
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
135
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
136
+
137
+ # Build here to make `torch.jit.trace` work.
138
+ self.max_seq_len_cached = max_position_embeddings
139
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
140
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
141
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
+ emb = torch.cat((freqs, freqs), dim=-1)
143
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
144
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
145
+
146
+ def forward(self, x, seq_len=None):
147
+ # x: [bs, num_attention_heads, seq_len, head_size]
148
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
149
+ if seq_len > self.max_seq_len_cached:
150
+ self.max_seq_len_cached = seq_len
151
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
152
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
153
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
154
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
155
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
156
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
157
+ return (
158
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
159
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
160
+ )
161
+
162
+
163
+ class InternLMDynamicNTKScalingRotaryEmbedding(torch.nn.Module):
164
+ """Implement InternLM's DyanmicNTK extrapolation method, thereby broadening the model support context to 16K.
165
+
166
+ Args:
167
+ dim (int): Characteristic dimension of each self-attentional head.
168
+ max_position_embeddings (int, optional): Model's training length. Defaults to 2048.
169
+ base (int, optional): The rotation position encodes the rotation Angle base number. Defaults to 10000.
170
+ device (Any, optional): Running device. Defaults to None.
171
+ scaling_factor (float, optional): NTK method extrapolation coefficient. Defaults to 1.0.
172
+ """
173
+
174
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
175
+ super().__init__()
176
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
177
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
178
+ self.dim = dim
179
+ self.base = base
180
+ self.scaling_factor = scaling_factor
181
+
182
+ # Build here to make `torch.jit.trace` work.
183
+ self.max_position_embeddings = max_position_embeddings
184
+ self.max_seq_len_cached = max_position_embeddings
185
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
186
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
187
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
188
+ emb = torch.cat((freqs, freqs), dim=-1)
189
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
190
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
191
+
192
+ def _update_cached(self, x, seq_len=None):
193
+ self.max_seq_len_cached = max(seq_len, self.max_position_embeddings)
194
+ if seq_len > self.max_position_embeddings:
195
+ base = self.base * (
196
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
197
+ ) ** (self.dim / (self.dim - 2))
198
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim))
199
+ else:
200
+ inv_freq = self.inv_freq
201
+ t = torch.arange(self.max_seq_len_cached, device=inv_freq.device, dtype=inv_freq.dtype)
202
+ freqs = torch.einsum("i,j->ij", t, inv_freq)
203
+ emb = torch.cat((freqs, freqs), dim=-1)
204
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
205
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
206
+
207
+ def forward(self, x, seq_len=None):
208
+ # x: [bs, num_attention_heads, seq_len, head_size]
209
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
210
+ if seq_len <= self.max_position_embeddings:
211
+ # Reset the tables if the sequence length has changed,
212
+ if self.max_seq_len_cached > self.max_position_embeddings:
213
+ self._update_cached(x, seq_len)
214
+ else:
215
+ self._update_cached(x, seq_len)
216
+
217
+ return (
218
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
219
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
220
+ )
221
+
222
+
223
+ def rotate_half(x):
224
+ """Rotates half the hidden dims of the input."""
225
+ x1 = x[..., : x.shape[-1] // 2]
226
+ x2 = x[..., x.shape[-1] // 2 :]
227
+ return torch.cat((-x2, x1), dim=-1)
228
+
229
+
230
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
231
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
232
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
233
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
234
+ cos = cos.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
235
+ sin = sin.unsqueeze(0).unsqueeze(0).expand(len(position_ids), -1, -1, -1)
236
+ if q.size(2) == 1:
237
+ q_embed = (q * cos[:, :, -1, :]) + (rotate_half(q) * sin[:, :, -1, :])
238
+ else:
239
+ q_embed = (q * cos) + (rotate_half(q) * sin)
240
+
241
+ if k.size(2) == 1:
242
+ k_embed = (k * cos[:, :, -1, :]) + (rotate_half(k) * sin[:, :, -1, :])
243
+ else:
244
+ k_embed = (k * cos) + (rotate_half(k) * sin)
245
+
246
+ return q_embed, k_embed
247
+
248
+
249
+ class InternLMMLP(nn.Module):
250
+ def __init__(
251
+ self,
252
+ hidden_size: int,
253
+ intermediate_size: int,
254
+ hidden_act: str,
255
+ ):
256
+ super().__init__()
257
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
258
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
259
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
260
+ self.act_fn = ACT2FN[hidden_act]
261
+
262
+ def forward(self, x):
263
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
264
+
265
+
266
+ class InternLMAttention(nn.Module):
267
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
268
+
269
+ def __init__(self, config: InternLMConfig):
270
+ super().__init__()
271
+ self.config = config
272
+ self.hidden_size = config.hidden_size
273
+ self.num_heads = config.num_attention_heads
274
+ self.head_dim = self.hidden_size // self.num_heads
275
+ self.num_key_value_heads = config.num_key_value_heads
276
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
277
+ self.max_position_embeddings = config.max_position_embeddings
278
+
279
+ if (self.head_dim * self.num_heads) != self.hidden_size:
280
+ raise ValueError(
281
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
282
+ f" and `num_heads`: {self.num_heads})."
283
+ )
284
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.bias)
285
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.bias)
286
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.bias)
287
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
288
+ self.rotary_emb = self._init_rope()
289
+
290
+ def _init_rope(self):
291
+ if self.config.rope_scaling is None:
292
+ self.rotary_emb = InternLMRotaryEmbedding(
293
+ self.head_dim,
294
+ max_position_embeddings=self.max_position_embeddings,
295
+ base=self.config.rope_theta,
296
+ )
297
+ else:
298
+ scaling_type = self.config.rope_scaling["type"]
299
+ scaling_factor = self.config.rope_scaling["factor"]
300
+ if scaling_type == "dynamic":
301
+ self.rotary_emb = InternLMDynamicNTKScalingRotaryEmbedding(
302
+ self.head_dim,
303
+ max_position_embeddings=self.max_position_embeddings,
304
+ base=self.config.rope_theta,
305
+ scaling_factor=scaling_factor
306
+ )
307
+ else:
308
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic'.")
309
+ return self.rotary_emb
310
+
311
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
312
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
313
+
314
+ def forward(
315
+ self,
316
+ hidden_states: torch.Tensor,
317
+ attention_mask: Optional[torch.Tensor] = None,
318
+ position_ids: Optional[torch.LongTensor] = None,
319
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
320
+ output_attentions: bool = False,
321
+ use_cache: bool = False,
322
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
323
+ bsz, q_len, _ = hidden_states.size()
324
+
325
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
326
+ key_states = (
327
+ self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
328
+ )
329
+ value_states = (
330
+ self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
331
+ )
332
+
333
+ if past_key_value is not None:
334
+ # reuse k, v, self_attention
335
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
336
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
337
+
338
+ past_key_value = (key_states, value_states) if use_cache else None
339
+
340
+ kv_seq_len = key_states.shape[-2]
341
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
342
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
343
+
344
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
345
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
346
+
347
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
348
+
349
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
350
+ raise ValueError(
351
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
352
+ f" {attn_weights.size()}"
353
+ )
354
+
355
+ if attention_mask is not None:
356
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
357
+ raise ValueError(
358
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
359
+ )
360
+ attn_weights = attn_weights + attention_mask
361
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
362
+
363
+ # upcast attention to fp32
364
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
365
+ attn_output = torch.matmul(attn_weights, value_states)
366
+
367
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
368
+ raise ValueError(
369
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
370
+ f" {attn_output.size()}"
371
+ )
372
+
373
+ attn_output = attn_output.transpose(1, 2)
374
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
375
+
376
+ attn_output = self.o_proj(attn_output)
377
+
378
+ if not output_attentions:
379
+ attn_weights = None
380
+
381
+ return attn_output, attn_weights, past_key_value
382
+
383
+
384
+ class InternLMDecoderLayer(nn.Module):
385
+ def __init__(self, config: InternLMConfig):
386
+ super().__init__()
387
+ self.hidden_size = config.hidden_size
388
+ self.self_attn = InternLMAttention(config=config)
389
+ self.mlp = InternLMMLP(
390
+ hidden_size=self.hidden_size,
391
+ intermediate_size=config.intermediate_size,
392
+ hidden_act=config.hidden_act,
393
+ )
394
+ self.input_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
395
+ self.post_attention_layernorm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
396
+
397
+ def forward(
398
+ self,
399
+ hidden_states: torch.Tensor,
400
+ attention_mask: Optional[torch.Tensor] = None,
401
+ position_ids: Optional[torch.LongTensor] = None,
402
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
403
+ output_attentions: Optional[bool] = False,
404
+ use_cache: Optional[bool] = False,
405
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
406
+ """
407
+ Args:
408
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
409
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
410
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
411
+ output_attentions (`bool`, *optional*):
412
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
413
+ returned tensors for more detail.
414
+ use_cache (`bool`, *optional*):
415
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
416
+ (see `past_key_values`).
417
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
418
+ """
419
+
420
+ residual = hidden_states
421
+
422
+ hidden_states = self.input_layernorm(hidden_states)
423
+
424
+ # Self Attention
425
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
426
+ hidden_states=hidden_states,
427
+ attention_mask=attention_mask,
428
+ position_ids=position_ids,
429
+ past_key_value=past_key_value,
430
+ output_attentions=output_attentions,
431
+ use_cache=use_cache,
432
+ )
433
+ hidden_states = residual + hidden_states
434
+
435
+ # Fully Connected
436
+ residual = hidden_states
437
+ hidden_states = self.post_attention_layernorm(hidden_states)
438
+ hidden_states = self.mlp(hidden_states)
439
+ hidden_states = residual + hidden_states
440
+
441
+ outputs = (hidden_states,)
442
+
443
+ if output_attentions:
444
+ outputs += (self_attn_weights,)
445
+
446
+ if use_cache:
447
+ outputs += (present_key_value,)
448
+
449
+ return outputs
450
+
451
+
452
+ INTERNLM_START_DOCSTRING = r"""
453
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
454
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
455
+ etc.)
456
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
457
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
458
+ and behavior.
459
+ Parameters:
460
+ config ([`InternLMConfig`]):
461
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
462
+ load the weights associated with the model, only the configuration. Check out the
463
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
464
+ """
465
+
466
+
467
+ @add_start_docstrings(
468
+ "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
469
+ INTERNLM_START_DOCSTRING,
470
+ )
471
+ class InternLMPreTrainedModel(PreTrainedModel):
472
+ config_class = InternLMConfig
473
+ base_model_prefix = "model"
474
+ supports_gradient_checkpointing = True
475
+ _no_split_modules = ["InternLMDecoderLayer"]
476
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
477
+
478
+ def _init_weights(self, module):
479
+ std = self.config.initializer_range
480
+ if isinstance(module, nn.Linear):
481
+ module.weight.data.normal_(mean=0.0, std=std)
482
+ if module.bias is not None:
483
+ module.bias.data.zero_()
484
+ elif isinstance(module, nn.Embedding):
485
+ module.weight.data.normal_(mean=0.0, std=std)
486
+ if module.padding_idx is not None:
487
+ module.weight.data[module.padding_idx].zero_()
488
+
489
+ def _set_gradient_checkpointing(self, module, value=False):
490
+ if isinstance(module, InternLMModel):
491
+ module.gradient_checkpointing = value
492
+
493
+
494
+ INTERNLM_INPUTS_DOCSTRING = r"""
495
+ Args:
496
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
497
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
498
+ it.
499
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
500
+ [`PreTrainedTokenizer.__call__`] for details.
501
+ [What are input IDs?](../glossary#input-ids)
502
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
503
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
504
+ - 1 for tokens that are **not masked**,
505
+ - 0 for tokens that are **masked**.
506
+ [What are attention masks?](../glossary#attention-mask)
507
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
508
+ [`PreTrainedTokenizer.__call__`] for details.
509
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
510
+ `past_key_values`).
511
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
512
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
513
+ information on the default strategy.
514
+ - 1 indicates the head is **not masked**,
515
+ - 0 indicates the head is **masked**.
516
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
517
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
518
+ config.n_positions - 1]`.
519
+ [What are position IDs?](../glossary#position-ids)
520
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
521
+ when `config.use_cache=True`):
522
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
523
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
524
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
525
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
526
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
527
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
528
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
529
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
530
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
531
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
532
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
533
+ model's internal embedding lookup matrix.
534
+ use_cache (`bool`, *optional*):
535
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
536
+ `past_key_values`).
537
+ output_attentions (`bool`, *optional*):
538
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
539
+ tensors for more detail.
540
+ output_hidden_states (`bool`, *optional*):
541
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
542
+ more detail.
543
+ return_dict (`bool`, *optional*):
544
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
545
+ """
546
+
547
+
548
+ @add_start_docstrings(
549
+ "The bare InternLM Model outputting raw hidden-states without any specific head on top.",
550
+ INTERNLM_START_DOCSTRING,
551
+ )
552
+ class InternLMModel(InternLMPreTrainedModel):
553
+ """
554
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
555
+ Args:
556
+ config: InternLMConfig
557
+ """
558
+
559
+ _auto_class = "AutoModel"
560
+
561
+ def __init__(self, config: InternLMConfig):
562
+ super().__init__(config)
563
+ self.padding_idx = config.pad_token_id
564
+ self.vocab_size = config.vocab_size
565
+
566
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
567
+ self.layers = nn.ModuleList([InternLMDecoderLayer(config) for _ in range(config.num_hidden_layers)])
568
+ self.norm = InternLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
569
+
570
+ self.gradient_checkpointing = False
571
+ # Initialize weights and apply final processing
572
+ self.post_init()
573
+
574
+ def get_input_embeddings(self):
575
+ return self.embed_tokens
576
+
577
+ def set_input_embeddings(self, value):
578
+ self.embed_tokens = value
579
+
580
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
581
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
582
+ # create causal mask
583
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
584
+ combined_attention_mask = None
585
+ if input_shape[-1] > 1:
586
+ combined_attention_mask = _make_causal_mask(
587
+ input_shape,
588
+ inputs_embeds.dtype,
589
+ device=inputs_embeds.device,
590
+ past_key_values_length=past_key_values_length,
591
+ )
592
+
593
+ if attention_mask is not None:
594
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
595
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
596
+ inputs_embeds.device
597
+ )
598
+ combined_attention_mask = (
599
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
600
+ )
601
+
602
+ return combined_attention_mask
603
+
604
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
605
+ def forward(
606
+ self,
607
+ input_ids: torch.LongTensor = None,
608
+ attention_mask: Optional[torch.Tensor] = None,
609
+ position_ids: Optional[torch.LongTensor] = None,
610
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
611
+ inputs_embeds: Optional[torch.FloatTensor] = None,
612
+ use_cache: Optional[bool] = None,
613
+ output_attentions: Optional[bool] = None,
614
+ output_hidden_states: Optional[bool] = None,
615
+ return_dict: Optional[bool] = None,
616
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
617
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
618
+ output_hidden_states = (
619
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
620
+ )
621
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
622
+
623
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
624
+
625
+ # retrieve input_ids and inputs_embeds
626
+ if input_ids is not None and inputs_embeds is not None:
627
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
628
+ elif input_ids is not None:
629
+ batch_size, seq_length = input_ids.shape
630
+ elif inputs_embeds is not None:
631
+ batch_size, seq_length, _ = inputs_embeds.shape
632
+ else:
633
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
634
+
635
+ seq_length_with_past = seq_length
636
+ past_key_values_length = 0
637
+
638
+ if past_key_values is not None:
639
+ past_key_values_length = past_key_values[0][0].shape[2]
640
+ seq_length_with_past = seq_length_with_past + past_key_values_length
641
+
642
+ if position_ids is None:
643
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
644
+ position_ids = torch.arange(
645
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
646
+ )
647
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
648
+ else:
649
+ position_ids = position_ids.view(-1, seq_length).long()
650
+
651
+ if inputs_embeds is None:
652
+ inputs_embeds = self.embed_tokens(input_ids)
653
+ # embed positions
654
+ if attention_mask is None:
655
+ attention_mask = torch.ones(
656
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
657
+ )
658
+ attention_mask = self._prepare_decoder_attention_mask(
659
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
660
+ )
661
+
662
+ hidden_states = inputs_embeds
663
+
664
+ if self.gradient_checkpointing and self.training:
665
+ if use_cache:
666
+ logger.warning_once(
667
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
668
+ )
669
+ use_cache = False
670
+
671
+ # decoder layers
672
+ all_hidden_states = () if output_hidden_states else None
673
+ all_self_attns = () if output_attentions else None
674
+ next_decoder_cache = () if use_cache else None
675
+
676
+ for idx, decoder_layer in enumerate(self.layers):
677
+ if output_hidden_states:
678
+ all_hidden_states += (hidden_states,)
679
+
680
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
681
+
682
+ if self.gradient_checkpointing and self.training:
683
+
684
+ def create_custom_forward(module):
685
+ def custom_forward(*inputs):
686
+ # None for past_key_value
687
+ return module(*inputs, output_attentions, None)
688
+
689
+ return custom_forward
690
+
691
+ layer_outputs = torch.utils.checkpoint.checkpoint(
692
+ create_custom_forward(decoder_layer),
693
+ hidden_states,
694
+ attention_mask,
695
+ position_ids,
696
+ None,
697
+ )
698
+ else:
699
+ layer_outputs = decoder_layer(
700
+ hidden_states,
701
+ attention_mask=attention_mask,
702
+ position_ids=position_ids,
703
+ past_key_value=past_key_value,
704
+ output_attentions=output_attentions,
705
+ use_cache=use_cache,
706
+ )
707
+
708
+ hidden_states = layer_outputs[0]
709
+
710
+ if use_cache:
711
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
712
+
713
+ if output_attentions:
714
+ all_self_attns += (layer_outputs[1],)
715
+
716
+ hidden_states = self.norm(hidden_states)
717
+
718
+ # add hidden states from the last decoder layer
719
+ if output_hidden_states:
720
+ all_hidden_states += (hidden_states,)
721
+
722
+ next_cache = next_decoder_cache if use_cache else None
723
+ if not return_dict:
724
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
725
+ return BaseModelOutputWithPast(
726
+ last_hidden_state=hidden_states,
727
+ past_key_values=next_cache,
728
+ hidden_states=all_hidden_states,
729
+ attentions=all_self_attns,
730
+ )
731
+
732
+
733
+ class InternLMForCausalLM(InternLMPreTrainedModel):
734
+ _auto_class = "AutoModelForCausalLM"
735
+
736
+ def __init__(self, config):
737
+ super().__init__(config)
738
+ self.model = InternLMModel(config)
739
+
740
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
741
+
742
+ # Initialize weights and apply final processing
743
+ self.post_init()
744
+
745
+ def get_input_embeddings(self):
746
+ return self.model.embed_tokens
747
+
748
+ def set_input_embeddings(self, value):
749
+ self.model.embed_tokens = value
750
+
751
+ def get_output_embeddings(self):
752
+ return self.lm_head
753
+
754
+ def set_output_embeddings(self, new_embeddings):
755
+ self.lm_head = new_embeddings
756
+
757
+ def set_decoder(self, decoder):
758
+ self.model = decoder
759
+
760
+ def get_decoder(self):
761
+ return self.model
762
+
763
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
764
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
765
+ def forward(
766
+ self,
767
+ input_ids: torch.LongTensor = None,
768
+ attention_mask: Optional[torch.Tensor] = None,
769
+ position_ids: Optional[torch.LongTensor] = None,
770
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
771
+ inputs_embeds: Optional[torch.FloatTensor] = None,
772
+ labels: Optional[torch.LongTensor] = None,
773
+ use_cache: Optional[bool] = None,
774
+ output_attentions: Optional[bool] = None,
775
+ output_hidden_states: Optional[bool] = None,
776
+ return_dict: Optional[bool] = None,
777
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
778
+ r"""
779
+ Args:
780
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
781
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
782
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
783
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
784
+ Returns:
785
+ Example:
786
+ ```python
787
+ >>> from transformers import AutoTokenizer, InternLMForCausalLM
788
+ >>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
789
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
790
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
791
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
792
+ >>> # Generate
793
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
794
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
795
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
796
+ ```"""
797
+
798
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
799
+ output_hidden_states = (
800
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
801
+ )
802
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
803
+
804
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
805
+ outputs = self.model(
806
+ input_ids=input_ids,
807
+ attention_mask=attention_mask,
808
+ position_ids=position_ids,
809
+ past_key_values=past_key_values,
810
+ inputs_embeds=inputs_embeds,
811
+ use_cache=use_cache,
812
+ output_attentions=output_attentions,
813
+ output_hidden_states=output_hidden_states,
814
+ return_dict=return_dict,
815
+ )
816
+
817
+ hidden_states = outputs[0]
818
+ logits = self.lm_head(hidden_states)
819
+
820
+ loss = None
821
+ if labels is not None:
822
+ # Shift so that tokens < n predict n
823
+ shift_logits = logits[..., :-1, :].contiguous()
824
+ shift_labels = labels[..., 1:].contiguous()
825
+ # Flatten the tokens
826
+ loss_fct = CrossEntropyLoss()
827
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
828
+ shift_labels = shift_labels.view(-1)
829
+ # Enable model parallelism
830
+ shift_labels = shift_labels.to(shift_logits.device)
831
+ loss = loss_fct(shift_logits, shift_labels)
832
+
833
+ if not return_dict:
834
+ output = (logits,) + outputs[1:]
835
+ return (loss,) + output if loss is not None else output
836
+
837
+ return CausalLMOutputWithPast(
838
+ loss=loss,
839
+ logits=logits,
840
+ past_key_values=outputs.past_key_values,
841
+ hidden_states=outputs.hidden_states,
842
+ attentions=outputs.attentions,
843
+ )
844
+
845
+ def prepare_inputs_for_generation(
846
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
847
+ ):
848
+ if past_key_values:
849
+ input_ids = input_ids[:, -1:]
850
+
851
+ position_ids = kwargs.get("position_ids", None)
852
+ if attention_mask is not None and position_ids is None:
853
+ # create position_ids on the fly for batch generation
854
+ position_ids = attention_mask.long().cumsum(-1) - 1
855
+ position_ids.masked_fill_(attention_mask == 0, 1)
856
+ if past_key_values:
857
+ position_ids = position_ids[:, -1].unsqueeze(-1)
858
+
859
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
860
+ if inputs_embeds is not None and past_key_values is None:
861
+ model_inputs = {"inputs_embeds": inputs_embeds}
862
+ else:
863
+ model_inputs = {"input_ids": input_ids}
864
+
865
+ model_inputs.update(
866
+ {
867
+ "position_ids": position_ids,
868
+ "past_key_values": past_key_values,
869
+ "use_cache": kwargs.get("use_cache"),
870
+ "attention_mask": attention_mask,
871
+ }
872
+ )
873
+ return model_inputs
874
+
875
+ @staticmethod
876
+ def _reorder_cache(past_key_values, beam_idx):
877
+ reordered_past = ()
878
+ for layer_past in past_key_values:
879
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
880
+ return reordered_past
881
+
882
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = []):
883
+ prompt = ""
884
+ for record in history:
885
+ prompt += f"""<|User|>:{record[0]}<eoh>\n<|Bot|>:{record[1]}<eoa>\n"""
886
+ prompt += f"""<|User|>:{query}<eoh>\n<|Bot|>:"""
887
+ return tokenizer([prompt], return_tensors="pt")
888
+
889
+ @torch.no_grad()
890
+ def chat(
891
+ self,
892
+ tokenizer,
893
+ query: str,
894
+ history: List[Tuple[str, str]] = [],
895
+ streamer: Optional[BaseStreamer] = None,
896
+ max_new_tokens: int = 1024,
897
+ do_sample: bool = True,
898
+ temperature: float = 0.8,
899
+ top_p: float = 0.8,
900
+ **kwargs,
901
+ ):
902
+ inputs = self.build_inputs(tokenizer, query, history)
903
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
904
+ outputs = self.generate(
905
+ **inputs,
906
+ streamer=streamer,
907
+ max_new_tokens=max_new_tokens,
908
+ do_sample=do_sample,
909
+ temperature=temperature,
910
+ top_p=top_p,
911
+ **kwargs,
912
+ )
913
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
914
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
915
+ response = response.split("<eoa>")[0]
916
+ history = history + [(query, response)]
917
+ return response, history
918
+
919
+ @torch.no_grad()
920
+ def stream_chat(
921
+ self,
922
+ tokenizer,
923
+ query: str,
924
+ history: List[Tuple[str, str]] = [],
925
+ max_new_tokens: int = 1024,
926
+ do_sample: bool = True,
927
+ temperature: float = 0.8,
928
+ top_p: float = 0.8,
929
+ **kwargs,
930
+ ):
931
+ """
932
+ Return a generator in format: (response, history)
933
+ Eg.
934
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
935
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
936
+ """
937
+ if BaseStreamer is None:
938
+ raise ModuleNotFoundError(
939
+ "The version of `transformers` is too low. Please make sure "
940
+ "that you have installed `transformers>=4.28.0`."
941
+ )
942
+
943
+ response_queue = queue.Queue(maxsize=20)
944
+
945
+ class ChatStreamer(BaseStreamer):
946
+ def __init__(self, tokenizer) -> None:
947
+ super().__init__()
948
+ self.tokenizer = tokenizer
949
+ self.queue = response_queue
950
+ self.query = query
951
+ self.history = history
952
+ self.response = ""
953
+ self.received_inputs = False
954
+ self.queue.put((self.response, history + [(self.query, self.response)]))
955
+
956
+ def put(self, value):
957
+ if len(value.shape) > 1 and value.shape[0] > 1:
958
+ raise ValueError("ChatStreamer only supports batch size 1")
959
+ elif len(value.shape) > 1:
960
+ value = value[0]
961
+
962
+ if not self.received_inputs:
963
+ # The first received value is input_ids, ignore here
964
+ self.received_inputs = True
965
+ return
966
+
967
+ token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
968
+ if token.strip() != "<eoa>":
969
+ self.response = self.response + token
970
+ history = self.history + [(self.query, self.response)]
971
+ self.queue.put((self.response, history))
972
+
973
+ def end(self):
974
+ self.queue.put(None)
975
+
976
+ def stream_producer():
977
+ return self.chat(
978
+ tokenizer=tokenizer,
979
+ query=query,
980
+ streamer=ChatStreamer(tokenizer=tokenizer),
981
+ history=history,
982
+ max_new_tokens=max_new_tokens,
983
+ do_sample=do_sample,
984
+ temperature=temperature,
985
+ top_p=top_p,
986
+ **kwargs,
987
+ )
988
+
989
+ def consumer():
990
+ producer = threading.Thread(target=stream_producer)
991
+ producer.start()
992
+ while True:
993
+ res = response_queue.get()
994
+ if res is None:
995
+ return
996
+ yield res
997
+
998
+ return consumer()
999
+
1000
+
1001
+ @add_start_docstrings(
1002
+ """
1003
+ The InternLM Model transformer with a sequence classification head on top (linear layer).
1004
+ [`InternLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1005
+ (e.g. GPT-2) do.
1006
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1007
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1008
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1009
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1010
+ each row of the batch).
1011
+ """,
1012
+ INTERNLM_START_DOCSTRING,
1013
+ )
1014
+ class InternLMForSequenceClassification(InternLMPreTrainedModel):
1015
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
1016
+
1017
+ def __init__(self, config):
1018
+ super().__init__(config)
1019
+ self.num_labels = config.num_labels
1020
+ self.model = InternLMModel(config)
1021
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1022
+
1023
+ # Initialize weights and apply final processing
1024
+ self.post_init()
1025
+
1026
+ def get_input_embeddings(self):
1027
+ return self.model.embed_tokens
1028
+
1029
+ def set_input_embeddings(self, value):
1030
+ self.model.embed_tokens = value
1031
+
1032
+ @add_start_docstrings_to_model_forward(INTERNLM_INPUTS_DOCSTRING)
1033
+ def forward(
1034
+ self,
1035
+ input_ids: torch.LongTensor = None,
1036
+ attention_mask: Optional[torch.Tensor] = None,
1037
+ position_ids: Optional[torch.LongTensor] = None,
1038
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1039
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1040
+ labels: Optional[torch.LongTensor] = None,
1041
+ use_cache: Optional[bool] = None,
1042
+ output_attentions: Optional[bool] = None,
1043
+ output_hidden_states: Optional[bool] = None,
1044
+ return_dict: Optional[bool] = None,
1045
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1046
+ r"""
1047
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1048
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1049
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1050
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1051
+ """
1052
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1053
+
1054
+ transformer_outputs = self.model(
1055
+ input_ids,
1056
+ attention_mask=attention_mask,
1057
+ position_ids=position_ids,
1058
+ past_key_values=past_key_values,
1059
+ inputs_embeds=inputs_embeds,
1060
+ use_cache=use_cache,
1061
+ output_attentions=output_attentions,
1062
+ output_hidden_states=output_hidden_states,
1063
+ return_dict=return_dict,
1064
+ )
1065
+ hidden_states = transformer_outputs[0]
1066
+ logits = self.score(hidden_states)
1067
+
1068
+ if input_ids is not None:
1069
+ batch_size = input_ids.shape[0]
1070
+ else:
1071
+ batch_size = inputs_embeds.shape[0]
1072
+
1073
+ if self.config.pad_token_id is None and batch_size != 1:
1074
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1075
+ if self.config.pad_token_id is None:
1076
+ sequence_lengths = -1
1077
+ else:
1078
+ if input_ids is not None:
1079
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
1080
+ else:
1081
+ sequence_lengths = -1
1082
+
1083
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1084
+
1085
+ loss = None
1086
+ if labels is not None:
1087
+ labels = labels.to(logits.device)
1088
+ if self.config.problem_type is None:
1089
+ if self.num_labels == 1:
1090
+ self.config.problem_type = "regression"
1091
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1092
+ self.config.problem_type = "single_label_classification"
1093
+ else:
1094
+ self.config.problem_type = "multi_label_classification"
1095
+
1096
+ if self.config.problem_type == "regression":
1097
+ loss_fct = MSELoss()
1098
+ if self.num_labels == 1:
1099
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1100
+ else:
1101
+ loss = loss_fct(pooled_logits, labels)
1102
+ elif self.config.problem_type == "single_label_classification":
1103
+ loss_fct = CrossEntropyLoss()
1104
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1105
+ elif self.config.problem_type == "multi_label_classification":
1106
+ loss_fct = BCEWithLogitsLoss()
1107
+ loss = loss_fct(pooled_logits, labels)
1108
+ if not return_dict:
1109
+ output = (pooled_logits,) + transformer_outputs[1:]
1110
+ return ((loss,) + output) if loss is not None else output
1111
+
1112
+ return SequenceClassifierOutputWithPast(
1113
+ loss=loss,
1114
+ logits=pooled_logits,
1115
+ past_key_values=transformer_outputs.past_key_values,
1116
+ hidden_states=transformer_outputs.hidden_states,
1117
+ attentions=transformer_outputs.attentions,
1118
+ )
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83c04eb8cbabcc8412d68089de90c239e36348e6bc95a3f5d037909fbd956c7e
3
+ size 9976620122
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc73ca6c2404e6c1d189d71ce9e304070d62f444ee57fe4b8431c7cd7407fdd0
3
+ size 3500310787
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 13476831232
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
69
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
70
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
71
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
72
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
73
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
75
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
76
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
77
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
79
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
87
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
88
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
89
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
90
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
91
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
93
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
94
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
95
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
97
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
98
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
99
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
100
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
101
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
102
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
103
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
105
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
106
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
107
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
108
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
109
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
110
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
111
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
112
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
113
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
114
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
115
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
117
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
118
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
119
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
121
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
122
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
123
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
124
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
125
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
126
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
127
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
129
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
130
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
133
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
135
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
137
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
139
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
141
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
142
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
143
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
144
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
145
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
146
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
153
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
154
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
155
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
157
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
158
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
159
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
160
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
161
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
162
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
163
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
164
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
165
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
166
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
167
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
168
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
169
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
170
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
171
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
172
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
173
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
174
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
175
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
176
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
177
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
178
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
179
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
180
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
183
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
184
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
187
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
197
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
198
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
199
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
202
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
203
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
207
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
209
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
211
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
213
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
216
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
218
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
220
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
222
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
224
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
225
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
227
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
233
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
234
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
237
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
238
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
239
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
240
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
241
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
242
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
247
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
249
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
250
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
251
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
252
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
253
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
254
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
255
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
256
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
257
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
258
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
259
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
260
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
261
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
262
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
263
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
264
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
265
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
266
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
267
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
268
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
270
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
274
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
277
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
287
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
288
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
292
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin"
297
+ }
298
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "</s>",
5
+ "unk_token": "<unk>"
6
+ }
tokenization_internlm.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) InternLM. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ """Tokenization classes for IntermLM."""
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+ from transformers.tokenization_utils import PreTrainedTokenizer
28
+ from transformers.utils import logging
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
33
+
34
+ PRETRAINED_VOCAB_FILES_MAP = {}
35
+
36
+
37
+ class InternLMTokenizer(PreTrainedTokenizer):
38
+ """
39
+ Construct a InternLM tokenizer. Based on byte-level Byte-Pair-Encoding.
40
+
41
+ Args:
42
+ vocab_file (`str`):
43
+ Path to the vocabulary file.
44
+ """
45
+
46
+ vocab_files_names = VOCAB_FILES_NAMES
47
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
48
+ model_input_names = ["input_ids", "attention_mask"]
49
+ _auto_class = "AutoTokenizer"
50
+
51
+ def __init__(
52
+ self,
53
+ vocab_file,
54
+ unk_token="<unk>",
55
+ bos_token="<s>",
56
+ eos_token="</s>",
57
+ pad_token="</s>",
58
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
59
+ add_bos_token=True,
60
+ add_eos_token=False,
61
+ decode_with_prefix_space=False,
62
+ clean_up_tokenization_spaces=False,
63
+ **kwargs,
64
+ ):
65
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
66
+ self.vocab_file = vocab_file
67
+ self.add_bos_token = add_bos_token
68
+ self.add_eos_token = add_eos_token
69
+ self.decode_with_prefix_space = decode_with_prefix_space
70
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
71
+ self.sp_model.Load(vocab_file)
72
+ self._no_prefix_space_tokens = None
73
+ super().__init__(
74
+ bos_token=bos_token,
75
+ eos_token=eos_token,
76
+ unk_token=unk_token,
77
+ pad_token=pad_token,
78
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
79
+ **kwargs,
80
+ )
81
+
82
+ """ Initialization"""
83
+
84
+ @property
85
+ def no_prefix_space_tokens(self):
86
+ if self._no_prefix_space_tokens is None:
87
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
88
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
89
+ return self._no_prefix_space_tokens
90
+
91
+ @property
92
+ def vocab_size(self):
93
+ """Returns vocab size"""
94
+ return self.sp_model.get_piece_size()
95
+
96
+ @property
97
+ def bos_token_id(self) -> Optional[int]:
98
+ return self.sp_model.bos_id()
99
+
100
+ @property
101
+ def eos_token_id(self) -> Optional[int]:
102
+ return self.sp_model.eos_id()
103
+
104
+ def get_vocab(self):
105
+ """Returns vocab as a dict"""
106
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
107
+ vocab.update(self.added_tokens_encoder)
108
+ return vocab
109
+
110
+ def _tokenize(self, text):
111
+ """Returns a tokenized string."""
112
+ return self.sp_model.encode(text, out_type=str)
113
+
114
+ def _convert_token_to_id(self, token):
115
+ """Converts a token (str) in an id using the vocab."""
116
+ return self.sp_model.piece_to_id(token)
117
+
118
+ def _convert_id_to_token(self, index):
119
+ """Converts an index (integer) in a token (str) using the vocab."""
120
+ token = self.sp_model.IdToPiece(index)
121
+ return token
122
+
123
+ def _maybe_add_prefix_space(self, tokens, decoded):
124
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
125
+ return " " + decoded
126
+ else:
127
+ return decoded
128
+
129
+ def convert_tokens_to_string(self, tokens):
130
+ """Converts a sequence of tokens (string) in a single string."""
131
+ current_sub_tokens = []
132
+ out_string = ""
133
+ prev_is_special = False
134
+ for token in tokens:
135
+ # make sure that special tokens are not decoded using sentencepiece model
136
+ if token in self.all_special_tokens:
137
+ if not prev_is_special:
138
+ out_string += " "
139
+ out_string += self.sp_model.decode(current_sub_tokens) + token
140
+ prev_is_special = True
141
+ current_sub_tokens = []
142
+ else:
143
+ current_sub_tokens.append(token)
144
+ prev_is_special = False
145
+ out_string += self.sp_model.decode(current_sub_tokens)
146
+ out_string = self.clean_up_tokenization(out_string)
147
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
148
+ return out_string[1:]
149
+
150
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
151
+ """
152
+ Save the vocabulary and special tokens file to a directory.
153
+
154
+ Args:
155
+ save_directory (`str`):
156
+ The directory in which to save the vocabulary.
157
+
158
+ Returns:
159
+ `Tuple(str)`: Paths to the files saved.
160
+ """
161
+ if not os.path.isdir(save_directory):
162
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
163
+ return
164
+ out_vocab_file = os.path.join(
165
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
166
+ )
167
+
168
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
169
+ copyfile(self.vocab_file, out_vocab_file)
170
+ elif not os.path.isfile(self.vocab_file):
171
+ with open(out_vocab_file, "wb") as fi:
172
+ content_spiece_model = self.sp_model.serialized_model_proto()
173
+ fi.write(content_spiece_model)
174
+
175
+ return (out_vocab_file,)
176
+
177
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
178
+ if self.add_bos_token:
179
+ bos_token_ids = [self.bos_token_id]
180
+ else:
181
+ bos_token_ids = []
182
+
183
+ output = bos_token_ids + token_ids_0
184
+
185
+ if token_ids_1 is not None:
186
+ output = output + token_ids_1
187
+
188
+ if self.add_eos_token:
189
+ output = output + [self.eos_token_id]
190
+
191
+ return output
192
+
193
+ def get_special_tokens_mask(
194
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
195
+ ) -> List[int]:
196
+ """
197
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
198
+ special tokens using the tokenizer `prepare_for_model` method.
199
+
200
+ Args:
201
+ token_ids_0 (`List[int]`):
202
+ List of IDs.
203
+ token_ids_1 (`List[int]`, *optional*):
204
+ Optional second list of IDs for sequence pairs.
205
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
206
+ Whether or not the token list is already formatted with special tokens for the model.
207
+
208
+ Returns:
209
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
210
+ """
211
+ if already_has_special_tokens:
212
+ return super().get_special_tokens_mask(
213
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
214
+ )
215
+
216
+ if token_ids_1 is None:
217
+ return [1] + ([0] * len(token_ids_0)) + [1]
218
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
219
+
220
+ def create_token_type_ids_from_sequences(
221
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
222
+ ) -> List[int]:
223
+ """
224
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
225
+ use of token type ids, therefore a list of zeros is returned.
226
+
227
+ Args:
228
+ token_ids_0 (`List[int]`):
229
+ List of IDs.
230
+ token_ids_1 (`List[int]`, *optional*):
231
+ Optional second list of IDs for sequence pairs.
232
+
233
+ Returns:
234
+ `List[int]`: List of zeros.
235
+ """
236
+ eos = [self.eos_token_id]
237
+
238
+ if token_ids_1 is None:
239
+ return len(token_ids_0 + eos) * [0]
240
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "additional_special_tokens": [],
29
+ "auto_map": {
30
+ "AutoTokenizer": [
31
+ "tokenization_internlm.InternLMTokenizer",
32
+ null
33
+ ]
34
+ },
35
+ "bos_token": "<s>",
36
+ "clean_up_tokenization_spaces": false,
37
+ "eos_token": "</s>",
38
+ "model_max_length": 1000000000000000019884624838656,
39
+ "pad_token": "</s>",
40
+ "tokenizer_class": "InternLMTokenizer",
41
+ "unk_token": "<unk>"
42
+ }