File size: 13,288 Bytes
ed5e355 4217652 ae7d989 4217652 caaa9dd 4217652 297f4f6 4217652 caaa9dd 4217652 297f4f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
---
pipeline_tag: text-generation
---
# InternLM
<div align="center">
<img src="https://github.com/InternLM/InternLM/assets/22529082/b9788105-8892-4398-8b47-b513a292378e" width="200"/>
<div> </div>
<div align="center">
<b><font size="5">InternLM</font></b>
<sup>
<a href="https://internlm.intern-ai.org.cn/">
<i><font size="4">HOT</font></i>
</a>
</sup>
<div> </div>
</div>
[![evaluation](https://github.com/InternLM/InternLM/assets/22529082/f80a2a58-5ddf-471a-8da4-32ab65c8fd3b)](https://github.com/internLM/OpenCompass/)
[💻Github Repo](https://github.com/InternLM/InternLM) • [🤔Reporting Issues](https://github.com/InternLM/InternLM/issues/new)
</div>
## Introduction
InternLM has open-sourced a 7 billion parameter base model and a chat model tailored for practical scenarios. The model has the following characteristics:
- It leverages trillions of high-quality tokens for training to establish a powerful knowledge base.
- It supports an 8k context window length, enabling longer input sequences and stronger reasoning capabilities.
- It provides a versatile toolset for users to flexibly build their own workflows.
## InternLM-7B
### Performance Evaluation
We conducted a comprehensive evaluation of InternLM using the open-source evaluation tool [OpenCompass](https://github.com/internLM/OpenCompass/). The evaluation covered five dimensions of capabilities: disciplinary competence, language competence, knowledge competence, inference competence, and comprehension competence. Here are some of the evaluation results, and you can visit the [OpenCompass leaderboard](https://opencompass.org.cn/rank) for more evaluation results.
| Datasets\Models | **InternLM-Chat-7B** | **InternLM-7B** | LLaMA-7B | Baichuan-7B | ChatGLM2-6B | Alpaca-7B | Vicuna-7B |
| -------------------- | --------------------- | ---------------- | --------- | --------- | ------------ | --------- | ---------- |
| C-Eval(Val) | 53.2 | 53.4 | 24.2 | 42.7 | 50.9 | 28.9 | 31.2 |
| MMLU | 50.8 | 51.0 | 35.2* | 41.5 | 46.0 | 39.7 | 47.3 |
| AGIEval | 42.5 | 37.6 | 20.8 | 24.6 | 39.0 | 24.1 | 26.4 |
| CommonSenseQA | 75.2 | 59.5 | 65.0 | 58.8 | 60.0 | 68.7 | 66.7 |
| BUSTM | 74.3 | 50.6 | 48.5 | 51.3 | 55.0 | 48.8 | 62.5 |
| CLUEWSC | 78.6 | 59.1 | 50.3 | 52.8 | 59.8 | 50.3 | 52.2 |
| MATH | 6.4 | 7.1 | 2.8 | 3.0 | 6.6 | 2.2 | 2.8 |
| GSM8K | 34.5 | 31.2 | 10.1 | 9.7 | 29.2 | 6.0 | 15.3 |
| HumanEval | 14.0 | 10.4 | 14.0 | 9.2 | 9.2 | 9.2 | 11.0 |
| RACE(High) | 76.3 | 57.4 | 46.9* | 28.1 | 66.3 | 40.7 | 54.0 |
- The evaluation results were obtained from [OpenCompass 20230706](https://github.com/internLM/OpenCompass/) (some data marked with *, which means come from the original papers), and evaluation configuration can be found in the configuration files provided by [OpenCompass](https://github.com/internLM/OpenCompass/).
- The evaluation data may have numerical differences due to the version iteration of [OpenCompass](https://github.com/internLM/OpenCompass/), so please refer to the latest evaluation results of [OpenCompass](https://github.com/internLM/OpenCompass/).
**Limitations:** Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
### Import from Transformers
To load the InternLM 7B Chat model using Transformers, use the following code:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and cause OOM Error.
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", torch_dtype=torch.float16, trust_remote_code=True).cuda()
model = model.eval()
response, history = model.chat(tokenizer, "hello", history=[])
print(response)
# Hello! How can I help you today?
response, history = model.chat(tokenizer, "please provide three suggestions about time management", history=history)
print(response)
# Sure, here are three tips for effective time management:
#
# 1. Prioritize tasks based on importance and urgency: Make a list of all your tasks and categorize them into "important and urgent," "important but not urgent," and "not important but urgent." Focus on completing the tasks in the first category before moving on to the others.
# 2. Use a calendar or planner: Write down deadlines and appointments in a calendar or planner so you don't forget them. This will also help you schedule your time more effectively and avoid overbooking yourself.
# 3. Minimize distractions: Try to eliminate any potential distractions when working on important tasks. Turn off notifications on your phone, close unnecessary tabs on your computer, and find a quiet place to work if possible.
#
# Remember, good time management skills take practice and patience. Start with small steps and gradually incorporate these habits into your daily routine.
```
The responses can be streamed using `stream_chat`:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "internlm/internlm-chat-7b"
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.eval()
length = 0
for response, history in model.stream_chat(tokenizer, "Hello", history=[]):
print(response[length:], flush=True, end="")
length = len(response)
```
### Dialogue
You can interact with the InternLM Chat 7B model through a frontend interface by running the following code:
```bash
pip install streamlit==1.24.0
pip install transformers==4.30.2
streamlit run web_demo.py
```
The effect is as follows
![demo](https://github.com/InternLM/InternLM/assets/9102141/11b60ee0-47e4-42c0-8278-3051b2f17fe4)
## Open Source License
The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow **free** commercial usage. To apply for a commercial license, please fill in the [application form (English)](https://wj.qq.com/s2/12727483/5dba/)/[申请表(中文)](https://wj.qq.com/s2/12725412/f7c1/). For other questions or collaborations, please contact <internlm@pjlab.org.cn>.
## 简介
InternLM ,即书生·浦语大模型,包含面向实用场景的70亿参数基础模型与对话模型 (InternLM-7B)。模型具有以下特点:
- 使用上万亿高质量预料,建立模型超强知识体系;
- 支持8k语境窗口长度,实现更长输入与更强推理体验;
- 通用工具调用能力,支持用户灵活自助搭建流程;
## InternLM-7B
### 性能评测
我们使用开源评测工具 [OpenCompass](https://github.com/internLM/OpenCompass/) 从学科综合能力、语言能力、知识能力、推理能力、理解能力五大能力维度对InternLM开展全面评测,部分评测结果如下表所示,欢迎访问[ OpenCompass 榜单 ](https://opencompass.org.cn/rank)获取更多的评测结果。
| 数据集\模型 | **InternLM-Chat-7B** | **InternLM-7B** | LLaMA-7B | Baichuan-7B | ChatGLM2-6B | Alpaca-7B | Vicuna-7B |
| -------------------- | --------------------- | ---------------- | --------- | --------- | ------------ | --------- | ---------- |
| C-Eval(Val) | 53.2 | 53.4 | 24.2 | 42.7 | 50.9 | 28.9 | 31.2 |
| MMLU | 50.8 | 51.0 | 35.2* | 41.5 | 46.0 | 39.7 | 47.3 |
| AGIEval | 42.5 | 37.6 | 20.8 | 24.6 | 39.0 | 24.1 | 26.4 |
| CommonSenseQA | 75.2 | 59.5 | 65.0 | 58.8 | 60.0 | 68.7 | 66.7 |
| BUSTM | 74.3 | 50.6 | 48.5 | 51.3 | 55.0 | 48.8 | 62.5 |
| CLUEWSC | 78.6 | 59.1 | 50.3 | 52.8 | 59.8 | 50.3 | 52.2 |
| MATH | 6.4 | 7.1 | 2.8 | 3.0 | 6.6 | 2.2 | 2.8 |
| GSM8K | 34.5 | 31.2 | 10.1 | 9.7 | 29.2 | 6.0 | 15.3 |
| HumanEval | 14.0 | 10.4 | 14.0 | 9.2 | 9.2 | 9.2 | 11.0 |
| RACE(High) | 76.3 | 57.4 | 46.9* | 28.1 | 66.3 | 40.7 | 54.0 |
- 以上评测结果基于 [OpenCompass 20230706](https://github.com/internLM/OpenCompass/) 获得(部分数据标注`*`代表数据来自原始论文),具体测试细节可参见 [OpenCompass](https://github.com/internLM/OpenCompass/) 中提供的配置文件。
- 评测数据会因 [OpenCompass](https://github.com/internLM/OpenCompass/) 的版本迭代而存在数值差异,请以 [OpenCompass](https://github.com/internLM/OpenCompass/) 最新版的评测结果为主。
**局限性:** 尽管在训练过程中我们非常注重模型的安全性,尽力促使模型输出符合伦理和法律要求的文本,但受限于模型大小以及概率生成范式,模型可能会产生各种不符合预期的输出,例如回复内容包含偏见、歧视等有害内容,请勿传播这些内容。由于传播不良信息导致的任何后果,本项目不承担责任。
### 通过 Transformers 加载
通过以下的代码加载 InternLM 7B Chat 模型
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
# `torch_dtype=torch.float16` 可以令模型以 float16 精度加载,否则 transformers 会将模型加载为 float32,导致显存不足
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", torch_dtype=torch.float16, trust_remote_code=True).cuda()
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
# 你好!有什么我可以帮助你的吗?
response, history = model.chat(tokenizer, "请提供三个管理时间的建议。", history=history)
print(response)
# 当然可以!以下是三个管理时间的建议:
# 1. 制定计划:制定一个详细的计划,包括每天要完成的任务和活动。这将有助于您更好地组织时间,并确保您能够按时完成任务。
# 2. 优先级:将任务按照优先级排序,先完成最重要的任务。这将确保您能够在最短的时间内完成最重要的任务,从而节省时间。
# 3. 集中注意力:避免分心,集中注意力完成任务。关闭社交媒体和电子邮件通知,专注于任务,这将帮助您更快地完成任务,并减少错误的可能性。
```
如果想进行流式生成,则可以使用 `stream_chat` 接口:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "internlm/internlm-chat-7b"
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dype=torch.float16, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.eval()
length = 0
for response, history in model.stream_chat(tokenizer, "你好", history=[]):
print(response[length:], flush=True, end="")
length = len(response)
```
### 通过前端网页对话
可以通过以下代码启动一个前端的界面来与 InternLM Chat 7B 模型进行交互
```bash
pip install streamlit==1.24.0
pip install transformers==4.30.2
streamlit run web_demo.py
```
效果如下
![效果](https://github.com/InternLM/InternLM/assets/9102141/11b60ee0-47e4-42c0-8278-3051b2f17fe4)
## 开源许可证
本仓库的代码依照 Apache-2.0 协议开源。模型权重对学术研究完全开放,也可申请免费的商业使用授权([申请表](https://wj.qq.com/s2/12725412/f7c1/))。其他问题与合作请联系 <internlm@pjlab.org.cn>。 |