File size: 4,163 Bytes
0dd2645 61a07f5 0dd2645 61a07f5 0dd2645 61a07f5 0dd2645 61a07f5 12ca35c 0dd2645 e447636 0dd2645 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
license: other
pipeline_tag: visual-question-answering
---
<p align="center">
<img src="logo_en.png" width="600"/>
<p>
<p align="center">
<b><font size="6">InternLM-XComposer-2.5-OL</font></b>
<p>
<div align="center">
[💻Github Repo](https://github.com/InternLM/InternLM-XComposer)
</div>
**InternLM-XComposer2.5-OL**, a comprehensive multimodal system for long-term streaming video and audio interactions.
### Import from Transformers
To load the base LLM model using Transformers, use the following code:
```python
import torch
from transformers import AutoModel, AutoTokenizer
torch.set_grad_enabled(False)
# init model and tokenizer
model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-ol-7b', model_dir='base', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval().half()
tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-ol-7b', model_dir='base', trust_remote_code=True)
model.tokenizer = tokenizer
```
To load the base audio model using MS-Swift, use the following code:
```python
import os
os.environ['USE_HF'] = 'True'
import torch
from swift.llm import (
get_model_tokenizer, get_template, ModelType,
get_default_template_type, inference
)
from swift.utils import seed_everything
model_type = ModelType.qwen2_audio_7b_instruct
model_id_or_path = 'internlm/internlm-xcomposer2d5-ol-7b'
template_type = get_default_template_type(model_type)
print(f'template_type: {template_type}')
model, tokenizer = get_model_tokenizer(model_type, torch.float16, model_id_or_path=model_id_or_path, model_dir='audio',
model_kwargs={'device_map': 'cuda:0'})
model.generation_config.max_new_tokens = 256
template = get_template(template_type, tokenizer)
seed_everything(42)
```
## Quickstart
We provide simple examples below to show how to use InternLM-XComposer-2.5-OL with 🤗 Transformers. For complete guide, please refer to [here](examples/README.md).
<details>
<summary>
<b>Audio Understanding</b>
</summary>
```python
import os
os.environ['USE_HF'] = 'True'
import torch
from swift.llm import (
get_model_tokenizer, get_template, ModelType,
get_default_template_type, inference
)
from swift.utils import seed_everything
model_type = ModelType.qwen2_audio_7b_instruct
model_id_or_path = 'internlm/internlm-xcomposer2d5-ol-7b'
template_type = get_default_template_type(model_type)
print(f'template_type: {template_type}')
model, tokenizer = get_model_tokenizer(model_type, torch.float16, model_id_or_path=model_id_or_path, model_dir='audio',
model_kwargs={'device_map': 'cuda:0'})
model.generation_config.max_new_tokens = 256
template = get_template(template_type, tokenizer)
seed_everything(42)
# Chinese ASR
query = '<audio>Detect the language and recognize the speech.'
response, _ = inference(model, template, query, audios='examples/audios/chinese.mp3')
print(f'query: {query}')
print(f'response: {response}')
```
</details>
<details>
<summary>
<b>Image Understanding</b>
</summary>
```python
import torch
from transformers import AutoModel, AutoTokenizer
torch.set_grad_enabled(False)
# init model and tokenizer
model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-ol-7b', model_dir='base', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval().half()
tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-ol-7b', model_dir='base', trust_remote_code=True)
model.tokenizer = tokenizer
query = 'Analyze the given image in a detail manner'
image = ['examples/images/dubai.png']
with torch.autocast(device_type='cuda', dtype=torch.float16):
response, _ = model.chat(tokenizer, query, image, do_sample=False, num_beams=3, use_meta=True)
print(response)
```
</details>
### Open Source License
The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact internlm@pjlab.org.cn.
|