myownskyW7
commited on
Commit
•
bb26c26
1
Parent(s):
c150360
Fix path
Browse files- modeling_InternLM.py +41 -139
- modeling_vit.py +1 -1
modeling_InternLM.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
-
# This script is based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
2 |
-
""" PyTorch LLaMA model."""
|
3 |
import math
|
4 |
from typing import List, Union
|
5 |
from typing import Optional, Tuple
|
6 |
|
7 |
-
# from apex.normalization.fused_layer_norm import MixedFusedRMSNorm as LlamaRMSNorm
|
8 |
import rotary_emb
|
9 |
import torch
|
10 |
import torch.utils.checkpoint
|
@@ -16,18 +13,14 @@ from torch.nn import CrossEntropyLoss
|
|
16 |
from transformers.activations import ACT2FN
|
17 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
18 |
from transformers.modeling_utils import PreTrainedModel
|
19 |
-
from transformers.models.llama.configuration_llama import LlamaConfig
|
20 |
-
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
|
21 |
from transformers.utils import logging
|
22 |
|
23 |
-
from modeling_utils import LoRALinear
|
24 |
-
|
25 |
-
# from flash_attn.modules.mha import FlashSelfAttention
|
26 |
|
27 |
logger = logging.get_logger(__name__)
|
28 |
|
29 |
-
_CONFIG_FOR_DOC = "
|
30 |
-
""" PyTorch LLaMA model."""
|
31 |
|
32 |
|
33 |
class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
@@ -77,7 +70,7 @@ class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
|
77 |
return dqkv, None, None, None, None
|
78 |
|
79 |
|
80 |
-
class
|
81 |
def __init__(self, dim: int, base=10000, scale_base=0, device=None):
|
82 |
""" """
|
83 |
super().__init__()
|
@@ -168,9 +161,9 @@ apply_rotary_emb_qkv_ = ApplyRotaryEmbQKV_.apply
|
|
168 |
legacy_apply_rotary_embed_qkv = LegacyApplyRotaryEmbQKV_.apply
|
169 |
|
170 |
|
171 |
-
class
|
172 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
173 |
-
def __init__(self, config:
|
174 |
super().__init__()
|
175 |
self.config = config
|
176 |
self.hidden_size = config.hidden_size
|
@@ -244,7 +237,7 @@ class InternConvertedLlamaAttention(nn.Module):
|
|
244 |
bias=config.kqvo_bias,
|
245 |
)
|
246 |
|
247 |
-
self.rotary_emb =
|
248 |
|
249 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
250 |
return tensor.view(bsz, seq_len, self.num_heads,
|
@@ -460,10 +453,10 @@ def _expand_mask(mask: torch.Tensor,
|
|
460 |
torch.finfo(dtype).min)
|
461 |
|
462 |
|
463 |
-
class
|
464 |
def __init__(self, hidden_size, eps=1e-6):
|
465 |
"""
|
466 |
-
|
467 |
"""
|
468 |
super().__init__()
|
469 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
@@ -482,7 +475,7 @@ class LlamaRMSNorm(nn.Module):
|
|
482 |
return self.weight * hidden_states
|
483 |
|
484 |
|
485 |
-
class
|
486 |
def __init__(self,
|
487 |
dim,
|
488 |
max_position_embeddings=2048,
|
@@ -550,9 +543,9 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
|
550 |
return q_embed, k_embed
|
551 |
|
552 |
|
553 |
-
class
|
554 |
def __init__(self, hidden_size: int, intermediate_size: int,
|
555 |
-
hidden_act: str, config:
|
556 |
super().__init__()
|
557 |
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
558 |
if config.lora_cfg is not None and 'ffn' in config.lora_cfg[
|
@@ -579,9 +572,9 @@ class LlamaMLP(nn.Module):
|
|
579 |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
580 |
|
581 |
|
582 |
-
class
|
583 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
584 |
-
def __init__(self, config:
|
585 |
super().__init__()
|
586 |
self.config = config
|
587 |
self.hidden_size = config.hidden_size
|
@@ -648,7 +641,7 @@ class LlamaAttention(nn.Module):
|
|
648 |
self.hidden_size,
|
649 |
bias=False)
|
650 |
|
651 |
-
self.rotary_emb =
|
652 |
self.head_dim,
|
653 |
max_position_embeddings=self.max_position_embeddings)
|
654 |
|
@@ -731,25 +724,25 @@ class LlamaAttention(nn.Module):
|
|
731 |
return attn_output, attn_weights, past_key_value
|
732 |
|
733 |
|
734 |
-
class
|
735 |
-
def __init__(self, config:
|
736 |
super().__init__()
|
737 |
self.hidden_size = config.hidden_size
|
738 |
if hasattr(config,
|
739 |
'intern_converted_llm') and config.intern_converted_llm:
|
740 |
-
self.self_attn =
|
741 |
else:
|
742 |
-
self.self_attn =
|
743 |
-
self.mlp =
|
744 |
hidden_size=self.hidden_size,
|
745 |
intermediate_size=config.intermediate_size,
|
746 |
hidden_act=config.hidden_act,
|
747 |
config=config,
|
748 |
)
|
749 |
-
self.input_layernorm =
|
750 |
-
|
751 |
-
self.post_attention_layernorm =
|
752 |
-
|
753 |
|
754 |
def forward(
|
755 |
self,
|
@@ -807,32 +800,11 @@ class LlamaDecoderLayer(nn.Module):
|
|
807 |
return outputs
|
808 |
|
809 |
|
810 |
-
|
811 |
-
|
812 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
813 |
-
etc.)
|
814 |
-
|
815 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
816 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
817 |
-
and behavior.
|
818 |
-
|
819 |
-
Parameters:
|
820 |
-
config ([`LlamaConfig`]):
|
821 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
822 |
-
load the weights associated with the model, only the configuration. Check out the
|
823 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
824 |
-
"""
|
825 |
-
|
826 |
-
|
827 |
-
@add_start_docstrings(
|
828 |
-
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
829 |
-
LLAMA_START_DOCSTRING,
|
830 |
-
)
|
831 |
-
class LlamaPreTrainedModel(PreTrainedModel):
|
832 |
-
config_class = LlamaConfig
|
833 |
base_model_prefix = "model"
|
834 |
supports_gradient_checkpointing = True
|
835 |
-
_no_split_modules = ["
|
836 |
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
837 |
|
838 |
def _init_weights(self, module):
|
@@ -847,86 +819,18 @@ class LlamaPreTrainedModel(PreTrainedModel):
|
|
847 |
module.weight.data[module.padding_idx].zero_()
|
848 |
|
849 |
def _set_gradient_checkpointing(self, module, value=False):
|
850 |
-
if isinstance(module,
|
851 |
module.gradient_checkpointing = value
|
852 |
|
853 |
|
854 |
-
|
855 |
-
Args:
|
856 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
857 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
858 |
-
it.
|
859 |
-
|
860 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
861 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
862 |
-
|
863 |
-
[What are input IDs?](../glossary#input-ids)
|
864 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
865 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
866 |
-
|
867 |
-
- 1 for tokens that are **not masked**,
|
868 |
-
- 0 for tokens that are **masked**.
|
869 |
-
|
870 |
-
[What are attention masks?](../glossary#attention-mask)
|
871 |
-
|
872 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
873 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
874 |
-
|
875 |
-
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
876 |
-
`past_key_values`).
|
877 |
-
|
878 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
879 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
880 |
-
information on the default strategy.
|
881 |
-
|
882 |
-
- 1 indicates the head is **not masked**,
|
883 |
-
- 0 indicates the head is **masked**.
|
884 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
885 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
886 |
-
config.n_positions - 1]`.
|
887 |
-
|
888 |
-
[What are position IDs?](../glossary#position-ids)
|
889 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
890 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
891 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
892 |
-
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
893 |
-
|
894 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
895 |
-
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
896 |
-
|
897 |
-
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
898 |
-
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
899 |
-
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
900 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
901 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
902 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
903 |
-
model's internal embedding lookup matrix.
|
904 |
-
use_cache (`bool`, *optional*):
|
905 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
906 |
-
`past_key_values`).
|
907 |
-
output_attentions (`bool`, *optional*):
|
908 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
909 |
-
tensors for more detail.
|
910 |
-
output_hidden_states (`bool`, *optional*):
|
911 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
912 |
-
more detail.
|
913 |
-
return_dict (`bool`, *optional*):
|
914 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
915 |
-
"""
|
916 |
-
|
917 |
-
|
918 |
-
@add_start_docstrings(
|
919 |
-
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
920 |
-
LLAMA_START_DOCSTRING,
|
921 |
-
)
|
922 |
-
class LlamaModel(LlamaPreTrainedModel):
|
923 |
"""
|
924 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`
|
925 |
|
926 |
Args:
|
927 |
-
config:
|
928 |
"""
|
929 |
-
def __init__(self, config:
|
930 |
super().__init__(config)
|
931 |
self.padding_idx = config.pad_token_id
|
932 |
self.vocab_size = config.vocab_size
|
@@ -934,9 +838,11 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
934 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size,
|
935 |
self.padding_idx)
|
936 |
self.layers = nn.ModuleList([
|
937 |
-
|
|
|
938 |
])
|
939 |
-
self.norm =
|
|
|
940 |
|
941 |
self.gradient_checkpointing = False
|
942 |
# Initialize weights and apply final processing
|
@@ -975,7 +881,6 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
975 |
|
976 |
return combined_attention_mask
|
977 |
|
978 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
979 |
def forward(
|
980 |
self,
|
981 |
input_ids: torch.LongTensor = None,
|
@@ -1119,19 +1024,19 @@ class LlamaModel(LlamaPreTrainedModel):
|
|
1119 |
)
|
1120 |
|
1121 |
|
1122 |
-
class
|
1123 |
lora_cfg = None # init in MiniGPT4
|
1124 |
|
1125 |
def __init__(self, config):
|
1126 |
super().__init__(config)
|
1127 |
-
# TODO: find a way to explicitly initialize
|
1128 |
setattr(config, 'lora_cfg', self.lora_cfg)
|
1129 |
|
1130 |
if hasattr(config, 'kqvo_bias'):
|
1131 |
setattr(config, 'kqvo_bias', config.kqvo_bias)
|
1132 |
else:
|
1133 |
setattr(config, 'kqvo_bias', False)
|
1134 |
-
self.model =
|
1135 |
|
1136 |
self.lm_head = nn.Linear(config.hidden_size,
|
1137 |
config.vocab_size,
|
@@ -1185,9 +1090,6 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
1185 |
def get_decoder(self):
|
1186 |
return self.model
|
1187 |
|
1188 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1189 |
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast,
|
1190 |
-
config_class=_CONFIG_FOR_DOC)
|
1191 |
def forward(
|
1192 |
self,
|
1193 |
input_ids: torch.LongTensor = None,
|
@@ -1214,9 +1116,9 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
1214 |
Example:
|
1215 |
|
1216 |
```python
|
1217 |
-
>>> from transformers import AutoTokenizer,
|
1218 |
|
1219 |
-
>>> model =
|
1220 |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1221 |
|
1222 |
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
|
|
|
|
|
|
1 |
import math
|
2 |
from typing import List, Union
|
3 |
from typing import Optional, Tuple
|
4 |
|
|
|
5 |
import rotary_emb
|
6 |
import torch
|
7 |
import torch.utils.checkpoint
|
|
|
13 |
from transformers.activations import ACT2FN
|
14 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
15 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
|
16 |
from transformers.utils import logging
|
17 |
|
18 |
+
from .modeling_utils import LoRALinear
|
19 |
+
from .configuration_InternLM_XComposer import InternLMXComposerConfig
|
|
|
20 |
|
21 |
logger = logging.get_logger(__name__)
|
22 |
|
23 |
+
_CONFIG_FOR_DOC = "InternLMXComposerConfig"
|
|
|
24 |
|
25 |
|
26 |
class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
|
|
70 |
return dqkv, None, None, None, None
|
71 |
|
72 |
|
73 |
+
class ConvertedInternLMRotaryEmbedding(torch.nn.Module):
|
74 |
def __init__(self, dim: int, base=10000, scale_base=0, device=None):
|
75 |
""" """
|
76 |
super().__init__()
|
|
|
161 |
legacy_apply_rotary_embed_qkv = LegacyApplyRotaryEmbQKV_.apply
|
162 |
|
163 |
|
164 |
+
class InternConvertedInternLMAttention(nn.Module):
|
165 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
166 |
+
def __init__(self, config: InternLMXComposerConfig):
|
167 |
super().__init__()
|
168 |
self.config = config
|
169 |
self.hidden_size = config.hidden_size
|
|
|
237 |
bias=config.kqvo_bias,
|
238 |
)
|
239 |
|
240 |
+
self.rotary_emb = ConvertedInternLMRotaryEmbedding(self.head_dim)
|
241 |
|
242 |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
243 |
return tensor.view(bsz, seq_len, self.num_heads,
|
|
|
453 |
torch.finfo(dtype).min)
|
454 |
|
455 |
|
456 |
+
class InternLMRMSNorm(nn.Module):
|
457 |
def __init__(self, hidden_size, eps=1e-6):
|
458 |
"""
|
459 |
+
InternLMRMSNorm is equivalent to T5LayerNorm
|
460 |
"""
|
461 |
super().__init__()
|
462 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
|
475 |
return self.weight * hidden_states
|
476 |
|
477 |
|
478 |
+
class InternLMRotaryEmbedding(torch.nn.Module):
|
479 |
def __init__(self,
|
480 |
dim,
|
481 |
max_position_embeddings=2048,
|
|
|
543 |
return q_embed, k_embed
|
544 |
|
545 |
|
546 |
+
class InternLMMLP(nn.Module):
|
547 |
def __init__(self, hidden_size: int, intermediate_size: int,
|
548 |
+
hidden_act: str, config: InternLMXComposerConfig):
|
549 |
super().__init__()
|
550 |
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
551 |
if config.lora_cfg is not None and 'ffn' in config.lora_cfg[
|
|
|
572 |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
573 |
|
574 |
|
575 |
+
class InternLMAttention(nn.Module):
|
576 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
577 |
+
def __init__(self, config: InternLMXComposerConfig):
|
578 |
super().__init__()
|
579 |
self.config = config
|
580 |
self.hidden_size = config.hidden_size
|
|
|
641 |
self.hidden_size,
|
642 |
bias=False)
|
643 |
|
644 |
+
self.rotary_emb = InternLMRotaryEmbedding(
|
645 |
self.head_dim,
|
646 |
max_position_embeddings=self.max_position_embeddings)
|
647 |
|
|
|
724 |
return attn_output, attn_weights, past_key_value
|
725 |
|
726 |
|
727 |
+
class InternLMDecoderLayer(nn.Module):
|
728 |
+
def __init__(self, config: InternLMXComposerConfig):
|
729 |
super().__init__()
|
730 |
self.hidden_size = config.hidden_size
|
731 |
if hasattr(config,
|
732 |
'intern_converted_llm') and config.intern_converted_llm:
|
733 |
+
self.self_attn = InternConvertedInternLMAttention(config=config)
|
734 |
else:
|
735 |
+
self.self_attn = InternLMAttention(config=config)
|
736 |
+
self.mlp = InternLMMLP(
|
737 |
hidden_size=self.hidden_size,
|
738 |
intermediate_size=config.intermediate_size,
|
739 |
hidden_act=config.hidden_act,
|
740 |
config=config,
|
741 |
)
|
742 |
+
self.input_layernorm = InternLMRMSNorm(config.hidden_size,
|
743 |
+
eps=config.rms_norm_eps)
|
744 |
+
self.post_attention_layernorm = InternLMRMSNorm(
|
745 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
746 |
|
747 |
def forward(
|
748 |
self,
|
|
|
800 |
return outputs
|
801 |
|
802 |
|
803 |
+
class InternLMPreTrainedModel(PreTrainedModel):
|
804 |
+
config_class = InternLMXComposerConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
805 |
base_model_prefix = "model"
|
806 |
supports_gradient_checkpointing = True
|
807 |
+
_no_split_modules = ["InternLMDecoderLayer"]
|
808 |
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
809 |
|
810 |
def _init_weights(self, module):
|
|
|
819 |
module.weight.data[module.padding_idx].zero_()
|
820 |
|
821 |
def _set_gradient_checkpointing(self, module, value=False):
|
822 |
+
if isinstance(module, InternLMModel):
|
823 |
module.gradient_checkpointing = value
|
824 |
|
825 |
|
826 |
+
class InternLMModel(InternLMPreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
827 |
"""
|
828 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLMDecoderLayer`]
|
829 |
|
830 |
Args:
|
831 |
+
config: InternLMXComposerConfig
|
832 |
"""
|
833 |
+
def __init__(self, config: InternLMXComposerConfig):
|
834 |
super().__init__(config)
|
835 |
self.padding_idx = config.pad_token_id
|
836 |
self.vocab_size = config.vocab_size
|
|
|
838 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size,
|
839 |
self.padding_idx)
|
840 |
self.layers = nn.ModuleList([
|
841 |
+
InternLMDecoderLayer(config)
|
842 |
+
for _ in range(config.num_hidden_layers)
|
843 |
])
|
844 |
+
self.norm = InternLMRMSNorm(config.hidden_size,
|
845 |
+
eps=config.rms_norm_eps)
|
846 |
|
847 |
self.gradient_checkpointing = False
|
848 |
# Initialize weights and apply final processing
|
|
|
881 |
|
882 |
return combined_attention_mask
|
883 |
|
|
|
884 |
def forward(
|
885 |
self,
|
886 |
input_ids: torch.LongTensor = None,
|
|
|
1024 |
)
|
1025 |
|
1026 |
|
1027 |
+
class InternLMForCausalLM(InternLMPreTrainedModel):
|
1028 |
lora_cfg = None # init in MiniGPT4
|
1029 |
|
1030 |
def __init__(self, config):
|
1031 |
super().__init__(config)
|
1032 |
+
# TODO: find a way to explicitly initialize InternLM
|
1033 |
setattr(config, 'lora_cfg', self.lora_cfg)
|
1034 |
|
1035 |
if hasattr(config, 'kqvo_bias'):
|
1036 |
setattr(config, 'kqvo_bias', config.kqvo_bias)
|
1037 |
else:
|
1038 |
setattr(config, 'kqvo_bias', False)
|
1039 |
+
self.model = InternLMModel(config)
|
1040 |
|
1041 |
self.lm_head = nn.Linear(config.hidden_size,
|
1042 |
config.vocab_size,
|
|
|
1090 |
def get_decoder(self):
|
1091 |
return self.model
|
1092 |
|
|
|
|
|
|
|
1093 |
def forward(
|
1094 |
self,
|
1095 |
input_ids: torch.LongTensor = None,
|
|
|
1116 |
Example:
|
1117 |
|
1118 |
```python
|
1119 |
+
>>> from transformers import AutoTokenizer, InternLMForCausalLM
|
1120 |
|
1121 |
+
>>> model = InternLMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1122 |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1123 |
|
1124 |
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
modeling_vit.py
CHANGED
@@ -7,7 +7,7 @@ import torch.nn.functional as F
|
|
7 |
import torch.utils.checkpoint as checkpoint
|
8 |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
9 |
|
10 |
-
from modeling_utils import download_cached_file
|
11 |
|
12 |
|
13 |
def _cfg(url='', **kwargs):
|
|
|
7 |
import torch.utils.checkpoint as checkpoint
|
8 |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
9 |
|
10 |
+
from .modeling_utils import download_cached_file
|
11 |
|
12 |
|
13 |
def _cfg(url='', **kwargs):
|