internlm-xcomposer-7b / modeling_utils.py
myownskyW7's picture
upload chat model
c150360
raw
history blame
3.85 kB
import logging
import math
import os
from contextlib import contextmanager
import timm.models.hub as timm_hub
import torch
import torch.distributed as dist
import torch.nn as nn
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def download_cached_file(url, check_hash=True, progress=False):
"""
Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
"""
def get_cached_file_path():
# a hack to sync the file path across processes
parts = torch.hub.urlparse(url)
filename = os.path.basename(parts.path)
cached_file = os.path.join(timm_hub.get_cache_dir(), filename)
return cached_file
if is_main_process():
timm_hub.download_cached_file(url, check_hash, progress)
if is_dist_avail_and_initialized():
dist.barrier()
return get_cached_file_path()
@contextmanager
def all_logging_disabled(highest_level=logging.CRITICAL):
"""
A context manager that will prevent any logging messages
triggered during the body from being processed.
:param highest_level: the maximum logging level in use.
This would only need to be changed if a custom level greater than CRITICAL
is defined.
"""
# two kind-of hacks here:
# * can't get the highest logging level in effect => delegate to the user
# * can't get the current module-level override => use an undocumented
# (but non-private!) interface
previous_level = logging.root.manager.disable
logging.disable(highest_level)
try:
yield
finally:
logging.disable(previous_level)
class LoRALinear(nn.Linear):
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
lora_r=8,
lora_alpha=16,
lora_dropout=0.05,
**kwargs) -> None:
super().__init__(in_features, out_features, bias, device, dtype)
self.lora_r = lora_r
self.lora_alpha = lora_alpha
if lora_dropout > 0.:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
self.lora_scaling = self.lora_alpha / self.lora_r
self.lora_A = nn.Linear(in_features,
self.lora_r,
bias=False,
device=device,
dtype=dtype)
self.lora_B = nn.Linear(self.lora_r,
out_features,
bias=False,
device=device,
dtype=dtype)
self.reset_parameters()
def reset_parameters(self):
if hasattr(self, 'lora_A'):
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
nn.init.zeros_(self.lora_B.weight)
#print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
def forward(self, x):
orig_type = x.dtype
res = super().forward(x)
x = x.float()
res += self.lora_B(self.lora_A(
self.lora_dropout(x))) * self.lora_scaling
return res.to(orig_type)