unsubscribe
commited on
Commit
·
24815bc
1
Parent(s):
ecfdae4
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,101 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
pipeline_tag: text-generation
|
4 |
---
|
5 |
+
|
6 |
+
<div align="center">
|
7 |
+
<img src="https://raw.githubusercontent.com/InternLM/lmdeploy/0be9e7ab6fe9a066cfb0a09d0e0c8d2e28435e58/resources/lmdeploy-logo.svg" width="450"/>
|
8 |
+
</div>
|
9 |
+
|
10 |
+
[LMDeploy](https://github.com/InternLM/lmdeploy) supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80, such as A10, A100, Geforce 30/40 series.
|
11 |
+
|
12 |
+
Before proceeding with the inference of `internlm-chat-20b-4bit`, please ensure that lmdeploy is installed.
|
13 |
+
|
14 |
+
```shell
|
15 |
+
pip install 'lmdeploy>=0.0.9'
|
16 |
+
```
|
17 |
+
|
18 |
+
## Inference
|
19 |
+
|
20 |
+
Please download `internlm-chat-20b-4bit` model as follows,
|
21 |
+
|
22 |
+
```shell
|
23 |
+
git-lfs install
|
24 |
+
git clone https://huggingface.co/internlm/internlm-chat-20b-4bit
|
25 |
+
```
|
26 |
+
|
27 |
+
As demonstrated in the command below, first convert the model's layout using `turbomind.deploy`, and then you can interact with the AI assistant in the terminal
|
28 |
+
|
29 |
+
```shell
|
30 |
+
|
31 |
+
# Convert the model's layout and store it in the default path, ./workspace.
|
32 |
+
python3 -m lmdeploy.serve.turbomind.deploy \
|
33 |
+
--model-name internlm-chat-20b \
|
34 |
+
--model-path ./internlm-chat-20b \
|
35 |
+
--model-format awq \
|
36 |
+
--group-size 128
|
37 |
+
|
38 |
+
# inference
|
39 |
+
python3 -m lmdeploy.turbomind.chat ./workspace
|
40 |
+
```
|
41 |
+
|
42 |
+
## Serve with gradio
|
43 |
+
|
44 |
+
If you wish to interact with the model via web UI, please initiate the gradio server as indicated below:
|
45 |
+
|
46 |
+
```shell
|
47 |
+
python3 -m lmdeploy.serve.turbomind ./workspace --server_name {ip_addr} --server_port {port}
|
48 |
+
```
|
49 |
+
|
50 |
+
Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model.
|
51 |
+
|
52 |
+
Besides serving with gradio, there are two more serving methods. One is serving with Triton Inference Server (TIS), and the other is an OpenAI-like server named as `api_server`.
|
53 |
+
|
54 |
+
Please refer to the [user guide](https://github.com/InternLM/lmdeploy#quick-start) for detailed information if you are interested.
|
55 |
+
|
56 |
+
|
57 |
+
## Inference Performance
|
58 |
+
|
59 |
+
LMDeploy provides scripts for benchmarking `token throughput` and `request throughput`.
|
60 |
+
|
61 |
+
`token throughput` tests the speed of generating new tokens, given a specified number of prompt tokens and completion tokens, while `request throughput` measures the number of requests processed per minute with real dialogue data.
|
62 |
+
|
63 |
+
We conducted benchmarks on `internlm-chat-20b-4bit`. And `token_throughput` was measured by setting 256 prompt tokens and generating 512 tokens in response on A100-80G.
|
64 |
+
|
65 |
+
**Note**: The `session_len` in `workspace/triton_models/weights/config.ini` is changed to `2056` in our test.
|
66 |
+
|
67 |
+
|
68 |
+
| batch | tensor parallel | prompt_tokens | completion_tokens | thr_per_proc(token/s) | thr_per_node(token/s) | rpm (req/min) | mem_per_proc(GB) | mem_per_gpu(GB) | mem_per_node(GB) |
|
69 |
+
|-------|-----------------|---------------|-------------------|-----------------------|-----------------------|---------------|------------------|-----------------|------------------|
|
70 |
+
| 1 | 1 | 256 | 512 | 79.12 | 632.98 | - | 15.67 | 15.67 | 125.35 |
|
71 |
+
| 16 | 1 | 256 | 512 | 708.76 | 5670.1 | 220.23 | 51.48 | 51.48 | 411.85 |
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
### token throughput
|
76 |
+
|
77 |
+
Run the following command,
|
78 |
+
|
79 |
+
```shell
|
80 |
+
python benchmark/profile_generation.py \
|
81 |
+
--model-path ./workspace \
|
82 |
+
--concurrency 1 8 16 --prompt-tokens 256 512 512 1024 --completion-tokens 512 512 1024 1024
|
83 |
+
--dst-csv ./token_throughput.csv
|
84 |
+
```
|
85 |
+
You will find the `token_throughput` metrics in `./token_throughput.csv`
|
86 |
+
|
87 |
+
|
88 |
+
### request throughput
|
89 |
+
|
90 |
+
LMDeploy uses ShareGPT dataset to test request throughput. Try the next commands, and you will get the `rpm` (request per minute) metric.
|
91 |
+
|
92 |
+
```
|
93 |
+
# download the ShareGPT dataset
|
94 |
+
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
95 |
+
|
96 |
+
#
|
97 |
+
python profile_throughput.py \
|
98 |
+
ShareGPT_V3_unfiltered_cleaned_split.json \
|
99 |
+
./workspace \
|
100 |
+
--concurrency 16
|
101 |
+
```
|