yhcao commited on
Commit
8e1010d
1 Parent(s): 10553e2

upload models

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. adapter/.gitattributes +1 -0
  2. adapter/README.md +202 -0
  3. adapter/adapter_config.json +32 -0
  4. adapter/adapter_model.bin +3 -0
  5. adapter/added_tokens.json +8 -0
  6. adapter/special_tokens_map.json +38 -0
  7. adapter/tokenization_internlm2.py +236 -0
  8. adapter/tokenizer.model +3 -0
  9. adapter/tokenizer_config.json +99 -0
  10. adapter/zero_to_fp32.py +587 -0
  11. audio/.gitattributes +1 -0
  12. audio/added_tokens.json +3290 -0
  13. audio/chat_template.json +3 -0
  14. audio/config.json +33 -0
  15. audio/generation_config.json +7 -0
  16. audio/model.safetensors +3 -0
  17. audio/preprocessor_config.json +14 -0
  18. audio/sft_args.json +247 -0
  19. audio/special_tokens_map.json +3305 -0
  20. audio/tokenizer.json +0 -0
  21. audio/tokenizer_config.json +0 -0
  22. audio/vocab.json +0 -0
  23. base/.gitattributes +40 -0
  24. base/IXC2d5_clip_l_560/config.json +23 -0
  25. base/IXC2d5_clip_l_560/preprocessor_config.json +19 -0
  26. base/IXC2d5_clip_l_560/pytorch_model.bin +3 -0
  27. base/README.md +290 -0
  28. base/SimHei.ttf +3 -0
  29. base/__pycache__/build_mlp.cpython-39.pyc +0 -0
  30. base/__pycache__/configuration_internlm_xcomposer2.cpython-39.pyc +0 -0
  31. base/__pycache__/ixc_utils.cpython-39.pyc +0 -0
  32. base/__pycache__/modeling_internlm2.cpython-39.pyc +0 -0
  33. base/__pycache__/modeling_internlm_xcomposer2.cpython-39.pyc +0 -0
  34. base/added_tokens.json +8 -0
  35. base/build_mlp.py +230 -0
  36. base/config.json +36 -0
  37. base/configuration_internlm_xcomposer2.py +150 -0
  38. base/examples/cars1.jpg +0 -0
  39. base/examples/cars2.jpg +0 -0
  40. base/examples/cars3.jpg +0 -0
  41. base/examples/cars4.jpg +0 -0
  42. base/examples/dubai.png +3 -0
  43. base/examples/liuxiang.mp4 +3 -0
  44. base/examples/resume.md +51 -0
  45. base/examples/screenshot.jpg +0 -0
  46. base/examples/test.py +0 -0
  47. base/generation_config.json +9 -0
  48. base/ixc_utils.py +145 -0
  49. base/logo_en.png +0 -0
  50. base/modeling_internlm2.py +991 -0
adapter/.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ adapter_model.bin filter=lfs diff=lfs merge=lfs -text
adapter/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Willow123/LVP_R560_IHD24_S3_1024_N24_CAT
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.8.2
adapter/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/mnt/hwfile/mllm/zhangpan/share/from/xiaoyi/LVP_R560_IHD24_S3_1024_N24_CAT/LVP_R560_IHD24_S3_0726_N24",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 128,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": [
17
+ "video_mem_proj"
18
+ ],
19
+ "peft_type": "LORA",
20
+ "r": 128,
21
+ "rank_pattern": {},
22
+ "revision": null,
23
+ "target_modules": [
24
+ "feed_forward.w2",
25
+ "attention.wo",
26
+ "feed_forward.w3",
27
+ "feed_forward.w1",
28
+ "attention.wqkv"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
adapter/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc9d0e035f664fbf923ef2c5f1b792d06e9d354aaac940764d6344f206275985
3
+ size 650245533
adapter/added_tokens.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|action_end|>": 92547,
3
+ "<|action_start|>": 92546,
4
+ "<|im_end|>": 92545,
5
+ "<|im_start|>": 92544,
6
+ "<|interpreter|>": 92548,
7
+ "<|plugin|>": 92549
8
+ }
adapter/special_tokens_map.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>"
9
+ ],
10
+ "bos_token": {
11
+ "content": "<s>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ "eos_token": {
18
+ "content": "</s>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "</s>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "unk_token": {
32
+ "content": "<unk>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ }
38
+ }
adapter/tokenization_internlm2.py ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ """Tokenization classes for InternLM."""
19
+ import os
20
+ from shutil import copyfile
21
+ from typing import Any, Dict, List, Optional, Tuple
22
+
23
+ import sentencepiece as spm
24
+ from transformers.tokenization_utils import PreTrainedTokenizer
25
+ from transformers.utils import logging
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+ VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
30
+
31
+ PRETRAINED_VOCAB_FILES_MAP = {}
32
+
33
+
34
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
35
+ class InternLM2Tokenizer(PreTrainedTokenizer):
36
+ """
37
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
38
+
39
+ Args:
40
+ vocab_file (`str`):
41
+ Path to the vocabulary file.
42
+ """
43
+
44
+ vocab_files_names = VOCAB_FILES_NAMES
45
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
46
+ model_input_names = ["input_ids", "attention_mask"]
47
+ _auto_class = "AutoTokenizer"
48
+
49
+ def __init__(
50
+ self,
51
+ vocab_file,
52
+ unk_token="<unk>",
53
+ bos_token="<s>",
54
+ eos_token="</s>",
55
+ pad_token="</s>",
56
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
57
+ add_bos_token=True,
58
+ add_eos_token=False,
59
+ decode_with_prefix_space=False,
60
+ clean_up_tokenization_spaces=False,
61
+ **kwargs,
62
+ ):
63
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
64
+ self.vocab_file = vocab_file
65
+ self.add_bos_token = add_bos_token
66
+ self.add_eos_token = add_eos_token
67
+ self.decode_with_prefix_space = decode_with_prefix_space
68
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
69
+ self.sp_model.Load(vocab_file)
70
+ self._no_prefix_space_tokens = None
71
+ super().__init__(
72
+ bos_token=bos_token,
73
+ eos_token=eos_token,
74
+ unk_token=unk_token,
75
+ pad_token=pad_token,
76
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
77
+ **kwargs,
78
+ )
79
+
80
+ @property
81
+ def no_prefix_space_tokens(self):
82
+ if self._no_prefix_space_tokens is None:
83
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
84
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
85
+ return self._no_prefix_space_tokens
86
+
87
+ @property
88
+ def vocab_size(self):
89
+ """Returns vocab size"""
90
+ return self.sp_model.get_piece_size()
91
+
92
+ @property
93
+ def bos_token_id(self) -> Optional[int]:
94
+ return self.sp_model.bos_id()
95
+
96
+ @property
97
+ def eos_token_id(self) -> Optional[int]:
98
+ return self.sp_model.eos_id()
99
+
100
+ def get_vocab(self):
101
+ """Returns vocab as a dict"""
102
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
103
+ vocab.update(self.added_tokens_encoder)
104
+ return vocab
105
+
106
+ def _tokenize(self, text):
107
+ """Returns a tokenized string."""
108
+ return self.sp_model.encode(text, out_type=str)
109
+
110
+ def _convert_token_to_id(self, token):
111
+ """Converts a token (str) in an id using the vocab."""
112
+ return self.sp_model.piece_to_id(token)
113
+
114
+ def _convert_id_to_token(self, index):
115
+ """Converts an index (integer) in a token (str) using the vocab."""
116
+ token = self.sp_model.IdToPiece(index)
117
+ return token
118
+
119
+ def _maybe_add_prefix_space(self, tokens, decoded):
120
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
121
+ return " " + decoded
122
+ else:
123
+ return decoded
124
+
125
+ def convert_tokens_to_string(self, tokens):
126
+ """Converts a sequence of tokens (string) in a single string."""
127
+ current_sub_tokens = []
128
+ out_string = ""
129
+ prev_is_special = False
130
+ for token in tokens:
131
+ # make sure that special tokens are not decoded using sentencepiece model
132
+ if token in self.all_special_tokens:
133
+ if not prev_is_special:
134
+ out_string += " "
135
+ out_string += self.sp_model.decode(current_sub_tokens) + token
136
+ prev_is_special = True
137
+ current_sub_tokens = []
138
+ else:
139
+ current_sub_tokens.append(token)
140
+ prev_is_special = False
141
+ out_string += self.sp_model.decode(current_sub_tokens)
142
+ out_string = self.clean_up_tokenization(out_string)
143
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
144
+ return out_string[1:]
145
+
146
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
147
+ """
148
+ Save the vocabulary and special tokens file to a directory.
149
+
150
+ Args:
151
+ save_directory (`str`):
152
+ The directory in which to save the vocabulary.
153
+
154
+ Returns:
155
+ `Tuple(str)`: Paths to the files saved.
156
+ """
157
+ if not os.path.isdir(save_directory):
158
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
159
+ return
160
+ out_vocab_file = os.path.join(
161
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
162
+ )
163
+
164
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
165
+ copyfile(self.vocab_file, out_vocab_file)
166
+ elif not os.path.isfile(self.vocab_file):
167
+ with open(out_vocab_file, "wb") as fi:
168
+ content_spiece_model = self.sp_model.serialized_model_proto()
169
+ fi.write(content_spiece_model)
170
+
171
+ return (out_vocab_file,)
172
+
173
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
174
+ if self.add_bos_token:
175
+ bos_token_ids = [self.bos_token_id]
176
+ else:
177
+ bos_token_ids = []
178
+
179
+ output = bos_token_ids + token_ids_0
180
+
181
+ if token_ids_1 is not None:
182
+ output = output + token_ids_1
183
+
184
+ if self.add_eos_token:
185
+ output = output + [self.eos_token_id]
186
+
187
+ return output
188
+
189
+ def get_special_tokens_mask(
190
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
191
+ ) -> List[int]:
192
+ """
193
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
194
+ special tokens using the tokenizer `prepare_for_model` method.
195
+
196
+ Args:
197
+ token_ids_0 (`List[int]`):
198
+ List of IDs.
199
+ token_ids_1 (`List[int]`, *optional*):
200
+ Optional second list of IDs for sequence pairs.
201
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
202
+ Whether or not the token list is already formatted with special tokens for the model.
203
+
204
+ Returns:
205
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
206
+ """
207
+ if already_has_special_tokens:
208
+ return super().get_special_tokens_mask(
209
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
210
+ )
211
+
212
+ if token_ids_1 is None:
213
+ return [1] + ([0] * len(token_ids_0)) + [1]
214
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
215
+
216
+ def create_token_type_ids_from_sequences(
217
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
218
+ ) -> List[int]:
219
+ """
220
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
221
+ use of token type ids, therefore a list of zeros is returned.
222
+
223
+ Args:
224
+ token_ids_0 (`List[int]`):
225
+ List of IDs.
226
+ token_ids_1 (`List[int]`, *optional*):
227
+ Optional second list of IDs for sequence pairs.
228
+
229
+ Returns:
230
+ `List[int]`: List of zeros.
231
+ """
232
+ eos = [self.eos_token_id]
233
+
234
+ if token_ids_1 is None:
235
+ return len(token_ids_0 + eos) * [0]
236
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
adapter/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
adapter/tokenizer_config.json ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ }
75
+ },
76
+ "additional_special_tokens": [
77
+ "<|im_start|>",
78
+ "<|im_end|>",
79
+ "<|action_start|>",
80
+ "<|action_end|>",
81
+ "<|interpreter|>",
82
+ "<|plugin|>"
83
+ ],
84
+ "auto_map": {
85
+ "AutoTokenizer": [
86
+ "tokenization_internlm2.InternLM2Tokenizer",
87
+ null
88
+ ]
89
+ },
90
+ "bos_token": "<s>",
91
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
92
+ "clean_up_tokenization_spaces": false,
93
+ "eos_token": "</s>",
94
+ "model_max_length": 1000000000000000019884624838656,
95
+ "pad_token": "</s>",
96
+ "padding_side": "right",
97
+ "tokenizer_class": "InternLM2Tokenizer",
98
+ "unk_token": "<unk>"
99
+ }
adapter/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
audio/.gitattributes ADDED
@@ -0,0 +1 @@
 
 
1
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
audio/added_tokens.json ADDED
@@ -0,0 +1,3290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|0.00|>": 151650,
3
+ "<|0.01|>": 151651,
4
+ "<|0.02|>": 151652,
5
+ "<|0.03|>": 151653,
6
+ "<|0.04|>": 151654,
7
+ "<|0.05|>": 151655,
8
+ "<|0.06|>": 151656,
9
+ "<|0.07|>": 151657,
10
+ "<|0.08|>": 151658,
11
+ "<|0.09|>": 151659,
12
+ "<|0.10|>": 151660,
13
+ "<|0.11|>": 151661,
14
+ "<|0.12|>": 151662,
15
+ "<|0.13|>": 151663,
16
+ "<|0.14|>": 151664,
17
+ "<|0.15|>": 151665,
18
+ "<|0.16|>": 151666,
19
+ "<|0.17|>": 151667,
20
+ "<|0.18|>": 151668,
21
+ "<|0.19|>": 151669,
22
+ "<|0.20|>": 151670,
23
+ "<|0.21|>": 151671,
24
+ "<|0.22|>": 151672,
25
+ "<|0.23|>": 151673,
26
+ "<|0.24|>": 151674,
27
+ "<|0.25|>": 151675,
28
+ "<|0.26|>": 151676,
29
+ "<|0.27|>": 151677,
30
+ "<|0.28|>": 151678,
31
+ "<|0.29|>": 151679,
32
+ "<|0.30|>": 151680,
33
+ "<|0.31|>": 151681,
34
+ "<|0.32|>": 151682,
35
+ "<|0.33|>": 151683,
36
+ "<|0.34|>": 151684,
37
+ "<|0.35|>": 151685,
38
+ "<|0.36|>": 151686,
39
+ "<|0.37|>": 151687,
40
+ "<|0.38|>": 151688,
41
+ "<|0.39|>": 151689,
42
+ "<|0.40|>": 151690,
43
+ "<|0.41|>": 151691,
44
+ "<|0.42|>": 151692,
45
+ "<|0.43|>": 151693,
46
+ "<|0.44|>": 151694,
47
+ "<|0.45|>": 151695,
48
+ "<|0.46|>": 151696,
49
+ "<|0.47|>": 151697,
50
+ "<|0.48|>": 151698,
51
+ "<|0.49|>": 151699,
52
+ "<|0.50|>": 151700,
53
+ "<|0.51|>": 151701,
54
+ "<|0.52|>": 151702,
55
+ "<|0.53|>": 151703,
56
+ "<|0.54|>": 151704,
57
+ "<|0.55|>": 151705,
58
+ "<|0.56|>": 151706,
59
+ "<|0.57|>": 151707,
60
+ "<|0.58|>": 151708,
61
+ "<|0.59|>": 151709,
62
+ "<|0.60|>": 151710,
63
+ "<|0.61|>": 151711,
64
+ "<|0.62|>": 151712,
65
+ "<|0.63|>": 151713,
66
+ "<|0.64|>": 151714,
67
+ "<|0.65|>": 151715,
68
+ "<|0.66|>": 151716,
69
+ "<|0.67|>": 151717,
70
+ "<|0.68|>": 151718,
71
+ "<|0.69|>": 151719,
72
+ "<|0.70|>": 151720,
73
+ "<|0.71|>": 151721,
74
+ "<|0.72|>": 151722,
75
+ "<|0.73|>": 151723,
76
+ "<|0.74|>": 151724,
77
+ "<|0.75|>": 151725,
78
+ "<|0.76|>": 151726,
79
+ "<|0.77|>": 151727,
80
+ "<|0.78|>": 151728,
81
+ "<|0.79|>": 151729,
82
+ "<|0.80|>": 151730,
83
+ "<|0.81|>": 151731,
84
+ "<|0.82|>": 151732,
85
+ "<|0.83|>": 151733,
86
+ "<|0.84|>": 151734,
87
+ "<|0.85|>": 151735,
88
+ "<|0.86|>": 151736,
89
+ "<|0.87|>": 151737,
90
+ "<|0.88|>": 151738,
91
+ "<|0.89|>": 151739,
92
+ "<|0.90|>": 151740,
93
+ "<|0.91|>": 151741,
94
+ "<|0.92|>": 151742,
95
+ "<|0.93|>": 151743,
96
+ "<|0.94|>": 151744,
97
+ "<|0.95|>": 151745,
98
+ "<|0.96|>": 151746,
99
+ "<|0.97|>": 151747,
100
+ "<|0.98|>": 151748,
101
+ "<|0.99|>": 151749,
102
+ "<|1.00|>": 151750,
103
+ "<|1.01|>": 151751,
104
+ "<|1.02|>": 151752,
105
+ "<|1.03|>": 151753,
106
+ "<|1.04|>": 151754,
107
+ "<|1.05|>": 151755,
108
+ "<|1.06|>": 151756,
109
+ "<|1.07|>": 151757,
110
+ "<|1.08|>": 151758,
111
+ "<|1.09|>": 151759,
112
+ "<|1.10|>": 151760,
113
+ "<|1.11|>": 151761,
114
+ "<|1.12|>": 151762,
115
+ "<|1.13|>": 151763,
116
+ "<|1.14|>": 151764,
117
+ "<|1.15|>": 151765,
118
+ "<|1.16|>": 151766,
119
+ "<|1.17|>": 151767,
120
+ "<|1.18|>": 151768,
121
+ "<|1.19|>": 151769,
122
+ "<|1.20|>": 151770,
123
+ "<|1.21|>": 151771,
124
+ "<|1.22|>": 151772,
125
+ "<|1.23|>": 151773,
126
+ "<|1.24|>": 151774,
127
+ "<|1.25|>": 151775,
128
+ "<|1.26|>": 151776,
129
+ "<|1.27|>": 151777,
130
+ "<|1.28|>": 151778,
131
+ "<|1.29|>": 151779,
132
+ "<|1.30|>": 151780,
133
+ "<|1.31|>": 151781,
134
+ "<|1.32|>": 151782,
135
+ "<|1.33|>": 151783,
136
+ "<|1.34|>": 151784,
137
+ "<|1.35|>": 151785,
138
+ "<|1.36|>": 151786,
139
+ "<|1.37|>": 151787,
140
+ "<|1.38|>": 151788,
141
+ "<|1.39|>": 151789,
142
+ "<|1.40|>": 151790,
143
+ "<|1.41|>": 151791,
144
+ "<|1.42|>": 151792,
145
+ "<|1.43|>": 151793,
146
+ "<|1.44|>": 151794,
147
+ "<|1.45|>": 151795,
148
+ "<|1.46|>": 151796,
149
+ "<|1.47|>": 151797,
150
+ "<|1.48|>": 151798,
151
+ "<|1.49|>": 151799,
152
+ "<|1.50|>": 151800,
153
+ "<|1.51|>": 151801,
154
+ "<|1.52|>": 151802,
155
+ "<|1.53|>": 151803,
156
+ "<|1.54|>": 151804,
157
+ "<|1.55|>": 151805,
158
+ "<|1.56|>": 151806,
159
+ "<|1.57|>": 151807,
160
+ "<|1.58|>": 151808,
161
+ "<|1.59|>": 151809,
162
+ "<|1.60|>": 151810,
163
+ "<|1.61|>": 151811,
164
+ "<|1.62|>": 151812,
165
+ "<|1.63|>": 151813,
166
+ "<|1.64|>": 151814,
167
+ "<|1.65|>": 151815,
168
+ "<|1.66|>": 151816,
169
+ "<|1.67|>": 151817,
170
+ "<|1.68|>": 151818,
171
+ "<|1.69|>": 151819,
172
+ "<|1.70|>": 151820,
173
+ "<|1.71|>": 151821,
174
+ "<|1.72|>": 151822,
175
+ "<|1.73|>": 151823,
176
+ "<|1.74|>": 151824,
177
+ "<|1.75|>": 151825,
178
+ "<|1.76|>": 151826,
179
+ "<|1.77|>": 151827,
180
+ "<|1.78|>": 151828,
181
+ "<|1.79|>": 151829,
182
+ "<|1.80|>": 151830,
183
+ "<|1.81|>": 151831,
184
+ "<|1.82|>": 151832,
185
+ "<|1.83|>": 151833,
186
+ "<|1.84|>": 151834,
187
+ "<|1.85|>": 151835,
188
+ "<|1.86|>": 151836,
189
+ "<|1.87|>": 151837,
190
+ "<|1.88|>": 151838,
191
+ "<|1.89|>": 151839,
192
+ "<|1.90|>": 151840,
193
+ "<|1.91|>": 151841,
194
+ "<|1.92|>": 151842,
195
+ "<|1.93|>": 151843,
196
+ "<|1.94|>": 151844,
197
+ "<|1.95|>": 151845,
198
+ "<|1.96|>": 151846,
199
+ "<|1.97|>": 151847,
200
+ "<|1.98|>": 151848,
201
+ "<|1.99|>": 151849,
202
+ "<|10.00|>": 152650,
203
+ "<|10.01|>": 152651,
204
+ "<|10.02|>": 152652,
205
+ "<|10.03|>": 152653,
206
+ "<|10.04|>": 152654,
207
+ "<|10.05|>": 152655,
208
+ "<|10.06|>": 152656,
209
+ "<|10.07|>": 152657,
210
+ "<|10.08|>": 152658,
211
+ "<|10.09|>": 152659,
212
+ "<|10.10|>": 152660,
213
+ "<|10.11|>": 152661,
214
+ "<|10.12|>": 152662,
215
+ "<|10.13|>": 152663,
216
+ "<|10.14|>": 152664,
217
+ "<|10.15|>": 152665,
218
+ "<|10.16|>": 152666,
219
+ "<|10.17|>": 152667,
220
+ "<|10.18|>": 152668,
221
+ "<|10.19|>": 152669,
222
+ "<|10.20|>": 152670,
223
+ "<|10.21|>": 152671,
224
+ "<|10.22|>": 152672,
225
+ "<|10.23|>": 152673,
226
+ "<|10.24|>": 152674,
227
+ "<|10.25|>": 152675,
228
+ "<|10.26|>": 152676,
229
+ "<|10.27|>": 152677,
230
+ "<|10.28|>": 152678,
231
+ "<|10.29|>": 152679,
232
+ "<|10.30|>": 152680,
233
+ "<|10.31|>": 152681,
234
+ "<|10.32|>": 152682,
235
+ "<|10.33|>": 152683,
236
+ "<|10.34|>": 152684,
237
+ "<|10.35|>": 152685,
238
+ "<|10.36|>": 152686,
239
+ "<|10.37|>": 152687,
240
+ "<|10.38|>": 152688,
241
+ "<|10.39|>": 152689,
242
+ "<|10.40|>": 152690,
243
+ "<|10.41|>": 152691,
244
+ "<|10.42|>": 152692,
245
+ "<|10.43|>": 152693,
246
+ "<|10.44|>": 152694,
247
+ "<|10.45|>": 152695,
248
+ "<|10.46|>": 152696,
249
+ "<|10.47|>": 152697,
250
+ "<|10.48|>": 152698,
251
+ "<|10.49|>": 152699,
252
+ "<|10.50|>": 152700,
253
+ "<|10.51|>": 152701,
254
+ "<|10.52|>": 152702,
255
+ "<|10.53|>": 152703,
256
+ "<|10.54|>": 152704,
257
+ "<|10.55|>": 152705,
258
+ "<|10.56|>": 152706,
259
+ "<|10.57|>": 152707,
260
+ "<|10.58|>": 152708,
261
+ "<|10.59|>": 152709,
262
+ "<|10.60|>": 152710,
263
+ "<|10.61|>": 152711,
264
+ "<|10.62|>": 152712,
265
+ "<|10.63|>": 152713,
266
+ "<|10.64|>": 152714,
267
+ "<|10.65|>": 152715,
268
+ "<|10.66|>": 152716,
269
+ "<|10.67|>": 152717,
270
+ "<|10.68|>": 152718,
271
+ "<|10.69|>": 152719,
272
+ "<|10.70|>": 152720,
273
+ "<|10.71|>": 152721,
274
+ "<|10.72|>": 152722,
275
+ "<|10.73|>": 152723,
276
+ "<|10.74|>": 152724,
277
+ "<|10.75|>": 152725,
278
+ "<|10.76|>": 152726,
279
+ "<|10.77|>": 152727,
280
+ "<|10.78|>": 152728,
281
+ "<|10.79|>": 152729,
282
+ "<|10.80|>": 152730,
283
+ "<|10.81|>": 152731,
284
+ "<|10.82|>": 152732,
285
+ "<|10.83|>": 152733,
286
+ "<|10.84|>": 152734,
287
+ "<|10.85|>": 152735,
288
+ "<|10.86|>": 152736,
289
+ "<|10.87|>": 152737,
290
+ "<|10.88|>": 152738,
291
+ "<|10.89|>": 152739,
292
+ "<|10.90|>": 152740,
293
+ "<|10.91|>": 152741,
294
+ "<|10.92|>": 152742,
295
+ "<|10.93|>": 152743,
296
+ "<|10.94|>": 152744,
297
+ "<|10.95|>": 152745,
298
+ "<|10.96|>": 152746,
299
+ "<|10.97|>": 152747,
300
+ "<|10.98|>": 152748,
301
+ "<|10.99|>": 152749,
302
+ "<|11.00|>": 152750,
303
+ "<|11.01|>": 152751,
304
+ "<|11.02|>": 152752,
305
+ "<|11.03|>": 152753,
306
+ "<|11.04|>": 152754,
307
+ "<|11.05|>": 152755,
308
+ "<|11.06|>": 152756,
309
+ "<|11.07|>": 152757,
310
+ "<|11.08|>": 152758,
311
+ "<|11.09|>": 152759,
312
+ "<|11.10|>": 152760,
313
+ "<|11.11|>": 152761,
314
+ "<|11.12|>": 152762,
315
+ "<|11.13|>": 152763,
316
+ "<|11.14|>": 152764,
317
+ "<|11.15|>": 152765,
318
+ "<|11.16|>": 152766,
319
+ "<|11.17|>": 152767,
320
+ "<|11.18|>": 152768,
321
+ "<|11.19|>": 152769,
322
+ "<|11.20|>": 152770,
323
+ "<|11.21|>": 152771,
324
+ "<|11.22|>": 152772,
325
+ "<|11.23|>": 152773,
326
+ "<|11.24|>": 152774,
327
+ "<|11.25|>": 152775,
328
+ "<|11.26|>": 152776,
329
+ "<|11.27|>": 152777,
330
+ "<|11.28|>": 152778,
331
+ "<|11.29|>": 152779,
332
+ "<|11.30|>": 152780,
333
+ "<|11.31|>": 152781,
334
+ "<|11.32|>": 152782,
335
+ "<|11.33|>": 152783,
336
+ "<|11.34|>": 152784,
337
+ "<|11.35|>": 152785,
338
+ "<|11.36|>": 152786,
339
+ "<|11.37|>": 152787,
340
+ "<|11.38|>": 152788,
341
+ "<|11.39|>": 152789,
342
+ "<|11.40|>": 152790,
343
+ "<|11.41|>": 152791,
344
+ "<|11.42|>": 152792,
345
+ "<|11.43|>": 152793,
346
+ "<|11.44|>": 152794,
347
+ "<|11.45|>": 152795,
348
+ "<|11.46|>": 152796,
349
+ "<|11.47|>": 152797,
350
+ "<|11.48|>": 152798,
351
+ "<|11.49|>": 152799,
352
+ "<|11.50|>": 152800,
353
+ "<|11.51|>": 152801,
354
+ "<|11.52|>": 152802,
355
+ "<|11.53|>": 152803,
356
+ "<|11.54|>": 152804,
357
+ "<|11.55|>": 152805,
358
+ "<|11.56|>": 152806,
359
+ "<|11.57|>": 152807,
360
+ "<|11.58|>": 152808,
361
+ "<|11.59|>": 152809,
362
+ "<|11.60|>": 152810,
363
+ "<|11.61|>": 152811,
364
+ "<|11.62|>": 152812,
365
+ "<|11.63|>": 152813,
366
+ "<|11.64|>": 152814,
367
+ "<|11.65|>": 152815,
368
+ "<|11.66|>": 152816,
369
+ "<|11.67|>": 152817,
370
+ "<|11.68|>": 152818,
371
+ "<|11.69|>": 152819,
372
+ "<|11.70|>": 152820,
373
+ "<|11.71|>": 152821,
374
+ "<|11.72|>": 152822,
375
+ "<|11.73|>": 152823,
376
+ "<|11.74|>": 152824,
377
+ "<|11.75|>": 152825,
378
+ "<|11.76|>": 152826,
379
+ "<|11.77|>": 152827,
380
+ "<|11.78|>": 152828,
381
+ "<|11.79|>": 152829,
382
+ "<|11.80|>": 152830,
383
+ "<|11.81|>": 152831,
384
+ "<|11.82|>": 152832,
385
+ "<|11.83|>": 152833,
386
+ "<|11.84|>": 152834,
387
+ "<|11.85|>": 152835,
388
+ "<|11.86|>": 152836,
389
+ "<|11.87|>": 152837,
390
+ "<|11.88|>": 152838,
391
+ "<|11.89|>": 152839,
392
+ "<|11.90|>": 152840,
393
+ "<|11.91|>": 152841,
394
+ "<|11.92|>": 152842,
395
+ "<|11.93|>": 152843,
396
+ "<|11.94|>": 152844,
397
+ "<|11.95|>": 152845,
398
+ "<|11.96|>": 152846,
399
+ "<|11.97|>": 152847,
400
+ "<|11.98|>": 152848,
401
+ "<|11.99|>": 152849,
402
+ "<|12.00|>": 152850,
403
+ "<|12.01|>": 152851,
404
+ "<|12.02|>": 152852,
405
+ "<|12.03|>": 152853,
406
+ "<|12.04|>": 152854,
407
+ "<|12.05|>": 152855,
408
+ "<|12.06|>": 152856,
409
+ "<|12.07|>": 152857,
410
+ "<|12.08|>": 152858,
411
+ "<|12.09|>": 152859,
412
+ "<|12.10|>": 152860,
413
+ "<|12.11|>": 152861,
414
+ "<|12.12|>": 152862,
415
+ "<|12.13|>": 152863,
416
+ "<|12.14|>": 152864,
417
+ "<|12.15|>": 152865,
418
+ "<|12.16|>": 152866,
419
+ "<|12.17|>": 152867,
420
+ "<|12.18|>": 152868,
421
+ "<|12.19|>": 152869,
422
+ "<|12.20|>": 152870,
423
+ "<|12.21|>": 152871,
424
+ "<|12.22|>": 152872,
425
+ "<|12.23|>": 152873,
426
+ "<|12.24|>": 152874,
427
+ "<|12.25|>": 152875,
428
+ "<|12.26|>": 152876,
429
+ "<|12.27|>": 152877,
430
+ "<|12.28|>": 152878,
431
+ "<|12.29|>": 152879,
432
+ "<|12.30|>": 152880,
433
+ "<|12.31|>": 152881,
434
+ "<|12.32|>": 152882,
435
+ "<|12.33|>": 152883,
436
+ "<|12.34|>": 152884,
437
+ "<|12.35|>": 152885,
438
+ "<|12.36|>": 152886,
439
+ "<|12.37|>": 152887,
440
+ "<|12.38|>": 152888,
441
+ "<|12.39|>": 152889,
442
+ "<|12.40|>": 152890,
443
+ "<|12.41|>": 152891,
444
+ "<|12.42|>": 152892,
445
+ "<|12.43|>": 152893,
446
+ "<|12.44|>": 152894,
447
+ "<|12.45|>": 152895,
448
+ "<|12.46|>": 152896,
449
+ "<|12.47|>": 152897,
450
+ "<|12.48|>": 152898,
451
+ "<|12.49|>": 152899,
452
+ "<|12.50|>": 152900,
453
+ "<|12.51|>": 152901,
454
+ "<|12.52|>": 152902,
455
+ "<|12.53|>": 152903,
456
+ "<|12.54|>": 152904,
457
+ "<|12.55|>": 152905,
458
+ "<|12.56|>": 152906,
459
+ "<|12.57|>": 152907,
460
+ "<|12.58|>": 152908,
461
+ "<|12.59|>": 152909,
462
+ "<|12.60|>": 152910,
463
+ "<|12.61|>": 152911,
464
+ "<|12.62|>": 152912,
465
+ "<|12.63|>": 152913,
466
+ "<|12.64|>": 152914,
467
+ "<|12.65|>": 152915,
468
+ "<|12.66|>": 152916,
469
+ "<|12.67|>": 152917,
470
+ "<|12.68|>": 152918,
471
+ "<|12.69|>": 152919,
472
+ "<|12.70|>": 152920,
473
+ "<|12.71|>": 152921,
474
+ "<|12.72|>": 152922,
475
+ "<|12.73|>": 152923,
476
+ "<|12.74|>": 152924,
477
+ "<|12.75|>": 152925,
478
+ "<|12.76|>": 152926,
479
+ "<|12.77|>": 152927,
480
+ "<|12.78|>": 152928,
481
+ "<|12.79|>": 152929,
482
+ "<|12.80|>": 152930,
483
+ "<|12.81|>": 152931,
484
+ "<|12.82|>": 152932,
485
+ "<|12.83|>": 152933,
486
+ "<|12.84|>": 152934,
487
+ "<|12.85|>": 152935,
488
+ "<|12.86|>": 152936,
489
+ "<|12.87|>": 152937,
490
+ "<|12.88|>": 152938,
491
+ "<|12.89|>": 152939,
492
+ "<|12.90|>": 152940,
493
+ "<|12.91|>": 152941,
494
+ "<|12.92|>": 152942,
495
+ "<|12.93|>": 152943,
496
+ "<|12.94|>": 152944,
497
+ "<|12.95|>": 152945,
498
+ "<|12.96|>": 152946,
499
+ "<|12.97|>": 152947,
500
+ "<|12.98|>": 152948,
501
+ "<|12.99|>": 152949,
502
+ "<|13.00|>": 152950,
503
+ "<|13.01|>": 152951,
504
+ "<|13.02|>": 152952,
505
+ "<|13.03|>": 152953,
506
+ "<|13.04|>": 152954,
507
+ "<|13.05|>": 152955,
508
+ "<|13.06|>": 152956,
509
+ "<|13.07|>": 152957,
510
+ "<|13.08|>": 152958,
511
+ "<|13.09|>": 152959,
512
+ "<|13.10|>": 152960,
513
+ "<|13.11|>": 152961,
514
+ "<|13.12|>": 152962,
515
+ "<|13.13|>": 152963,
516
+ "<|13.14|>": 152964,
517
+ "<|13.15|>": 152965,
518
+ "<|13.16|>": 152966,
519
+ "<|13.17|>": 152967,
520
+ "<|13.18|>": 152968,
521
+ "<|13.19|>": 152969,
522
+ "<|13.20|>": 152970,
523
+ "<|13.21|>": 152971,
524
+ "<|13.22|>": 152972,
525
+ "<|13.23|>": 152973,
526
+ "<|13.24|>": 152974,
527
+ "<|13.25|>": 152975,
528
+ "<|13.26|>": 152976,
529
+ "<|13.27|>": 152977,
530
+ "<|13.28|>": 152978,
531
+ "<|13.29|>": 152979,
532
+ "<|13.30|>": 152980,
533
+ "<|13.31|>": 152981,
534
+ "<|13.32|>": 152982,
535
+ "<|13.33|>": 152983,
536
+ "<|13.34|>": 152984,
537
+ "<|13.35|>": 152985,
538
+ "<|13.36|>": 152986,
539
+ "<|13.37|>": 152987,
540
+ "<|13.38|>": 152988,
541
+ "<|13.39|>": 152989,
542
+ "<|13.40|>": 152990,
543
+ "<|13.41|>": 152991,
544
+ "<|13.42|>": 152992,
545
+ "<|13.43|>": 152993,
546
+ "<|13.44|>": 152994,
547
+ "<|13.45|>": 152995,
548
+ "<|13.46|>": 152996,
549
+ "<|13.47|>": 152997,
550
+ "<|13.48|>": 152998,
551
+ "<|13.49|>": 152999,
552
+ "<|13.50|>": 153000,
553
+ "<|13.51|>": 153001,
554
+ "<|13.52|>": 153002,
555
+ "<|13.53|>": 153003,
556
+ "<|13.54|>": 153004,
557
+ "<|13.55|>": 153005,
558
+ "<|13.56|>": 153006,
559
+ "<|13.57|>": 153007,
560
+ "<|13.58|>": 153008,
561
+ "<|13.59|>": 153009,
562
+ "<|13.60|>": 153010,
563
+ "<|13.61|>": 153011,
564
+ "<|13.62|>": 153012,
565
+ "<|13.63|>": 153013,
566
+ "<|13.64|>": 153014,
567
+ "<|13.65|>": 153015,
568
+ "<|13.66|>": 153016,
569
+ "<|13.67|>": 153017,
570
+ "<|13.68|>": 153018,
571
+ "<|13.69|>": 153019,
572
+ "<|13.70|>": 153020,
573
+ "<|13.71|>": 153021,
574
+ "<|13.72|>": 153022,
575
+ "<|13.73|>": 153023,
576
+ "<|13.74|>": 153024,
577
+ "<|13.75|>": 153025,
578
+ "<|13.76|>": 153026,
579
+ "<|13.77|>": 153027,
580
+ "<|13.78|>": 153028,
581
+ "<|13.79|>": 153029,
582
+ "<|13.80|>": 153030,
583
+ "<|13.81|>": 153031,
584
+ "<|13.82|>": 153032,
585
+ "<|13.83|>": 153033,
586
+ "<|13.84|>": 153034,
587
+ "<|13.85|>": 153035,
588
+ "<|13.86|>": 153036,
589
+ "<|13.87|>": 153037,
590
+ "<|13.88|>": 153038,
591
+ "<|13.89|>": 153039,
592
+ "<|13.90|>": 153040,
593
+ "<|13.91|>": 153041,
594
+ "<|13.92|>": 153042,
595
+ "<|13.93|>": 153043,
596
+ "<|13.94|>": 153044,
597
+ "<|13.95|>": 153045,
598
+ "<|13.96|>": 153046,
599
+ "<|13.97|>": 153047,
600
+ "<|13.98|>": 153048,
601
+ "<|13.99|>": 153049,
602
+ "<|14.00|>": 153050,
603
+ "<|14.01|>": 153051,
604
+ "<|14.02|>": 153052,
605
+ "<|14.03|>": 153053,
606
+ "<|14.04|>": 153054,
607
+ "<|14.05|>": 153055,
608
+ "<|14.06|>": 153056,
609
+ "<|14.07|>": 153057,
610
+ "<|14.08|>": 153058,
611
+ "<|14.09|>": 153059,
612
+ "<|14.10|>": 153060,
613
+ "<|14.11|>": 153061,
614
+ "<|14.12|>": 153062,
615
+ "<|14.13|>": 153063,
616
+ "<|14.14|>": 153064,
617
+ "<|14.15|>": 153065,
618
+ "<|14.16|>": 153066,
619
+ "<|14.17|>": 153067,
620
+ "<|14.18|>": 153068,
621
+ "<|14.19|>": 153069,
622
+ "<|14.20|>": 153070,
623
+ "<|14.21|>": 153071,
624
+ "<|14.22|>": 153072,
625
+ "<|14.23|>": 153073,
626
+ "<|14.24|>": 153074,
627
+ "<|14.25|>": 153075,
628
+ "<|14.26|>": 153076,
629
+ "<|14.27|>": 153077,
630
+ "<|14.28|>": 153078,
631
+ "<|14.29|>": 153079,
632
+ "<|14.30|>": 153080,
633
+ "<|14.31|>": 153081,
634
+ "<|14.32|>": 153082,
635
+ "<|14.33|>": 153083,
636
+ "<|14.34|>": 153084,
637
+ "<|14.35|>": 153085,
638
+ "<|14.36|>": 153086,
639
+ "<|14.37|>": 153087,
640
+ "<|14.38|>": 153088,
641
+ "<|14.39|>": 153089,
642
+ "<|14.40|>": 153090,
643
+ "<|14.41|>": 153091,
644
+ "<|14.42|>": 153092,
645
+ "<|14.43|>": 153093,
646
+ "<|14.44|>": 153094,
647
+ "<|14.45|>": 153095,
648
+ "<|14.46|>": 153096,
649
+ "<|14.47|>": 153097,
650
+ "<|14.48|>": 153098,
651
+ "<|14.49|>": 153099,
652
+ "<|14.50|>": 153100,
653
+ "<|14.51|>": 153101,
654
+ "<|14.52|>": 153102,
655
+ "<|14.53|>": 153103,
656
+ "<|14.54|>": 153104,
657
+ "<|14.55|>": 153105,
658
+ "<|14.56|>": 153106,
659
+ "<|14.57|>": 153107,
660
+ "<|14.58|>": 153108,
661
+ "<|14.59|>": 153109,
662
+ "<|14.60|>": 153110,
663
+ "<|14.61|>": 153111,
664
+ "<|14.62|>": 153112,
665
+ "<|14.63|>": 153113,
666
+ "<|14.64|>": 153114,
667
+ "<|14.65|>": 153115,
668
+ "<|14.66|>": 153116,
669
+ "<|14.67|>": 153117,
670
+ "<|14.68|>": 153118,
671
+ "<|14.69|>": 153119,
672
+ "<|14.70|>": 153120,
673
+ "<|14.71|>": 153121,
674
+ "<|14.72|>": 153122,
675
+ "<|14.73|>": 153123,
676
+ "<|14.74|>": 153124,
677
+ "<|14.75|>": 153125,
678
+ "<|14.76|>": 153126,
679
+ "<|14.77|>": 153127,
680
+ "<|14.78|>": 153128,
681
+ "<|14.79|>": 153129,
682
+ "<|14.80|>": 153130,
683
+ "<|14.81|>": 153131,
684
+ "<|14.82|>": 153132,
685
+ "<|14.83|>": 153133,
686
+ "<|14.84|>": 153134,
687
+ "<|14.85|>": 153135,
688
+ "<|14.86|>": 153136,
689
+ "<|14.87|>": 153137,
690
+ "<|14.88|>": 153138,
691
+ "<|14.89|>": 153139,
692
+ "<|14.90|>": 153140,
693
+ "<|14.91|>": 153141,
694
+ "<|14.92|>": 153142,
695
+ "<|14.93|>": 153143,
696
+ "<|14.94|>": 153144,
697
+ "<|14.95|>": 153145,
698
+ "<|14.96|>": 153146,
699
+ "<|14.97|>": 153147,
700
+ "<|14.98|>": 153148,
701
+ "<|14.99|>": 153149,
702
+ "<|15.00|>": 153150,
703
+ "<|15.01|>": 153151,
704
+ "<|15.02|>": 153152,
705
+ "<|15.03|>": 153153,
706
+ "<|15.04|>": 153154,
707
+ "<|15.05|>": 153155,
708
+ "<|15.06|>": 153156,
709
+ "<|15.07|>": 153157,
710
+ "<|15.08|>": 153158,
711
+ "<|15.09|>": 153159,
712
+ "<|15.10|>": 153160,
713
+ "<|15.11|>": 153161,
714
+ "<|15.12|>": 153162,
715
+ "<|15.13|>": 153163,
716
+ "<|15.14|>": 153164,
717
+ "<|15.15|>": 153165,
718
+ "<|15.16|>": 153166,
719
+ "<|15.17|>": 153167,
720
+ "<|15.18|>": 153168,
721
+ "<|15.19|>": 153169,
722
+ "<|15.20|>": 153170,
723
+ "<|15.21|>": 153171,
724
+ "<|15.22|>": 153172,
725
+ "<|15.23|>": 153173,
726
+ "<|15.24|>": 153174,
727
+ "<|15.25|>": 153175,
728
+ "<|15.26|>": 153176,
729
+ "<|15.27|>": 153177,
730
+ "<|15.28|>": 153178,
731
+ "<|15.29|>": 153179,
732
+ "<|15.30|>": 153180,
733
+ "<|15.31|>": 153181,
734
+ "<|15.32|>": 153182,
735
+ "<|15.33|>": 153183,
736
+ "<|15.34|>": 153184,
737
+ "<|15.35|>": 153185,
738
+ "<|15.36|>": 153186,
739
+ "<|15.37|>": 153187,
740
+ "<|15.38|>": 153188,
741
+ "<|15.39|>": 153189,
742
+ "<|15.40|>": 153190,
743
+ "<|15.41|>": 153191,
744
+ "<|15.42|>": 153192,
745
+ "<|15.43|>": 153193,
746
+ "<|15.44|>": 153194,
747
+ "<|15.45|>": 153195,
748
+ "<|15.46|>": 153196,
749
+ "<|15.47|>": 153197,
750
+ "<|15.48|>": 153198,
751
+ "<|15.49|>": 153199,
752
+ "<|15.50|>": 153200,
753
+ "<|15.51|>": 153201,
754
+ "<|15.52|>": 153202,
755
+ "<|15.53|>": 153203,
756
+ "<|15.54|>": 153204,
757
+ "<|15.55|>": 153205,
758
+ "<|15.56|>": 153206,
759
+ "<|15.57|>": 153207,
760
+ "<|15.58|>": 153208,
761
+ "<|15.59|>": 153209,
762
+ "<|15.60|>": 153210,
763
+ "<|15.61|>": 153211,
764
+ "<|15.62|>": 153212,
765
+ "<|15.63|>": 153213,
766
+ "<|15.64|>": 153214,
767
+ "<|15.65|>": 153215,
768
+ "<|15.66|>": 153216,
769
+ "<|15.67|>": 153217,
770
+ "<|15.68|>": 153218,
771
+ "<|15.69|>": 153219,
772
+ "<|15.70|>": 153220,
773
+ "<|15.71|>": 153221,
774
+ "<|15.72|>": 153222,
775
+ "<|15.73|>": 153223,
776
+ "<|15.74|>": 153224,
777
+ "<|15.75|>": 153225,
778
+ "<|15.76|>": 153226,
779
+ "<|15.77|>": 153227,
780
+ "<|15.78|>": 153228,
781
+ "<|15.79|>": 153229,
782
+ "<|15.80|>": 153230,
783
+ "<|15.81|>": 153231,
784
+ "<|15.82|>": 153232,
785
+ "<|15.83|>": 153233,
786
+ "<|15.84|>": 153234,
787
+ "<|15.85|>": 153235,
788
+ "<|15.86|>": 153236,
789
+ "<|15.87|>": 153237,
790
+ "<|15.88|>": 153238,
791
+ "<|15.89|>": 153239,
792
+ "<|15.90|>": 153240,
793
+ "<|15.91|>": 153241,
794
+ "<|15.92|>": 153242,
795
+ "<|15.93|>": 153243,
796
+ "<|15.94|>": 153244,
797
+ "<|15.95|>": 153245,
798
+ "<|15.96|>": 153246,
799
+ "<|15.97|>": 153247,
800
+ "<|15.98|>": 153248,
801
+ "<|15.99|>": 153249,
802
+ "<|16.00|>": 153250,
803
+ "<|16.01|>": 153251,
804
+ "<|16.02|>": 153252,
805
+ "<|16.03|>": 153253,
806
+ "<|16.04|>": 153254,
807
+ "<|16.05|>": 153255,
808
+ "<|16.06|>": 153256,
809
+ "<|16.07|>": 153257,
810
+ "<|16.08|>": 153258,
811
+ "<|16.09|>": 153259,
812
+ "<|16.10|>": 153260,
813
+ "<|16.11|>": 153261,
814
+ "<|16.12|>": 153262,
815
+ "<|16.13|>": 153263,
816
+ "<|16.14|>": 153264,
817
+ "<|16.15|>": 153265,
818
+ "<|16.16|>": 153266,
819
+ "<|16.17|>": 153267,
820
+ "<|16.18|>": 153268,
821
+ "<|16.19|>": 153269,
822
+ "<|16.20|>": 153270,
823
+ "<|16.21|>": 153271,
824
+ "<|16.22|>": 153272,
825
+ "<|16.23|>": 153273,
826
+ "<|16.24|>": 153274,
827
+ "<|16.25|>": 153275,
828
+ "<|16.26|>": 153276,
829
+ "<|16.27|>": 153277,
830
+ "<|16.28|>": 153278,
831
+ "<|16.29|>": 153279,
832
+ "<|16.30|>": 153280,
833
+ "<|16.31|>": 153281,
834
+ "<|16.32|>": 153282,
835
+ "<|16.33|>": 153283,
836
+ "<|16.34|>": 153284,
837
+ "<|16.35|>": 153285,
838
+ "<|16.36|>": 153286,
839
+ "<|16.37|>": 153287,
840
+ "<|16.38|>": 153288,
841
+ "<|16.39|>": 153289,
842
+ "<|16.40|>": 153290,
843
+ "<|16.41|>": 153291,
844
+ "<|16.42|>": 153292,
845
+ "<|16.43|>": 153293,
846
+ "<|16.44|>": 153294,
847
+ "<|16.45|>": 153295,
848
+ "<|16.46|>": 153296,
849
+ "<|16.47|>": 153297,
850
+ "<|16.48|>": 153298,
851
+ "<|16.49|>": 153299,
852
+ "<|16.50|>": 153300,
853
+ "<|16.51|>": 153301,
854
+ "<|16.52|>": 153302,
855
+ "<|16.53|>": 153303,
856
+ "<|16.54|>": 153304,
857
+ "<|16.55|>": 153305,
858
+ "<|16.56|>": 153306,
859
+ "<|16.57|>": 153307,
860
+ "<|16.58|>": 153308,
861
+ "<|16.59|>": 153309,
862
+ "<|16.60|>": 153310,
863
+ "<|16.61|>": 153311,
864
+ "<|16.62|>": 153312,
865
+ "<|16.63|>": 153313,
866
+ "<|16.64|>": 153314,
867
+ "<|16.65|>": 153315,
868
+ "<|16.66|>": 153316,
869
+ "<|16.67|>": 153317,
870
+ "<|16.68|>": 153318,
871
+ "<|16.69|>": 153319,
872
+ "<|16.70|>": 153320,
873
+ "<|16.71|>": 153321,
874
+ "<|16.72|>": 153322,
875
+ "<|16.73|>": 153323,
876
+ "<|16.74|>": 153324,
877
+ "<|16.75|>": 153325,
878
+ "<|16.76|>": 153326,
879
+ "<|16.77|>": 153327,
880
+ "<|16.78|>": 153328,
881
+ "<|16.79|>": 153329,
882
+ "<|16.80|>": 153330,
883
+ "<|16.81|>": 153331,
884
+ "<|16.82|>": 153332,
885
+ "<|16.83|>": 153333,
886
+ "<|16.84|>": 153334,
887
+ "<|16.85|>": 153335,
888
+ "<|16.86|>": 153336,
889
+ "<|16.87|>": 153337,
890
+ "<|16.88|>": 153338,
891
+ "<|16.89|>": 153339,
892
+ "<|16.90|>": 153340,
893
+ "<|16.91|>": 153341,
894
+ "<|16.92|>": 153342,
895
+ "<|16.93|>": 153343,
896
+ "<|16.94|>": 153344,
897
+ "<|16.95|>": 153345,
898
+ "<|16.96|>": 153346,
899
+ "<|16.97|>": 153347,
900
+ "<|16.98|>": 153348,
901
+ "<|16.99|>": 153349,
902
+ "<|17.00|>": 153350,
903
+ "<|17.01|>": 153351,
904
+ "<|17.02|>": 153352,
905
+ "<|17.03|>": 153353,
906
+ "<|17.04|>": 153354,
907
+ "<|17.05|>": 153355,
908
+ "<|17.06|>": 153356,
909
+ "<|17.07|>": 153357,
910
+ "<|17.08|>": 153358,
911
+ "<|17.09|>": 153359,
912
+ "<|17.10|>": 153360,
913
+ "<|17.11|>": 153361,
914
+ "<|17.12|>": 153362,
915
+ "<|17.13|>": 153363,
916
+ "<|17.14|>": 153364,
917
+ "<|17.15|>": 153365,
918
+ "<|17.16|>": 153366,
919
+ "<|17.17|>": 153367,
920
+ "<|17.18|>": 153368,
921
+ "<|17.19|>": 153369,
922
+ "<|17.20|>": 153370,
923
+ "<|17.21|>": 153371,
924
+ "<|17.22|>": 153372,
925
+ "<|17.23|>": 153373,
926
+ "<|17.24|>": 153374,
927
+ "<|17.25|>": 153375,
928
+ "<|17.26|>": 153376,
929
+ "<|17.27|>": 153377,
930
+ "<|17.28|>": 153378,
931
+ "<|17.29|>": 153379,
932
+ "<|17.30|>": 153380,
933
+ "<|17.31|>": 153381,
934
+ "<|17.32|>": 153382,
935
+ "<|17.33|>": 153383,
936
+ "<|17.34|>": 153384,
937
+ "<|17.35|>": 153385,
938
+ "<|17.36|>": 153386,
939
+ "<|17.37|>": 153387,
940
+ "<|17.38|>": 153388,
941
+ "<|17.39|>": 153389,
942
+ "<|17.40|>": 153390,
943
+ "<|17.41|>": 153391,
944
+ "<|17.42|>": 153392,
945
+ "<|17.43|>": 153393,
946
+ "<|17.44|>": 153394,
947
+ "<|17.45|>": 153395,
948
+ "<|17.46|>": 153396,
949
+ "<|17.47|>": 153397,
950
+ "<|17.48|>": 153398,
951
+ "<|17.49|>": 153399,
952
+ "<|17.50|>": 153400,
953
+ "<|17.51|>": 153401,
954
+ "<|17.52|>": 153402,
955
+ "<|17.53|>": 153403,
956
+ "<|17.54|>": 153404,
957
+ "<|17.55|>": 153405,
958
+ "<|17.56|>": 153406,
959
+ "<|17.57|>": 153407,
960
+ "<|17.58|>": 153408,
961
+ "<|17.59|>": 153409,
962
+ "<|17.60|>": 153410,
963
+ "<|17.61|>": 153411,
964
+ "<|17.62|>": 153412,
965
+ "<|17.63|>": 153413,
966
+ "<|17.64|>": 153414,
967
+ "<|17.65|>": 153415,
968
+ "<|17.66|>": 153416,
969
+ "<|17.67|>": 153417,
970
+ "<|17.68|>": 153418,
971
+ "<|17.69|>": 153419,
972
+ "<|17.70|>": 153420,
973
+ "<|17.71|>": 153421,
974
+ "<|17.72|>": 153422,
975
+ "<|17.73|>": 153423,
976
+ "<|17.74|>": 153424,
977
+ "<|17.75|>": 153425,
978
+ "<|17.76|>": 153426,
979
+ "<|17.77|>": 153427,
980
+ "<|17.78|>": 153428,
981
+ "<|17.79|>": 153429,
982
+ "<|17.80|>": 153430,
983
+ "<|17.81|>": 153431,
984
+ "<|17.82|>": 153432,
985
+ "<|17.83|>": 153433,
986
+ "<|17.84|>": 153434,
987
+ "<|17.85|>": 153435,
988
+ "<|17.86|>": 153436,
989
+ "<|17.87|>": 153437,
990
+ "<|17.88|>": 153438,
991
+ "<|17.89|>": 153439,
992
+ "<|17.90|>": 153440,
993
+ "<|17.91|>": 153441,
994
+ "<|17.92|>": 153442,
995
+ "<|17.93|>": 153443,
996
+ "<|17.94|>": 153444,
997
+ "<|17.95|>": 153445,
998
+ "<|17.96|>": 153446,
999
+ "<|17.97|>": 153447,
1000
+ "<|17.98|>": 153448,
1001
+ "<|17.99|>": 153449,
1002
+ "<|18.00|>": 153450,
1003
+ "<|18.01|>": 153451,
1004
+ "<|18.02|>": 153452,
1005
+ "<|18.03|>": 153453,
1006
+ "<|18.04|>": 153454,
1007
+ "<|18.05|>": 153455,
1008
+ "<|18.06|>": 153456,
1009
+ "<|18.07|>": 153457,
1010
+ "<|18.08|>": 153458,
1011
+ "<|18.09|>": 153459,
1012
+ "<|18.10|>": 153460,
1013
+ "<|18.11|>": 153461,
1014
+ "<|18.12|>": 153462,
1015
+ "<|18.13|>": 153463,
1016
+ "<|18.14|>": 153464,
1017
+ "<|18.15|>": 153465,
1018
+ "<|18.16|>": 153466,
1019
+ "<|18.17|>": 153467,
1020
+ "<|18.18|>": 153468,
1021
+ "<|18.19|>": 153469,
1022
+ "<|18.20|>": 153470,
1023
+ "<|18.21|>": 153471,
1024
+ "<|18.22|>": 153472,
1025
+ "<|18.23|>": 153473,
1026
+ "<|18.24|>": 153474,
1027
+ "<|18.25|>": 153475,
1028
+ "<|18.26|>": 153476,
1029
+ "<|18.27|>": 153477,
1030
+ "<|18.28|>": 153478,
1031
+ "<|18.29|>": 153479,
1032
+ "<|18.30|>": 153480,
1033
+ "<|18.31|>": 153481,
1034
+ "<|18.32|>": 153482,
1035
+ "<|18.33|>": 153483,
1036
+ "<|18.34|>": 153484,
1037
+ "<|18.35|>": 153485,
1038
+ "<|18.36|>": 153486,
1039
+ "<|18.37|>": 153487,
1040
+ "<|18.38|>": 153488,
1041
+ "<|18.39|>": 153489,
1042
+ "<|18.40|>": 153490,
1043
+ "<|18.41|>": 153491,
1044
+ "<|18.42|>": 153492,
1045
+ "<|18.43|>": 153493,
1046
+ "<|18.44|>": 153494,
1047
+ "<|18.45|>": 153495,
1048
+ "<|18.46|>": 153496,
1049
+ "<|18.47|>": 153497,
1050
+ "<|18.48|>": 153498,
1051
+ "<|18.49|>": 153499,
1052
+ "<|18.50|>": 153500,
1053
+ "<|18.51|>": 153501,
1054
+ "<|18.52|>": 153502,
1055
+ "<|18.53|>": 153503,
1056
+ "<|18.54|>": 153504,
1057
+ "<|18.55|>": 153505,
1058
+ "<|18.56|>": 153506,
1059
+ "<|18.57|>": 153507,
1060
+ "<|18.58|>": 153508,
1061
+ "<|18.59|>": 153509,
1062
+ "<|18.60|>": 153510,
1063
+ "<|18.61|>": 153511,
1064
+ "<|18.62|>": 153512,
1065
+ "<|18.63|>": 153513,
1066
+ "<|18.64|>": 153514,
1067
+ "<|18.65|>": 153515,
1068
+ "<|18.66|>": 153516,
1069
+ "<|18.67|>": 153517,
1070
+ "<|18.68|>": 153518,
1071
+ "<|18.69|>": 153519,
1072
+ "<|18.70|>": 153520,
1073
+ "<|18.71|>": 153521,
1074
+ "<|18.72|>": 153522,
1075
+ "<|18.73|>": 153523,
1076
+ "<|18.74|>": 153524,
1077
+ "<|18.75|>": 153525,
1078
+ "<|18.76|>": 153526,
1079
+ "<|18.77|>": 153527,
1080
+ "<|18.78|>": 153528,
1081
+ "<|18.79|>": 153529,
1082
+ "<|18.80|>": 153530,
1083
+ "<|18.81|>": 153531,
1084
+ "<|18.82|>": 153532,
1085
+ "<|18.83|>": 153533,
1086
+ "<|18.84|>": 153534,
1087
+ "<|18.85|>": 153535,
1088
+ "<|18.86|>": 153536,
1089
+ "<|18.87|>": 153537,
1090
+ "<|18.88|>": 153538,
1091
+ "<|18.89|>": 153539,
1092
+ "<|18.90|>": 153540,
1093
+ "<|18.91|>": 153541,
1094
+ "<|18.92|>": 153542,
1095
+ "<|18.93|>": 153543,
1096
+ "<|18.94|>": 153544,
1097
+ "<|18.95|>": 153545,
1098
+ "<|18.96|>": 153546,
1099
+ "<|18.97|>": 153547,
1100
+ "<|18.98|>": 153548,
1101
+ "<|18.99|>": 153549,
1102
+ "<|19.00|>": 153550,
1103
+ "<|19.01|>": 153551,
1104
+ "<|19.02|>": 153552,
1105
+ "<|19.03|>": 153553,
1106
+ "<|19.04|>": 153554,
1107
+ "<|19.05|>": 153555,
1108
+ "<|19.06|>": 153556,
1109
+ "<|19.07|>": 153557,
1110
+ "<|19.08|>": 153558,
1111
+ "<|19.09|>": 153559,
1112
+ "<|19.10|>": 153560,
1113
+ "<|19.11|>": 153561,
1114
+ "<|19.12|>": 153562,
1115
+ "<|19.13|>": 153563,
1116
+ "<|19.14|>": 153564,
1117
+ "<|19.15|>": 153565,
1118
+ "<|19.16|>": 153566,
1119
+ "<|19.17|>": 153567,
1120
+ "<|19.18|>": 153568,
1121
+ "<|19.19|>": 153569,
1122
+ "<|19.20|>": 153570,
1123
+ "<|19.21|>": 153571,
1124
+ "<|19.22|>": 153572,
1125
+ "<|19.23|>": 153573,
1126
+ "<|19.24|>": 153574,
1127
+ "<|19.25|>": 153575,
1128
+ "<|19.26|>": 153576,
1129
+ "<|19.27|>": 153577,
1130
+ "<|19.28|>": 153578,
1131
+ "<|19.29|>": 153579,
1132
+ "<|19.30|>": 153580,
1133
+ "<|19.31|>": 153581,
1134
+ "<|19.32|>": 153582,
1135
+ "<|19.33|>": 153583,
1136
+ "<|19.34|>": 153584,
1137
+ "<|19.35|>": 153585,
1138
+ "<|19.36|>": 153586,
1139
+ "<|19.37|>": 153587,
1140
+ "<|19.38|>": 153588,
1141
+ "<|19.39|>": 153589,
1142
+ "<|19.40|>": 153590,
1143
+ "<|19.41|>": 153591,
1144
+ "<|19.42|>": 153592,
1145
+ "<|19.43|>": 153593,
1146
+ "<|19.44|>": 153594,
1147
+ "<|19.45|>": 153595,
1148
+ "<|19.46|>": 153596,
1149
+ "<|19.47|>": 153597,
1150
+ "<|19.48|>": 153598,
1151
+ "<|19.49|>": 153599,
1152
+ "<|19.50|>": 153600,
1153
+ "<|19.51|>": 153601,
1154
+ "<|19.52|>": 153602,
1155
+ "<|19.53|>": 153603,
1156
+ "<|19.54|>": 153604,
1157
+ "<|19.55|>": 153605,
1158
+ "<|19.56|>": 153606,
1159
+ "<|19.57|>": 153607,
1160
+ "<|19.58|>": 153608,
1161
+ "<|19.59|>": 153609,
1162
+ "<|19.60|>": 153610,
1163
+ "<|19.61|>": 153611,
1164
+ "<|19.62|>": 153612,
1165
+ "<|19.63|>": 153613,
1166
+ "<|19.64|>": 153614,
1167
+ "<|19.65|>": 153615,
1168
+ "<|19.66|>": 153616,
1169
+ "<|19.67|>": 153617,
1170
+ "<|19.68|>": 153618,
1171
+ "<|19.69|>": 153619,
1172
+ "<|19.70|>": 153620,
1173
+ "<|19.71|>": 153621,
1174
+ "<|19.72|>": 153622,
1175
+ "<|19.73|>": 153623,
1176
+ "<|19.74|>": 153624,
1177
+ "<|19.75|>": 153625,
1178
+ "<|19.76|>": 153626,
1179
+ "<|19.77|>": 153627,
1180
+ "<|19.78|>": 153628,
1181
+ "<|19.79|>": 153629,
1182
+ "<|19.80|>": 153630,
1183
+ "<|19.81|>": 153631,
1184
+ "<|19.82|>": 153632,
1185
+ "<|19.83|>": 153633,
1186
+ "<|19.84|>": 153634,
1187
+ "<|19.85|>": 153635,
1188
+ "<|19.86|>": 153636,
1189
+ "<|19.87|>": 153637,
1190
+ "<|19.88|>": 153638,
1191
+ "<|19.89|>": 153639,
1192
+ "<|19.90|>": 153640,
1193
+ "<|19.91|>": 153641,
1194
+ "<|19.92|>": 153642,
1195
+ "<|19.93|>": 153643,
1196
+ "<|19.94|>": 153644,
1197
+ "<|19.95|>": 153645,
1198
+ "<|19.96|>": 153646,
1199
+ "<|19.97|>": 153647,
1200
+ "<|19.98|>": 153648,
1201
+ "<|19.99|>": 153649,
1202
+ "<|2.00|>": 151850,
1203
+ "<|2.01|>": 151851,
1204
+ "<|2.02|>": 151852,
1205
+ "<|2.03|>": 151853,
1206
+ "<|2.04|>": 151854,
1207
+ "<|2.05|>": 151855,
1208
+ "<|2.06|>": 151856,
1209
+ "<|2.07|>": 151857,
1210
+ "<|2.08|>": 151858,
1211
+ "<|2.09|>": 151859,
1212
+ "<|2.10|>": 151860,
1213
+ "<|2.11|>": 151861,
1214
+ "<|2.12|>": 151862,
1215
+ "<|2.13|>": 151863,
1216
+ "<|2.14|>": 151864,
1217
+ "<|2.15|>": 151865,
1218
+ "<|2.16|>": 151866,
1219
+ "<|2.17|>": 151867,
1220
+ "<|2.18|>": 151868,
1221
+ "<|2.19|>": 151869,
1222
+ "<|2.20|>": 151870,
1223
+ "<|2.21|>": 151871,
1224
+ "<|2.22|>": 151872,
1225
+ "<|2.23|>": 151873,
1226
+ "<|2.24|>": 151874,
1227
+ "<|2.25|>": 151875,
1228
+ "<|2.26|>": 151876,
1229
+ "<|2.27|>": 151877,
1230
+ "<|2.28|>": 151878,
1231
+ "<|2.29|>": 151879,
1232
+ "<|2.30|>": 151880,
1233
+ "<|2.31|>": 151881,
1234
+ "<|2.32|>": 151882,
1235
+ "<|2.33|>": 151883,
1236
+ "<|2.34|>": 151884,
1237
+ "<|2.35|>": 151885,
1238
+ "<|2.36|>": 151886,
1239
+ "<|2.37|>": 151887,
1240
+ "<|2.38|>": 151888,
1241
+ "<|2.39|>": 151889,
1242
+ "<|2.40|>": 151890,
1243
+ "<|2.41|>": 151891,
1244
+ "<|2.42|>": 151892,
1245
+ "<|2.43|>": 151893,
1246
+ "<|2.44|>": 151894,
1247
+ "<|2.45|>": 151895,
1248
+ "<|2.46|>": 151896,
1249
+ "<|2.47|>": 151897,
1250
+ "<|2.48|>": 151898,
1251
+ "<|2.49|>": 151899,
1252
+ "<|2.50|>": 151900,
1253
+ "<|2.51|>": 151901,
1254
+ "<|2.52|>": 151902,
1255
+ "<|2.53|>": 151903,
1256
+ "<|2.54|>": 151904,
1257
+ "<|2.55|>": 151905,
1258
+ "<|2.56|>": 151906,
1259
+ "<|2.57|>": 151907,
1260
+ "<|2.58|>": 151908,
1261
+ "<|2.59|>": 151909,
1262
+ "<|2.60|>": 151910,
1263
+ "<|2.61|>": 151911,
1264
+ "<|2.62|>": 151912,
1265
+ "<|2.63|>": 151913,
1266
+ "<|2.64|>": 151914,
1267
+ "<|2.65|>": 151915,
1268
+ "<|2.66|>": 151916,
1269
+ "<|2.67|>": 151917,
1270
+ "<|2.68|>": 151918,
1271
+ "<|2.69|>": 151919,
1272
+ "<|2.70|>": 151920,
1273
+ "<|2.71|>": 151921,
1274
+ "<|2.72|>": 151922,
1275
+ "<|2.73|>": 151923,
1276
+ "<|2.74|>": 151924,
1277
+ "<|2.75|>": 151925,
1278
+ "<|2.76|>": 151926,
1279
+ "<|2.77|>": 151927,
1280
+ "<|2.78|>": 151928,
1281
+ "<|2.79|>": 151929,
1282
+ "<|2.80|>": 151930,
1283
+ "<|2.81|>": 151931,
1284
+ "<|2.82|>": 151932,
1285
+ "<|2.83|>": 151933,
1286
+ "<|2.84|>": 151934,
1287
+ "<|2.85|>": 151935,
1288
+ "<|2.86|>": 151936,
1289
+ "<|2.87|>": 151937,
1290
+ "<|2.88|>": 151938,
1291
+ "<|2.89|>": 151939,
1292
+ "<|2.90|>": 151940,
1293
+ "<|2.91|>": 151941,
1294
+ "<|2.92|>": 151942,
1295
+ "<|2.93|>": 151943,
1296
+ "<|2.94|>": 151944,
1297
+ "<|2.95|>": 151945,
1298
+ "<|2.96|>": 151946,
1299
+ "<|2.97|>": 151947,
1300
+ "<|2.98|>": 151948,
1301
+ "<|2.99|>": 151949,
1302
+ "<|20.00|>": 153650,
1303
+ "<|20.01|>": 153651,
1304
+ "<|20.02|>": 153652,
1305
+ "<|20.03|>": 153653,
1306
+ "<|20.04|>": 153654,
1307
+ "<|20.05|>": 153655,
1308
+ "<|20.06|>": 153656,
1309
+ "<|20.07|>": 153657,
1310
+ "<|20.08|>": 153658,
1311
+ "<|20.09|>": 153659,
1312
+ "<|20.10|>": 153660,
1313
+ "<|20.11|>": 153661,
1314
+ "<|20.12|>": 153662,
1315
+ "<|20.13|>": 153663,
1316
+ "<|20.14|>": 153664,
1317
+ "<|20.15|>": 153665,
1318
+ "<|20.16|>": 153666,
1319
+ "<|20.17|>": 153667,
1320
+ "<|20.18|>": 153668,
1321
+ "<|20.19|>": 153669,
1322
+ "<|20.20|>": 153670,
1323
+ "<|20.21|>": 153671,
1324
+ "<|20.22|>": 153672,
1325
+ "<|20.23|>": 153673,
1326
+ "<|20.24|>": 153674,
1327
+ "<|20.25|>": 153675,
1328
+ "<|20.26|>": 153676,
1329
+ "<|20.27|>": 153677,
1330
+ "<|20.28|>": 153678,
1331
+ "<|20.29|>": 153679,
1332
+ "<|20.30|>": 153680,
1333
+ "<|20.31|>": 153681,
1334
+ "<|20.32|>": 153682,
1335
+ "<|20.33|>": 153683,
1336
+ "<|20.34|>": 153684,
1337
+ "<|20.35|>": 153685,
1338
+ "<|20.36|>": 153686,
1339
+ "<|20.37|>": 153687,
1340
+ "<|20.38|>": 153688,
1341
+ "<|20.39|>": 153689,
1342
+ "<|20.40|>": 153690,
1343
+ "<|20.41|>": 153691,
1344
+ "<|20.42|>": 153692,
1345
+ "<|20.43|>": 153693,
1346
+ "<|20.44|>": 153694,
1347
+ "<|20.45|>": 153695,
1348
+ "<|20.46|>": 153696,
1349
+ "<|20.47|>": 153697,
1350
+ "<|20.48|>": 153698,
1351
+ "<|20.49|>": 153699,
1352
+ "<|20.50|>": 153700,
1353
+ "<|20.51|>": 153701,
1354
+ "<|20.52|>": 153702,
1355
+ "<|20.53|>": 153703,
1356
+ "<|20.54|>": 153704,
1357
+ "<|20.55|>": 153705,
1358
+ "<|20.56|>": 153706,
1359
+ "<|20.57|>": 153707,
1360
+ "<|20.58|>": 153708,
1361
+ "<|20.59|>": 153709,
1362
+ "<|20.60|>": 153710,
1363
+ "<|20.61|>": 153711,
1364
+ "<|20.62|>": 153712,
1365
+ "<|20.63|>": 153713,
1366
+ "<|20.64|>": 153714,
1367
+ "<|20.65|>": 153715,
1368
+ "<|20.66|>": 153716,
1369
+ "<|20.67|>": 153717,
1370
+ "<|20.68|>": 153718,
1371
+ "<|20.69|>": 153719,
1372
+ "<|20.70|>": 153720,
1373
+ "<|20.71|>": 153721,
1374
+ "<|20.72|>": 153722,
1375
+ "<|20.73|>": 153723,
1376
+ "<|20.74|>": 153724,
1377
+ "<|20.75|>": 153725,
1378
+ "<|20.76|>": 153726,
1379
+ "<|20.77|>": 153727,
1380
+ "<|20.78|>": 153728,
1381
+ "<|20.79|>": 153729,
1382
+ "<|20.80|>": 153730,
1383
+ "<|20.81|>": 153731,
1384
+ "<|20.82|>": 153732,
1385
+ "<|20.83|>": 153733,
1386
+ "<|20.84|>": 153734,
1387
+ "<|20.85|>": 153735,
1388
+ "<|20.86|>": 153736,
1389
+ "<|20.87|>": 153737,
1390
+ "<|20.88|>": 153738,
1391
+ "<|20.89|>": 153739,
1392
+ "<|20.90|>": 153740,
1393
+ "<|20.91|>": 153741,
1394
+ "<|20.92|>": 153742,
1395
+ "<|20.93|>": 153743,
1396
+ "<|20.94|>": 153744,
1397
+ "<|20.95|>": 153745,
1398
+ "<|20.96|>": 153746,
1399
+ "<|20.97|>": 153747,
1400
+ "<|20.98|>": 153748,
1401
+ "<|20.99|>": 153749,
1402
+ "<|21.00|>": 153750,
1403
+ "<|21.01|>": 153751,
1404
+ "<|21.02|>": 153752,
1405
+ "<|21.03|>": 153753,
1406
+ "<|21.04|>": 153754,
1407
+ "<|21.05|>": 153755,
1408
+ "<|21.06|>": 153756,
1409
+ "<|21.07|>": 153757,
1410
+ "<|21.08|>": 153758,
1411
+ "<|21.09|>": 153759,
1412
+ "<|21.10|>": 153760,
1413
+ "<|21.11|>": 153761,
1414
+ "<|21.12|>": 153762,
1415
+ "<|21.13|>": 153763,
1416
+ "<|21.14|>": 153764,
1417
+ "<|21.15|>": 153765,
1418
+ "<|21.16|>": 153766,
1419
+ "<|21.17|>": 153767,
1420
+ "<|21.18|>": 153768,
1421
+ "<|21.19|>": 153769,
1422
+ "<|21.20|>": 153770,
1423
+ "<|21.21|>": 153771,
1424
+ "<|21.22|>": 153772,
1425
+ "<|21.23|>": 153773,
1426
+ "<|21.24|>": 153774,
1427
+ "<|21.25|>": 153775,
1428
+ "<|21.26|>": 153776,
1429
+ "<|21.27|>": 153777,
1430
+ "<|21.28|>": 153778,
1431
+ "<|21.29|>": 153779,
1432
+ "<|21.30|>": 153780,
1433
+ "<|21.31|>": 153781,
1434
+ "<|21.32|>": 153782,
1435
+ "<|21.33|>": 153783,
1436
+ "<|21.34|>": 153784,
1437
+ "<|21.35|>": 153785,
1438
+ "<|21.36|>": 153786,
1439
+ "<|21.37|>": 153787,
1440
+ "<|21.38|>": 153788,
1441
+ "<|21.39|>": 153789,
1442
+ "<|21.40|>": 153790,
1443
+ "<|21.41|>": 153791,
1444
+ "<|21.42|>": 153792,
1445
+ "<|21.43|>": 153793,
1446
+ "<|21.44|>": 153794,
1447
+ "<|21.45|>": 153795,
1448
+ "<|21.46|>": 153796,
1449
+ "<|21.47|>": 153797,
1450
+ "<|21.48|>": 153798,
1451
+ "<|21.49|>": 153799,
1452
+ "<|21.50|>": 153800,
1453
+ "<|21.51|>": 153801,
1454
+ "<|21.52|>": 153802,
1455
+ "<|21.53|>": 153803,
1456
+ "<|21.54|>": 153804,
1457
+ "<|21.55|>": 153805,
1458
+ "<|21.56|>": 153806,
1459
+ "<|21.57|>": 153807,
1460
+ "<|21.58|>": 153808,
1461
+ "<|21.59|>": 153809,
1462
+ "<|21.60|>": 153810,
1463
+ "<|21.61|>": 153811,
1464
+ "<|21.62|>": 153812,
1465
+ "<|21.63|>": 153813,
1466
+ "<|21.64|>": 153814,
1467
+ "<|21.65|>": 153815,
1468
+ "<|21.66|>": 153816,
1469
+ "<|21.67|>": 153817,
1470
+ "<|21.68|>": 153818,
1471
+ "<|21.69|>": 153819,
1472
+ "<|21.70|>": 153820,
1473
+ "<|21.71|>": 153821,
1474
+ "<|21.72|>": 153822,
1475
+ "<|21.73|>": 153823,
1476
+ "<|21.74|>": 153824,
1477
+ "<|21.75|>": 153825,
1478
+ "<|21.76|>": 153826,
1479
+ "<|21.77|>": 153827,
1480
+ "<|21.78|>": 153828,
1481
+ "<|21.79|>": 153829,
1482
+ "<|21.80|>": 153830,
1483
+ "<|21.81|>": 153831,
1484
+ "<|21.82|>": 153832,
1485
+ "<|21.83|>": 153833,
1486
+ "<|21.84|>": 153834,
1487
+ "<|21.85|>": 153835,
1488
+ "<|21.86|>": 153836,
1489
+ "<|21.87|>": 153837,
1490
+ "<|21.88|>": 153838,
1491
+ "<|21.89|>": 153839,
1492
+ "<|21.90|>": 153840,
1493
+ "<|21.91|>": 153841,
1494
+ "<|21.92|>": 153842,
1495
+ "<|21.93|>": 153843,
1496
+ "<|21.94|>": 153844,
1497
+ "<|21.95|>": 153845,
1498
+ "<|21.96|>": 153846,
1499
+ "<|21.97|>": 153847,
1500
+ "<|21.98|>": 153848,
1501
+ "<|21.99|>": 153849,
1502
+ "<|22.00|>": 153850,
1503
+ "<|22.01|>": 153851,
1504
+ "<|22.02|>": 153852,
1505
+ "<|22.03|>": 153853,
1506
+ "<|22.04|>": 153854,
1507
+ "<|22.05|>": 153855,
1508
+ "<|22.06|>": 153856,
1509
+ "<|22.07|>": 153857,
1510
+ "<|22.08|>": 153858,
1511
+ "<|22.09|>": 153859,
1512
+ "<|22.10|>": 153860,
1513
+ "<|22.11|>": 153861,
1514
+ "<|22.12|>": 153862,
1515
+ "<|22.13|>": 153863,
1516
+ "<|22.14|>": 153864,
1517
+ "<|22.15|>": 153865,
1518
+ "<|22.16|>": 153866,
1519
+ "<|22.17|>": 153867,
1520
+ "<|22.18|>": 153868,
1521
+ "<|22.19|>": 153869,
1522
+ "<|22.20|>": 153870,
1523
+ "<|22.21|>": 153871,
1524
+ "<|22.22|>": 153872,
1525
+ "<|22.23|>": 153873,
1526
+ "<|22.24|>": 153874,
1527
+ "<|22.25|>": 153875,
1528
+ "<|22.26|>": 153876,
1529
+ "<|22.27|>": 153877,
1530
+ "<|22.28|>": 153878,
1531
+ "<|22.29|>": 153879,
1532
+ "<|22.30|>": 153880,
1533
+ "<|22.31|>": 153881,
1534
+ "<|22.32|>": 153882,
1535
+ "<|22.33|>": 153883,
1536
+ "<|22.34|>": 153884,
1537
+ "<|22.35|>": 153885,
1538
+ "<|22.36|>": 153886,
1539
+ "<|22.37|>": 153887,
1540
+ "<|22.38|>": 153888,
1541
+ "<|22.39|>": 153889,
1542
+ "<|22.40|>": 153890,
1543
+ "<|22.41|>": 153891,
1544
+ "<|22.42|>": 153892,
1545
+ "<|22.43|>": 153893,
1546
+ "<|22.44|>": 153894,
1547
+ "<|22.45|>": 153895,
1548
+ "<|22.46|>": 153896,
1549
+ "<|22.47|>": 153897,
1550
+ "<|22.48|>": 153898,
1551
+ "<|22.49|>": 153899,
1552
+ "<|22.50|>": 153900,
1553
+ "<|22.51|>": 153901,
1554
+ "<|22.52|>": 153902,
1555
+ "<|22.53|>": 153903,
1556
+ "<|22.54|>": 153904,
1557
+ "<|22.55|>": 153905,
1558
+ "<|22.56|>": 153906,
1559
+ "<|22.57|>": 153907,
1560
+ "<|22.58|>": 153908,
1561
+ "<|22.59|>": 153909,
1562
+ "<|22.60|>": 153910,
1563
+ "<|22.61|>": 153911,
1564
+ "<|22.62|>": 153912,
1565
+ "<|22.63|>": 153913,
1566
+ "<|22.64|>": 153914,
1567
+ "<|22.65|>": 153915,
1568
+ "<|22.66|>": 153916,
1569
+ "<|22.67|>": 153917,
1570
+ "<|22.68|>": 153918,
1571
+ "<|22.69|>": 153919,
1572
+ "<|22.70|>": 153920,
1573
+ "<|22.71|>": 153921,
1574
+ "<|22.72|>": 153922,
1575
+ "<|22.73|>": 153923,
1576
+ "<|22.74|>": 153924,
1577
+ "<|22.75|>": 153925,
1578
+ "<|22.76|>": 153926,
1579
+ "<|22.77|>": 153927,
1580
+ "<|22.78|>": 153928,
1581
+ "<|22.79|>": 153929,
1582
+ "<|22.80|>": 153930,
1583
+ "<|22.81|>": 153931,
1584
+ "<|22.82|>": 153932,
1585
+ "<|22.83|>": 153933,
1586
+ "<|22.84|>": 153934,
1587
+ "<|22.85|>": 153935,
1588
+ "<|22.86|>": 153936,
1589
+ "<|22.87|>": 153937,
1590
+ "<|22.88|>": 153938,
1591
+ "<|22.89|>": 153939,
1592
+ "<|22.90|>": 153940,
1593
+ "<|22.91|>": 153941,
1594
+ "<|22.92|>": 153942,
1595
+ "<|22.93|>": 153943,
1596
+ "<|22.94|>": 153944,
1597
+ "<|22.95|>": 153945,
1598
+ "<|22.96|>": 153946,
1599
+ "<|22.97|>": 153947,
1600
+ "<|22.98|>": 153948,
1601
+ "<|22.99|>": 153949,
1602
+ "<|23.00|>": 153950,
1603
+ "<|23.01|>": 153951,
1604
+ "<|23.02|>": 153952,
1605
+ "<|23.03|>": 153953,
1606
+ "<|23.04|>": 153954,
1607
+ "<|23.05|>": 153955,
1608
+ "<|23.06|>": 153956,
1609
+ "<|23.07|>": 153957,
1610
+ "<|23.08|>": 153958,
1611
+ "<|23.09|>": 153959,
1612
+ "<|23.10|>": 153960,
1613
+ "<|23.11|>": 153961,
1614
+ "<|23.12|>": 153962,
1615
+ "<|23.13|>": 153963,
1616
+ "<|23.14|>": 153964,
1617
+ "<|23.15|>": 153965,
1618
+ "<|23.16|>": 153966,
1619
+ "<|23.17|>": 153967,
1620
+ "<|23.18|>": 153968,
1621
+ "<|23.19|>": 153969,
1622
+ "<|23.20|>": 153970,
1623
+ "<|23.21|>": 153971,
1624
+ "<|23.22|>": 153972,
1625
+ "<|23.23|>": 153973,
1626
+ "<|23.24|>": 153974,
1627
+ "<|23.25|>": 153975,
1628
+ "<|23.26|>": 153976,
1629
+ "<|23.27|>": 153977,
1630
+ "<|23.28|>": 153978,
1631
+ "<|23.29|>": 153979,
1632
+ "<|23.30|>": 153980,
1633
+ "<|23.31|>": 153981,
1634
+ "<|23.32|>": 153982,
1635
+ "<|23.33|>": 153983,
1636
+ "<|23.34|>": 153984,
1637
+ "<|23.35|>": 153985,
1638
+ "<|23.36|>": 153986,
1639
+ "<|23.37|>": 153987,
1640
+ "<|23.38|>": 153988,
1641
+ "<|23.39|>": 153989,
1642
+ "<|23.40|>": 153990,
1643
+ "<|23.41|>": 153991,
1644
+ "<|23.42|>": 153992,
1645
+ "<|23.43|>": 153993,
1646
+ "<|23.44|>": 153994,
1647
+ "<|23.45|>": 153995,
1648
+ "<|23.46|>": 153996,
1649
+ "<|23.47|>": 153997,
1650
+ "<|23.48|>": 153998,
1651
+ "<|23.49|>": 153999,
1652
+ "<|23.50|>": 154000,
1653
+ "<|23.51|>": 154001,
1654
+ "<|23.52|>": 154002,
1655
+ "<|23.53|>": 154003,
1656
+ "<|23.54|>": 154004,
1657
+ "<|23.55|>": 154005,
1658
+ "<|23.56|>": 154006,
1659
+ "<|23.57|>": 154007,
1660
+ "<|23.58|>": 154008,
1661
+ "<|23.59|>": 154009,
1662
+ "<|23.60|>": 154010,
1663
+ "<|23.61|>": 154011,
1664
+ "<|23.62|>": 154012,
1665
+ "<|23.63|>": 154013,
1666
+ "<|23.64|>": 154014,
1667
+ "<|23.65|>": 154015,
1668
+ "<|23.66|>": 154016,
1669
+ "<|23.67|>": 154017,
1670
+ "<|23.68|>": 154018,
1671
+ "<|23.69|>": 154019,
1672
+ "<|23.70|>": 154020,
1673
+ "<|23.71|>": 154021,
1674
+ "<|23.72|>": 154022,
1675
+ "<|23.73|>": 154023,
1676
+ "<|23.74|>": 154024,
1677
+ "<|23.75|>": 154025,
1678
+ "<|23.76|>": 154026,
1679
+ "<|23.77|>": 154027,
1680
+ "<|23.78|>": 154028,
1681
+ "<|23.79|>": 154029,
1682
+ "<|23.80|>": 154030,
1683
+ "<|23.81|>": 154031,
1684
+ "<|23.82|>": 154032,
1685
+ "<|23.83|>": 154033,
1686
+ "<|23.84|>": 154034,
1687
+ "<|23.85|>": 154035,
1688
+ "<|23.86|>": 154036,
1689
+ "<|23.87|>": 154037,
1690
+ "<|23.88|>": 154038,
1691
+ "<|23.89|>": 154039,
1692
+ "<|23.90|>": 154040,
1693
+ "<|23.91|>": 154041,
1694
+ "<|23.92|>": 154042,
1695
+ "<|23.93|>": 154043,
1696
+ "<|23.94|>": 154044,
1697
+ "<|23.95|>": 154045,
1698
+ "<|23.96|>": 154046,
1699
+ "<|23.97|>": 154047,
1700
+ "<|23.98|>": 154048,
1701
+ "<|23.99|>": 154049,
1702
+ "<|24.00|>": 154050,
1703
+ "<|24.01|>": 154051,
1704
+ "<|24.02|>": 154052,
1705
+ "<|24.03|>": 154053,
1706
+ "<|24.04|>": 154054,
1707
+ "<|24.05|>": 154055,
1708
+ "<|24.06|>": 154056,
1709
+ "<|24.07|>": 154057,
1710
+ "<|24.08|>": 154058,
1711
+ "<|24.09|>": 154059,
1712
+ "<|24.10|>": 154060,
1713
+ "<|24.11|>": 154061,
1714
+ "<|24.12|>": 154062,
1715
+ "<|24.13|>": 154063,
1716
+ "<|24.14|>": 154064,
1717
+ "<|24.15|>": 154065,
1718
+ "<|24.16|>": 154066,
1719
+ "<|24.17|>": 154067,
1720
+ "<|24.18|>": 154068,
1721
+ "<|24.19|>": 154069,
1722
+ "<|24.20|>": 154070,
1723
+ "<|24.21|>": 154071,
1724
+ "<|24.22|>": 154072,
1725
+ "<|24.23|>": 154073,
1726
+ "<|24.24|>": 154074,
1727
+ "<|24.25|>": 154075,
1728
+ "<|24.26|>": 154076,
1729
+ "<|24.27|>": 154077,
1730
+ "<|24.28|>": 154078,
1731
+ "<|24.29|>": 154079,
1732
+ "<|24.30|>": 154080,
1733
+ "<|24.31|>": 154081,
1734
+ "<|24.32|>": 154082,
1735
+ "<|24.33|>": 154083,
1736
+ "<|24.34|>": 154084,
1737
+ "<|24.35|>": 154085,
1738
+ "<|24.36|>": 154086,
1739
+ "<|24.37|>": 154087,
1740
+ "<|24.38|>": 154088,
1741
+ "<|24.39|>": 154089,
1742
+ "<|24.40|>": 154090,
1743
+ "<|24.41|>": 154091,
1744
+ "<|24.42|>": 154092,
1745
+ "<|24.43|>": 154093,
1746
+ "<|24.44|>": 154094,
1747
+ "<|24.45|>": 154095,
1748
+ "<|24.46|>": 154096,
1749
+ "<|24.47|>": 154097,
1750
+ "<|24.48|>": 154098,
1751
+ "<|24.49|>": 154099,
1752
+ "<|24.50|>": 154100,
1753
+ "<|24.51|>": 154101,
1754
+ "<|24.52|>": 154102,
1755
+ "<|24.53|>": 154103,
1756
+ "<|24.54|>": 154104,
1757
+ "<|24.55|>": 154105,
1758
+ "<|24.56|>": 154106,
1759
+ "<|24.57|>": 154107,
1760
+ "<|24.58|>": 154108,
1761
+ "<|24.59|>": 154109,
1762
+ "<|24.60|>": 154110,
1763
+ "<|24.61|>": 154111,
1764
+ "<|24.62|>": 154112,
1765
+ "<|24.63|>": 154113,
1766
+ "<|24.64|>": 154114,
1767
+ "<|24.65|>": 154115,
1768
+ "<|24.66|>": 154116,
1769
+ "<|24.67|>": 154117,
1770
+ "<|24.68|>": 154118,
1771
+ "<|24.69|>": 154119,
1772
+ "<|24.70|>": 154120,
1773
+ "<|24.71|>": 154121,
1774
+ "<|24.72|>": 154122,
1775
+ "<|24.73|>": 154123,
1776
+ "<|24.74|>": 154124,
1777
+ "<|24.75|>": 154125,
1778
+ "<|24.76|>": 154126,
1779
+ "<|24.77|>": 154127,
1780
+ "<|24.78|>": 154128,
1781
+ "<|24.79|>": 154129,
1782
+ "<|24.80|>": 154130,
1783
+ "<|24.81|>": 154131,
1784
+ "<|24.82|>": 154132,
1785
+ "<|24.83|>": 154133,
1786
+ "<|24.84|>": 154134,
1787
+ "<|24.85|>": 154135,
1788
+ "<|24.86|>": 154136,
1789
+ "<|24.87|>": 154137,
1790
+ "<|24.88|>": 154138,
1791
+ "<|24.89|>": 154139,
1792
+ "<|24.90|>": 154140,
1793
+ "<|24.91|>": 154141,
1794
+ "<|24.92|>": 154142,
1795
+ "<|24.93|>": 154143,
1796
+ "<|24.94|>": 154144,
1797
+ "<|24.95|>": 154145,
1798
+ "<|24.96|>": 154146,
1799
+ "<|24.97|>": 154147,
1800
+ "<|24.98|>": 154148,
1801
+ "<|24.99|>": 154149,
1802
+ "<|25.00|>": 154150,
1803
+ "<|25.01|>": 154151,
1804
+ "<|25.02|>": 154152,
1805
+ "<|25.03|>": 154153,
1806
+ "<|25.04|>": 154154,
1807
+ "<|25.05|>": 154155,
1808
+ "<|25.06|>": 154156,
1809
+ "<|25.07|>": 154157,
1810
+ "<|25.08|>": 154158,
1811
+ "<|25.09|>": 154159,
1812
+ "<|25.10|>": 154160,
1813
+ "<|25.11|>": 154161,
1814
+ "<|25.12|>": 154162,
1815
+ "<|25.13|>": 154163,
1816
+ "<|25.14|>": 154164,
1817
+ "<|25.15|>": 154165,
1818
+ "<|25.16|>": 154166,
1819
+ "<|25.17|>": 154167,
1820
+ "<|25.18|>": 154168,
1821
+ "<|25.19|>": 154169,
1822
+ "<|25.20|>": 154170,
1823
+ "<|25.21|>": 154171,
1824
+ "<|25.22|>": 154172,
1825
+ "<|25.23|>": 154173,
1826
+ "<|25.24|>": 154174,
1827
+ "<|25.25|>": 154175,
1828
+ "<|25.26|>": 154176,
1829
+ "<|25.27|>": 154177,
1830
+ "<|25.28|>": 154178,
1831
+ "<|25.29|>": 154179,
1832
+ "<|25.30|>": 154180,
1833
+ "<|25.31|>": 154181,
1834
+ "<|25.32|>": 154182,
1835
+ "<|25.33|>": 154183,
1836
+ "<|25.34|>": 154184,
1837
+ "<|25.35|>": 154185,
1838
+ "<|25.36|>": 154186,
1839
+ "<|25.37|>": 154187,
1840
+ "<|25.38|>": 154188,
1841
+ "<|25.39|>": 154189,
1842
+ "<|25.40|>": 154190,
1843
+ "<|25.41|>": 154191,
1844
+ "<|25.42|>": 154192,
1845
+ "<|25.43|>": 154193,
1846
+ "<|25.44|>": 154194,
1847
+ "<|25.45|>": 154195,
1848
+ "<|25.46|>": 154196,
1849
+ "<|25.47|>": 154197,
1850
+ "<|25.48|>": 154198,
1851
+ "<|25.49|>": 154199,
1852
+ "<|25.50|>": 154200,
1853
+ "<|25.51|>": 154201,
1854
+ "<|25.52|>": 154202,
1855
+ "<|25.53|>": 154203,
1856
+ "<|25.54|>": 154204,
1857
+ "<|25.55|>": 154205,
1858
+ "<|25.56|>": 154206,
1859
+ "<|25.57|>": 154207,
1860
+ "<|25.58|>": 154208,
1861
+ "<|25.59|>": 154209,
1862
+ "<|25.60|>": 154210,
1863
+ "<|25.61|>": 154211,
1864
+ "<|25.62|>": 154212,
1865
+ "<|25.63|>": 154213,
1866
+ "<|25.64|>": 154214,
1867
+ "<|25.65|>": 154215,
1868
+ "<|25.66|>": 154216,
1869
+ "<|25.67|>": 154217,
1870
+ "<|25.68|>": 154218,
1871
+ "<|25.69|>": 154219,
1872
+ "<|25.70|>": 154220,
1873
+ "<|25.71|>": 154221,
1874
+ "<|25.72|>": 154222,
1875
+ "<|25.73|>": 154223,
1876
+ "<|25.74|>": 154224,
1877
+ "<|25.75|>": 154225,
1878
+ "<|25.76|>": 154226,
1879
+ "<|25.77|>": 154227,
1880
+ "<|25.78|>": 154228,
1881
+ "<|25.79|>": 154229,
1882
+ "<|25.80|>": 154230,
1883
+ "<|25.81|>": 154231,
1884
+ "<|25.82|>": 154232,
1885
+ "<|25.83|>": 154233,
1886
+ "<|25.84|>": 154234,
1887
+ "<|25.85|>": 154235,
1888
+ "<|25.86|>": 154236,
1889
+ "<|25.87|>": 154237,
1890
+ "<|25.88|>": 154238,
1891
+ "<|25.89|>": 154239,
1892
+ "<|25.90|>": 154240,
1893
+ "<|25.91|>": 154241,
1894
+ "<|25.92|>": 154242,
1895
+ "<|25.93|>": 154243,
1896
+ "<|25.94|>": 154244,
1897
+ "<|25.95|>": 154245,
1898
+ "<|25.96|>": 154246,
1899
+ "<|25.97|>": 154247,
1900
+ "<|25.98|>": 154248,
1901
+ "<|25.99|>": 154249,
1902
+ "<|26.00|>": 154250,
1903
+ "<|26.01|>": 154251,
1904
+ "<|26.02|>": 154252,
1905
+ "<|26.03|>": 154253,
1906
+ "<|26.04|>": 154254,
1907
+ "<|26.05|>": 154255,
1908
+ "<|26.06|>": 154256,
1909
+ "<|26.07|>": 154257,
1910
+ "<|26.08|>": 154258,
1911
+ "<|26.09|>": 154259,
1912
+ "<|26.10|>": 154260,
1913
+ "<|26.11|>": 154261,
1914
+ "<|26.12|>": 154262,
1915
+ "<|26.13|>": 154263,
1916
+ "<|26.14|>": 154264,
1917
+ "<|26.15|>": 154265,
1918
+ "<|26.16|>": 154266,
1919
+ "<|26.17|>": 154267,
1920
+ "<|26.18|>": 154268,
1921
+ "<|26.19|>": 154269,
1922
+ "<|26.20|>": 154270,
1923
+ "<|26.21|>": 154271,
1924
+ "<|26.22|>": 154272,
1925
+ "<|26.23|>": 154273,
1926
+ "<|26.24|>": 154274,
1927
+ "<|26.25|>": 154275,
1928
+ "<|26.26|>": 154276,
1929
+ "<|26.27|>": 154277,
1930
+ "<|26.28|>": 154278,
1931
+ "<|26.29|>": 154279,
1932
+ "<|26.30|>": 154280,
1933
+ "<|26.31|>": 154281,
1934
+ "<|26.32|>": 154282,
1935
+ "<|26.33|>": 154283,
1936
+ "<|26.34|>": 154284,
1937
+ "<|26.35|>": 154285,
1938
+ "<|26.36|>": 154286,
1939
+ "<|26.37|>": 154287,
1940
+ "<|26.38|>": 154288,
1941
+ "<|26.39|>": 154289,
1942
+ "<|26.40|>": 154290,
1943
+ "<|26.41|>": 154291,
1944
+ "<|26.42|>": 154292,
1945
+ "<|26.43|>": 154293,
1946
+ "<|26.44|>": 154294,
1947
+ "<|26.45|>": 154295,
1948
+ "<|26.46|>": 154296,
1949
+ "<|26.47|>": 154297,
1950
+ "<|26.48|>": 154298,
1951
+ "<|26.49|>": 154299,
1952
+ "<|26.50|>": 154300,
1953
+ "<|26.51|>": 154301,
1954
+ "<|26.52|>": 154302,
1955
+ "<|26.53|>": 154303,
1956
+ "<|26.54|>": 154304,
1957
+ "<|26.55|>": 154305,
1958
+ "<|26.56|>": 154306,
1959
+ "<|26.57|>": 154307,
1960
+ "<|26.58|>": 154308,
1961
+ "<|26.59|>": 154309,
1962
+ "<|26.60|>": 154310,
1963
+ "<|26.61|>": 154311,
1964
+ "<|26.62|>": 154312,
1965
+ "<|26.63|>": 154313,
1966
+ "<|26.64|>": 154314,
1967
+ "<|26.65|>": 154315,
1968
+ "<|26.66|>": 154316,
1969
+ "<|26.67|>": 154317,
1970
+ "<|26.68|>": 154318,
1971
+ "<|26.69|>": 154319,
1972
+ "<|26.70|>": 154320,
1973
+ "<|26.71|>": 154321,
1974
+ "<|26.72|>": 154322,
1975
+ "<|26.73|>": 154323,
1976
+ "<|26.74|>": 154324,
1977
+ "<|26.75|>": 154325,
1978
+ "<|26.76|>": 154326,
1979
+ "<|26.77|>": 154327,
1980
+ "<|26.78|>": 154328,
1981
+ "<|26.79|>": 154329,
1982
+ "<|26.80|>": 154330,
1983
+ "<|26.81|>": 154331,
1984
+ "<|26.82|>": 154332,
1985
+ "<|26.83|>": 154333,
1986
+ "<|26.84|>": 154334,
1987
+ "<|26.85|>": 154335,
1988
+ "<|26.86|>": 154336,
1989
+ "<|26.87|>": 154337,
1990
+ "<|26.88|>": 154338,
1991
+ "<|26.89|>": 154339,
1992
+ "<|26.90|>": 154340,
1993
+ "<|26.91|>": 154341,
1994
+ "<|26.92|>": 154342,
1995
+ "<|26.93|>": 154343,
1996
+ "<|26.94|>": 154344,
1997
+ "<|26.95|>": 154345,
1998
+ "<|26.96|>": 154346,
1999
+ "<|26.97|>": 154347,
2000
+ "<|26.98|>": 154348,
2001
+ "<|26.99|>": 154349,
2002
+ "<|27.00|>": 154350,
2003
+ "<|27.01|>": 154351,
2004
+ "<|27.02|>": 154352,
2005
+ "<|27.03|>": 154353,
2006
+ "<|27.04|>": 154354,
2007
+ "<|27.05|>": 154355,
2008
+ "<|27.06|>": 154356,
2009
+ "<|27.07|>": 154357,
2010
+ "<|27.08|>": 154358,
2011
+ "<|27.09|>": 154359,
2012
+ "<|27.10|>": 154360,
2013
+ "<|27.11|>": 154361,
2014
+ "<|27.12|>": 154362,
2015
+ "<|27.13|>": 154363,
2016
+ "<|27.14|>": 154364,
2017
+ "<|27.15|>": 154365,
2018
+ "<|27.16|>": 154366,
2019
+ "<|27.17|>": 154367,
2020
+ "<|27.18|>": 154368,
2021
+ "<|27.19|>": 154369,
2022
+ "<|27.20|>": 154370,
2023
+ "<|27.21|>": 154371,
2024
+ "<|27.22|>": 154372,
2025
+ "<|27.23|>": 154373,
2026
+ "<|27.24|>": 154374,
2027
+ "<|27.25|>": 154375,
2028
+ "<|27.26|>": 154376,
2029
+ "<|27.27|>": 154377,
2030
+ "<|27.28|>": 154378,
2031
+ "<|27.29|>": 154379,
2032
+ "<|27.30|>": 154380,
2033
+ "<|27.31|>": 154381,
2034
+ "<|27.32|>": 154382,
2035
+ "<|27.33|>": 154383,
2036
+ "<|27.34|>": 154384,
2037
+ "<|27.35|>": 154385,
2038
+ "<|27.36|>": 154386,
2039
+ "<|27.37|>": 154387,
2040
+ "<|27.38|>": 154388,
2041
+ "<|27.39|>": 154389,
2042
+ "<|27.40|>": 154390,
2043
+ "<|27.41|>": 154391,
2044
+ "<|27.42|>": 154392,
2045
+ "<|27.43|>": 154393,
2046
+ "<|27.44|>": 154394,
2047
+ "<|27.45|>": 154395,
2048
+ "<|27.46|>": 154396,
2049
+ "<|27.47|>": 154397,
2050
+ "<|27.48|>": 154398,
2051
+ "<|27.49|>": 154399,
2052
+ "<|27.50|>": 154400,
2053
+ "<|27.51|>": 154401,
2054
+ "<|27.52|>": 154402,
2055
+ "<|27.53|>": 154403,
2056
+ "<|27.54|>": 154404,
2057
+ "<|27.55|>": 154405,
2058
+ "<|27.56|>": 154406,
2059
+ "<|27.57|>": 154407,
2060
+ "<|27.58|>": 154408,
2061
+ "<|27.59|>": 154409,
2062
+ "<|27.60|>": 154410,
2063
+ "<|27.61|>": 154411,
2064
+ "<|27.62|>": 154412,
2065
+ "<|27.63|>": 154413,
2066
+ "<|27.64|>": 154414,
2067
+ "<|27.65|>": 154415,
2068
+ "<|27.66|>": 154416,
2069
+ "<|27.67|>": 154417,
2070
+ "<|27.68|>": 154418,
2071
+ "<|27.69|>": 154419,
2072
+ "<|27.70|>": 154420,
2073
+ "<|27.71|>": 154421,
2074
+ "<|27.72|>": 154422,
2075
+ "<|27.73|>": 154423,
2076
+ "<|27.74|>": 154424,
2077
+ "<|27.75|>": 154425,
2078
+ "<|27.76|>": 154426,
2079
+ "<|27.77|>": 154427,
2080
+ "<|27.78|>": 154428,
2081
+ "<|27.79|>": 154429,
2082
+ "<|27.80|>": 154430,
2083
+ "<|27.81|>": 154431,
2084
+ "<|27.82|>": 154432,
2085
+ "<|27.83|>": 154433,
2086
+ "<|27.84|>": 154434,
2087
+ "<|27.85|>": 154435,
2088
+ "<|27.86|>": 154436,
2089
+ "<|27.87|>": 154437,
2090
+ "<|27.88|>": 154438,
2091
+ "<|27.89|>": 154439,
2092
+ "<|27.90|>": 154440,
2093
+ "<|27.91|>": 154441,
2094
+ "<|27.92|>": 154442,
2095
+ "<|27.93|>": 154443,
2096
+ "<|27.94|>": 154444,
2097
+ "<|27.95|>": 154445,
2098
+ "<|27.96|>": 154446,
2099
+ "<|27.97|>": 154447,
2100
+ "<|27.98|>": 154448,
2101
+ "<|27.99|>": 154449,
2102
+ "<|28.00|>": 154450,
2103
+ "<|28.01|>": 154451,
2104
+ "<|28.02|>": 154452,
2105
+ "<|28.03|>": 154453,
2106
+ "<|28.04|>": 154454,
2107
+ "<|28.05|>": 154455,
2108
+ "<|28.06|>": 154456,
2109
+ "<|28.07|>": 154457,
2110
+ "<|28.08|>": 154458,
2111
+ "<|28.09|>": 154459,
2112
+ "<|28.10|>": 154460,
2113
+ "<|28.11|>": 154461,
2114
+ "<|28.12|>": 154462,
2115
+ "<|28.13|>": 154463,
2116
+ "<|28.14|>": 154464,
2117
+ "<|28.15|>": 154465,
2118
+ "<|28.16|>": 154466,
2119
+ "<|28.17|>": 154467,
2120
+ "<|28.18|>": 154468,
2121
+ "<|28.19|>": 154469,
2122
+ "<|28.20|>": 154470,
2123
+ "<|28.21|>": 154471,
2124
+ "<|28.22|>": 154472,
2125
+ "<|28.23|>": 154473,
2126
+ "<|28.24|>": 154474,
2127
+ "<|28.25|>": 154475,
2128
+ "<|28.26|>": 154476,
2129
+ "<|28.27|>": 154477,
2130
+ "<|28.28|>": 154478,
2131
+ "<|28.29|>": 154479,
2132
+ "<|28.30|>": 154480,
2133
+ "<|28.31|>": 154481,
2134
+ "<|28.32|>": 154482,
2135
+ "<|28.33|>": 154483,
2136
+ "<|28.34|>": 154484,
2137
+ "<|28.35|>": 154485,
2138
+ "<|28.36|>": 154486,
2139
+ "<|28.37|>": 154487,
2140
+ "<|28.38|>": 154488,
2141
+ "<|28.39|>": 154489,
2142
+ "<|28.40|>": 154490,
2143
+ "<|28.41|>": 154491,
2144
+ "<|28.42|>": 154492,
2145
+ "<|28.43|>": 154493,
2146
+ "<|28.44|>": 154494,
2147
+ "<|28.45|>": 154495,
2148
+ "<|28.46|>": 154496,
2149
+ "<|28.47|>": 154497,
2150
+ "<|28.48|>": 154498,
2151
+ "<|28.49|>": 154499,
2152
+ "<|28.50|>": 154500,
2153
+ "<|28.51|>": 154501,
2154
+ "<|28.52|>": 154502,
2155
+ "<|28.53|>": 154503,
2156
+ "<|28.54|>": 154504,
2157
+ "<|28.55|>": 154505,
2158
+ "<|28.56|>": 154506,
2159
+ "<|28.57|>": 154507,
2160
+ "<|28.58|>": 154508,
2161
+ "<|28.59|>": 154509,
2162
+ "<|28.60|>": 154510,
2163
+ "<|28.61|>": 154511,
2164
+ "<|28.62|>": 154512,
2165
+ "<|28.63|>": 154513,
2166
+ "<|28.64|>": 154514,
2167
+ "<|28.65|>": 154515,
2168
+ "<|28.66|>": 154516,
2169
+ "<|28.67|>": 154517,
2170
+ "<|28.68|>": 154518,
2171
+ "<|28.69|>": 154519,
2172
+ "<|28.70|>": 154520,
2173
+ "<|28.71|>": 154521,
2174
+ "<|28.72|>": 154522,
2175
+ "<|28.73|>": 154523,
2176
+ "<|28.74|>": 154524,
2177
+ "<|28.75|>": 154525,
2178
+ "<|28.76|>": 154526,
2179
+ "<|28.77|>": 154527,
2180
+ "<|28.78|>": 154528,
2181
+ "<|28.79|>": 154529,
2182
+ "<|28.80|>": 154530,
2183
+ "<|28.81|>": 154531,
2184
+ "<|28.82|>": 154532,
2185
+ "<|28.83|>": 154533,
2186
+ "<|28.84|>": 154534,
2187
+ "<|28.85|>": 154535,
2188
+ "<|28.86|>": 154536,
2189
+ "<|28.87|>": 154537,
2190
+ "<|28.88|>": 154538,
2191
+ "<|28.89|>": 154539,
2192
+ "<|28.90|>": 154540,
2193
+ "<|28.91|>": 154541,
2194
+ "<|28.92|>": 154542,
2195
+ "<|28.93|>": 154543,
2196
+ "<|28.94|>": 154544,
2197
+ "<|28.95|>": 154545,
2198
+ "<|28.96|>": 154546,
2199
+ "<|28.97|>": 154547,
2200
+ "<|28.98|>": 154548,
2201
+ "<|28.99|>": 154549,
2202
+ "<|29.00|>": 154550,
2203
+ "<|29.01|>": 154551,
2204
+ "<|29.02|>": 154552,
2205
+ "<|29.03|>": 154553,
2206
+ "<|29.04|>": 154554,
2207
+ "<|29.05|>": 154555,
2208
+ "<|29.06|>": 154556,
2209
+ "<|29.07|>": 154557,
2210
+ "<|29.08|>": 154558,
2211
+ "<|29.09|>": 154559,
2212
+ "<|29.10|>": 154560,
2213
+ "<|29.11|>": 154561,
2214
+ "<|29.12|>": 154562,
2215
+ "<|29.13|>": 154563,
2216
+ "<|29.14|>": 154564,
2217
+ "<|29.15|>": 154565,
2218
+ "<|29.16|>": 154566,
2219
+ "<|29.17|>": 154567,
2220
+ "<|29.18|>": 154568,
2221
+ "<|29.19|>": 154569,
2222
+ "<|29.20|>": 154570,
2223
+ "<|29.21|>": 154571,
2224
+ "<|29.22|>": 154572,
2225
+ "<|29.23|>": 154573,
2226
+ "<|29.24|>": 154574,
2227
+ "<|29.25|>": 154575,
2228
+ "<|29.26|>": 154576,
2229
+ "<|29.27|>": 154577,
2230
+ "<|29.28|>": 154578,
2231
+ "<|29.29|>": 154579,
2232
+ "<|29.30|>": 154580,
2233
+ "<|29.31|>": 154581,
2234
+ "<|29.32|>": 154582,
2235
+ "<|29.33|>": 154583,
2236
+ "<|29.34|>": 154584,
2237
+ "<|29.35|>": 154585,
2238
+ "<|29.36|>": 154586,
2239
+ "<|29.37|>": 154587,
2240
+ "<|29.38|>": 154588,
2241
+ "<|29.39|>": 154589,
2242
+ "<|29.40|>": 154590,
2243
+ "<|29.41|>": 154591,
2244
+ "<|29.42|>": 154592,
2245
+ "<|29.43|>": 154593,
2246
+ "<|29.44|>": 154594,
2247
+ "<|29.45|>": 154595,
2248
+ "<|29.46|>": 154596,
2249
+ "<|29.47|>": 154597,
2250
+ "<|29.48|>": 154598,
2251
+ "<|29.49|>": 154599,
2252
+ "<|29.50|>": 154600,
2253
+ "<|29.51|>": 154601,
2254
+ "<|29.52|>": 154602,
2255
+ "<|29.53|>": 154603,
2256
+ "<|29.54|>": 154604,
2257
+ "<|29.55|>": 154605,
2258
+ "<|29.56|>": 154606,
2259
+ "<|29.57|>": 154607,
2260
+ "<|29.58|>": 154608,
2261
+ "<|29.59|>": 154609,
2262
+ "<|29.60|>": 154610,
2263
+ "<|29.61|>": 154611,
2264
+ "<|29.62|>": 154612,
2265
+ "<|29.63|>": 154613,
2266
+ "<|29.64|>": 154614,
2267
+ "<|29.65|>": 154615,
2268
+ "<|29.66|>": 154616,
2269
+ "<|29.67|>": 154617,
2270
+ "<|29.68|>": 154618,
2271
+ "<|29.69|>": 154619,
2272
+ "<|29.70|>": 154620,
2273
+ "<|29.71|>": 154621,
2274
+ "<|29.72|>": 154622,
2275
+ "<|29.73|>": 154623,
2276
+ "<|29.74|>": 154624,
2277
+ "<|29.75|>": 154625,
2278
+ "<|29.76|>": 154626,
2279
+ "<|29.77|>": 154627,
2280
+ "<|29.78|>": 154628,
2281
+ "<|29.79|>": 154629,
2282
+ "<|29.80|>": 154630,
2283
+ "<|29.81|>": 154631,
2284
+ "<|29.82|>": 154632,
2285
+ "<|29.83|>": 154633,
2286
+ "<|29.84|>": 154634,
2287
+ "<|29.85|>": 154635,
2288
+ "<|29.86|>": 154636,
2289
+ "<|29.87|>": 154637,
2290
+ "<|29.88|>": 154638,
2291
+ "<|29.89|>": 154639,
2292
+ "<|29.90|>": 154640,
2293
+ "<|29.91|>": 154641,
2294
+ "<|29.92|>": 154642,
2295
+ "<|29.93|>": 154643,
2296
+ "<|29.94|>": 154644,
2297
+ "<|29.95|>": 154645,
2298
+ "<|29.96|>": 154646,
2299
+ "<|29.97|>": 154647,
2300
+ "<|29.98|>": 154648,
2301
+ "<|29.99|>": 154649,
2302
+ "<|3.00|>": 151950,
2303
+ "<|3.01|>": 151951,
2304
+ "<|3.02|>": 151952,
2305
+ "<|3.03|>": 151953,
2306
+ "<|3.04|>": 151954,
2307
+ "<|3.05|>": 151955,
2308
+ "<|3.06|>": 151956,
2309
+ "<|3.07|>": 151957,
2310
+ "<|3.08|>": 151958,
2311
+ "<|3.09|>": 151959,
2312
+ "<|3.10|>": 151960,
2313
+ "<|3.11|>": 151961,
2314
+ "<|3.12|>": 151962,
2315
+ "<|3.13|>": 151963,
2316
+ "<|3.14|>": 151964,
2317
+ "<|3.15|>": 151965,
2318
+ "<|3.16|>": 151966,
2319
+ "<|3.17|>": 151967,
2320
+ "<|3.18|>": 151968,
2321
+ "<|3.19|>": 151969,
2322
+ "<|3.20|>": 151970,
2323
+ "<|3.21|>": 151971,
2324
+ "<|3.22|>": 151972,
2325
+ "<|3.23|>": 151973,
2326
+ "<|3.24|>": 151974,
2327
+ "<|3.25|>": 151975,
2328
+ "<|3.26|>": 151976,
2329
+ "<|3.27|>": 151977,
2330
+ "<|3.28|>": 151978,
2331
+ "<|3.29|>": 151979,
2332
+ "<|3.30|>": 151980,
2333
+ "<|3.31|>": 151981,
2334
+ "<|3.32|>": 151982,
2335
+ "<|3.33|>": 151983,
2336
+ "<|3.34|>": 151984,
2337
+ "<|3.35|>": 151985,
2338
+ "<|3.36|>": 151986,
2339
+ "<|3.37|>": 151987,
2340
+ "<|3.38|>": 151988,
2341
+ "<|3.39|>": 151989,
2342
+ "<|3.40|>": 151990,
2343
+ "<|3.41|>": 151991,
2344
+ "<|3.42|>": 151992,
2345
+ "<|3.43|>": 151993,
2346
+ "<|3.44|>": 151994,
2347
+ "<|3.45|>": 151995,
2348
+ "<|3.46|>": 151996,
2349
+ "<|3.47|>": 151997,
2350
+ "<|3.48|>": 151998,
2351
+ "<|3.49|>": 151999,
2352
+ "<|3.50|>": 152000,
2353
+ "<|3.51|>": 152001,
2354
+ "<|3.52|>": 152002,
2355
+ "<|3.53|>": 152003,
2356
+ "<|3.54|>": 152004,
2357
+ "<|3.55|>": 152005,
2358
+ "<|3.56|>": 152006,
2359
+ "<|3.57|>": 152007,
2360
+ "<|3.58|>": 152008,
2361
+ "<|3.59|>": 152009,
2362
+ "<|3.60|>": 152010,
2363
+ "<|3.61|>": 152011,
2364
+ "<|3.62|>": 152012,
2365
+ "<|3.63|>": 152013,
2366
+ "<|3.64|>": 152014,
2367
+ "<|3.65|>": 152015,
2368
+ "<|3.66|>": 152016,
2369
+ "<|3.67|>": 152017,
2370
+ "<|3.68|>": 152018,
2371
+ "<|3.69|>": 152019,
2372
+ "<|3.70|>": 152020,
2373
+ "<|3.71|>": 152021,
2374
+ "<|3.72|>": 152022,
2375
+ "<|3.73|>": 152023,
2376
+ "<|3.74|>": 152024,
2377
+ "<|3.75|>": 152025,
2378
+ "<|3.76|>": 152026,
2379
+ "<|3.77|>": 152027,
2380
+ "<|3.78|>": 152028,
2381
+ "<|3.79|>": 152029,
2382
+ "<|3.80|>": 152030,
2383
+ "<|3.81|>": 152031,
2384
+ "<|3.82|>": 152032,
2385
+ "<|3.83|>": 152033,
2386
+ "<|3.84|>": 152034,
2387
+ "<|3.85|>": 152035,
2388
+ "<|3.86|>": 152036,
2389
+ "<|3.87|>": 152037,
2390
+ "<|3.88|>": 152038,
2391
+ "<|3.89|>": 152039,
2392
+ "<|3.90|>": 152040,
2393
+ "<|3.91|>": 152041,
2394
+ "<|3.92|>": 152042,
2395
+ "<|3.93|>": 152043,
2396
+ "<|3.94|>": 152044,
2397
+ "<|3.95|>": 152045,
2398
+ "<|3.96|>": 152046,
2399
+ "<|3.97|>": 152047,
2400
+ "<|3.98|>": 152048,
2401
+ "<|3.99|>": 152049,
2402
+ "<|30.00|>": 154650,
2403
+ "<|4.00|>": 152050,
2404
+ "<|4.01|>": 152051,
2405
+ "<|4.02|>": 152052,
2406
+ "<|4.03|>": 152053,
2407
+ "<|4.04|>": 152054,
2408
+ "<|4.05|>": 152055,
2409
+ "<|4.06|>": 152056,
2410
+ "<|4.07|>": 152057,
2411
+ "<|4.08|>": 152058,
2412
+ "<|4.09|>": 152059,
2413
+ "<|4.10|>": 152060,
2414
+ "<|4.11|>": 152061,
2415
+ "<|4.12|>": 152062,
2416
+ "<|4.13|>": 152063,
2417
+ "<|4.14|>": 152064,
2418
+ "<|4.15|>": 152065,
2419
+ "<|4.16|>": 152066,
2420
+ "<|4.17|>": 152067,
2421
+ "<|4.18|>": 152068,
2422
+ "<|4.19|>": 152069,
2423
+ "<|4.20|>": 152070,
2424
+ "<|4.21|>": 152071,
2425
+ "<|4.22|>": 152072,
2426
+ "<|4.23|>": 152073,
2427
+ "<|4.24|>": 152074,
2428
+ "<|4.25|>": 152075,
2429
+ "<|4.26|>": 152076,
2430
+ "<|4.27|>": 152077,
2431
+ "<|4.28|>": 152078,
2432
+ "<|4.29|>": 152079,
2433
+ "<|4.30|>": 152080,
2434
+ "<|4.31|>": 152081,
2435
+ "<|4.32|>": 152082,
2436
+ "<|4.33|>": 152083,
2437
+ "<|4.34|>": 152084,
2438
+ "<|4.35|>": 152085,
2439
+ "<|4.36|>": 152086,
2440
+ "<|4.37|>": 152087,
2441
+ "<|4.38|>": 152088,
2442
+ "<|4.39|>": 152089,
2443
+ "<|4.40|>": 152090,
2444
+ "<|4.41|>": 152091,
2445
+ "<|4.42|>": 152092,
2446
+ "<|4.43|>": 152093,
2447
+ "<|4.44|>": 152094,
2448
+ "<|4.45|>": 152095,
2449
+ "<|4.46|>": 152096,
2450
+ "<|4.47|>": 152097,
2451
+ "<|4.48|>": 152098,
2452
+ "<|4.49|>": 152099,
2453
+ "<|4.50|>": 152100,
2454
+ "<|4.51|>": 152101,
2455
+ "<|4.52|>": 152102,
2456
+ "<|4.53|>": 152103,
2457
+ "<|4.54|>": 152104,
2458
+ "<|4.55|>": 152105,
2459
+ "<|4.56|>": 152106,
2460
+ "<|4.57|>": 152107,
2461
+ "<|4.58|>": 152108,
2462
+ "<|4.59|>": 152109,
2463
+ "<|4.60|>": 152110,
2464
+ "<|4.61|>": 152111,
2465
+ "<|4.62|>": 152112,
2466
+ "<|4.63|>": 152113,
2467
+ "<|4.64|>": 152114,
2468
+ "<|4.65|>": 152115,
2469
+ "<|4.66|>": 152116,
2470
+ "<|4.67|>": 152117,
2471
+ "<|4.68|>": 152118,
2472
+ "<|4.69|>": 152119,
2473
+ "<|4.70|>": 152120,
2474
+ "<|4.71|>": 152121,
2475
+ "<|4.72|>": 152122,
2476
+ "<|4.73|>": 152123,
2477
+ "<|4.74|>": 152124,
2478
+ "<|4.75|>": 152125,
2479
+ "<|4.76|>": 152126,
2480
+ "<|4.77|>": 152127,
2481
+ "<|4.78|>": 152128,
2482
+ "<|4.79|>": 152129,
2483
+ "<|4.80|>": 152130,
2484
+ "<|4.81|>": 152131,
2485
+ "<|4.82|>": 152132,
2486
+ "<|4.83|>": 152133,
2487
+ "<|4.84|>": 152134,
2488
+ "<|4.85|>": 152135,
2489
+ "<|4.86|>": 152136,
2490
+ "<|4.87|>": 152137,
2491
+ "<|4.88|>": 152138,
2492
+ "<|4.89|>": 152139,
2493
+ "<|4.90|>": 152140,
2494
+ "<|4.91|>": 152141,
2495
+ "<|4.92|>": 152142,
2496
+ "<|4.93|>": 152143,
2497
+ "<|4.94|>": 152144,
2498
+ "<|4.95|>": 152145,
2499
+ "<|4.96|>": 152146,
2500
+ "<|4.97|>": 152147,
2501
+ "<|4.98|>": 152148,
2502
+ "<|4.99|>": 152149,
2503
+ "<|5.00|>": 152150,
2504
+ "<|5.01|>": 152151,
2505
+ "<|5.02|>": 152152,
2506
+ "<|5.03|>": 152153,
2507
+ "<|5.04|>": 152154,
2508
+ "<|5.05|>": 152155,
2509
+ "<|5.06|>": 152156,
2510
+ "<|5.07|>": 152157,
2511
+ "<|5.08|>": 152158,
2512
+ "<|5.09|>": 152159,
2513
+ "<|5.10|>": 152160,
2514
+ "<|5.11|>": 152161,
2515
+ "<|5.12|>": 152162,
2516
+ "<|5.13|>": 152163,
2517
+ "<|5.14|>": 152164,
2518
+ "<|5.15|>": 152165,
2519
+ "<|5.16|>": 152166,
2520
+ "<|5.17|>": 152167,
2521
+ "<|5.18|>": 152168,
2522
+ "<|5.19|>": 152169,
2523
+ "<|5.20|>": 152170,
2524
+ "<|5.21|>": 152171,
2525
+ "<|5.22|>": 152172,
2526
+ "<|5.23|>": 152173,
2527
+ "<|5.24|>": 152174,
2528
+ "<|5.25|>": 152175,
2529
+ "<|5.26|>": 152176,
2530
+ "<|5.27|>": 152177,
2531
+ "<|5.28|>": 152178,
2532
+ "<|5.29|>": 152179,
2533
+ "<|5.30|>": 152180,
2534
+ "<|5.31|>": 152181,
2535
+ "<|5.32|>": 152182,
2536
+ "<|5.33|>": 152183,
2537
+ "<|5.34|>": 152184,
2538
+ "<|5.35|>": 152185,
2539
+ "<|5.36|>": 152186,
2540
+ "<|5.37|>": 152187,
2541
+ "<|5.38|>": 152188,
2542
+ "<|5.39|>": 152189,
2543
+ "<|5.40|>": 152190,
2544
+ "<|5.41|>": 152191,
2545
+ "<|5.42|>": 152192,
2546
+ "<|5.43|>": 152193,
2547
+ "<|5.44|>": 152194,
2548
+ "<|5.45|>": 152195,
2549
+ "<|5.46|>": 152196,
2550
+ "<|5.47|>": 152197,
2551
+ "<|5.48|>": 152198,
2552
+ "<|5.49|>": 152199,
2553
+ "<|5.50|>": 152200,
2554
+ "<|5.51|>": 152201,
2555
+ "<|5.52|>": 152202,
2556
+ "<|5.53|>": 152203,
2557
+ "<|5.54|>": 152204,
2558
+ "<|5.55|>": 152205,
2559
+ "<|5.56|>": 152206,
2560
+ "<|5.57|>": 152207,
2561
+ "<|5.58|>": 152208,
2562
+ "<|5.59|>": 152209,
2563
+ "<|5.60|>": 152210,
2564
+ "<|5.61|>": 152211,
2565
+ "<|5.62|>": 152212,
2566
+ "<|5.63|>": 152213,
2567
+ "<|5.64|>": 152214,
2568
+ "<|5.65|>": 152215,
2569
+ "<|5.66|>": 152216,
2570
+ "<|5.67|>": 152217,
2571
+ "<|5.68|>": 152218,
2572
+ "<|5.69|>": 152219,
2573
+ "<|5.70|>": 152220,
2574
+ "<|5.71|>": 152221,
2575
+ "<|5.72|>": 152222,
2576
+ "<|5.73|>": 152223,
2577
+ "<|5.74|>": 152224,
2578
+ "<|5.75|>": 152225,
2579
+ "<|5.76|>": 152226,
2580
+ "<|5.77|>": 152227,
2581
+ "<|5.78|>": 152228,
2582
+ "<|5.79|>": 152229,
2583
+ "<|5.80|>": 152230,
2584
+ "<|5.81|>": 152231,
2585
+ "<|5.82|>": 152232,
2586
+ "<|5.83|>": 152233,
2587
+ "<|5.84|>": 152234,
2588
+ "<|5.85|>": 152235,
2589
+ "<|5.86|>": 152236,
2590
+ "<|5.87|>": 152237,
2591
+ "<|5.88|>": 152238,
2592
+ "<|5.89|>": 152239,
2593
+ "<|5.90|>": 152240,
2594
+ "<|5.91|>": 152241,
2595
+ "<|5.92|>": 152242,
2596
+ "<|5.93|>": 152243,
2597
+ "<|5.94|>": 152244,
2598
+ "<|5.95|>": 152245,
2599
+ "<|5.96|>": 152246,
2600
+ "<|5.97|>": 152247,
2601
+ "<|5.98|>": 152248,
2602
+ "<|5.99|>": 152249,
2603
+ "<|6.00|>": 152250,
2604
+ "<|6.01|>": 152251,
2605
+ "<|6.02|>": 152252,
2606
+ "<|6.03|>": 152253,
2607
+ "<|6.04|>": 152254,
2608
+ "<|6.05|>": 152255,
2609
+ "<|6.06|>": 152256,
2610
+ "<|6.07|>": 152257,
2611
+ "<|6.08|>": 152258,
2612
+ "<|6.09|>": 152259,
2613
+ "<|6.10|>": 152260,
2614
+ "<|6.11|>": 152261,
2615
+ "<|6.12|>": 152262,
2616
+ "<|6.13|>": 152263,
2617
+ "<|6.14|>": 152264,
2618
+ "<|6.15|>": 152265,
2619
+ "<|6.16|>": 152266,
2620
+ "<|6.17|>": 152267,
2621
+ "<|6.18|>": 152268,
2622
+ "<|6.19|>": 152269,
2623
+ "<|6.20|>": 152270,
2624
+ "<|6.21|>": 152271,
2625
+ "<|6.22|>": 152272,
2626
+ "<|6.23|>": 152273,
2627
+ "<|6.24|>": 152274,
2628
+ "<|6.25|>": 152275,
2629
+ "<|6.26|>": 152276,
2630
+ "<|6.27|>": 152277,
2631
+ "<|6.28|>": 152278,
2632
+ "<|6.29|>": 152279,
2633
+ "<|6.30|>": 152280,
2634
+ "<|6.31|>": 152281,
2635
+ "<|6.32|>": 152282,
2636
+ "<|6.33|>": 152283,
2637
+ "<|6.34|>": 152284,
2638
+ "<|6.35|>": 152285,
2639
+ "<|6.36|>": 152286,
2640
+ "<|6.37|>": 152287,
2641
+ "<|6.38|>": 152288,
2642
+ "<|6.39|>": 152289,
2643
+ "<|6.40|>": 152290,
2644
+ "<|6.41|>": 152291,
2645
+ "<|6.42|>": 152292,
2646
+ "<|6.43|>": 152293,
2647
+ "<|6.44|>": 152294,
2648
+ "<|6.45|>": 152295,
2649
+ "<|6.46|>": 152296,
2650
+ "<|6.47|>": 152297,
2651
+ "<|6.48|>": 152298,
2652
+ "<|6.49|>": 152299,
2653
+ "<|6.50|>": 152300,
2654
+ "<|6.51|>": 152301,
2655
+ "<|6.52|>": 152302,
2656
+ "<|6.53|>": 152303,
2657
+ "<|6.54|>": 152304,
2658
+ "<|6.55|>": 152305,
2659
+ "<|6.56|>": 152306,
2660
+ "<|6.57|>": 152307,
2661
+ "<|6.58|>": 152308,
2662
+ "<|6.59|>": 152309,
2663
+ "<|6.60|>": 152310,
2664
+ "<|6.61|>": 152311,
2665
+ "<|6.62|>": 152312,
2666
+ "<|6.63|>": 152313,
2667
+ "<|6.64|>": 152314,
2668
+ "<|6.65|>": 152315,
2669
+ "<|6.66|>": 152316,
2670
+ "<|6.67|>": 152317,
2671
+ "<|6.68|>": 152318,
2672
+ "<|6.69|>": 152319,
2673
+ "<|6.70|>": 152320,
2674
+ "<|6.71|>": 152321,
2675
+ "<|6.72|>": 152322,
2676
+ "<|6.73|>": 152323,
2677
+ "<|6.74|>": 152324,
2678
+ "<|6.75|>": 152325,
2679
+ "<|6.76|>": 152326,
2680
+ "<|6.77|>": 152327,
2681
+ "<|6.78|>": 152328,
2682
+ "<|6.79|>": 152329,
2683
+ "<|6.80|>": 152330,
2684
+ "<|6.81|>": 152331,
2685
+ "<|6.82|>": 152332,
2686
+ "<|6.83|>": 152333,
2687
+ "<|6.84|>": 152334,
2688
+ "<|6.85|>": 152335,
2689
+ "<|6.86|>": 152336,
2690
+ "<|6.87|>": 152337,
2691
+ "<|6.88|>": 152338,
2692
+ "<|6.89|>": 152339,
2693
+ "<|6.90|>": 152340,
2694
+ "<|6.91|>": 152341,
2695
+ "<|6.92|>": 152342,
2696
+ "<|6.93|>": 152343,
2697
+ "<|6.94|>": 152344,
2698
+ "<|6.95|>": 152345,
2699
+ "<|6.96|>": 152346,
2700
+ "<|6.97|>": 152347,
2701
+ "<|6.98|>": 152348,
2702
+ "<|6.99|>": 152349,
2703
+ "<|7.00|>": 152350,
2704
+ "<|7.01|>": 152351,
2705
+ "<|7.02|>": 152352,
2706
+ "<|7.03|>": 152353,
2707
+ "<|7.04|>": 152354,
2708
+ "<|7.05|>": 152355,
2709
+ "<|7.06|>": 152356,
2710
+ "<|7.07|>": 152357,
2711
+ "<|7.08|>": 152358,
2712
+ "<|7.09|>": 152359,
2713
+ "<|7.10|>": 152360,
2714
+ "<|7.11|>": 152361,
2715
+ "<|7.12|>": 152362,
2716
+ "<|7.13|>": 152363,
2717
+ "<|7.14|>": 152364,
2718
+ "<|7.15|>": 152365,
2719
+ "<|7.16|>": 152366,
2720
+ "<|7.17|>": 152367,
2721
+ "<|7.18|>": 152368,
2722
+ "<|7.19|>": 152369,
2723
+ "<|7.20|>": 152370,
2724
+ "<|7.21|>": 152371,
2725
+ "<|7.22|>": 152372,
2726
+ "<|7.23|>": 152373,
2727
+ "<|7.24|>": 152374,
2728
+ "<|7.25|>": 152375,
2729
+ "<|7.26|>": 152376,
2730
+ "<|7.27|>": 152377,
2731
+ "<|7.28|>": 152378,
2732
+ "<|7.29|>": 152379,
2733
+ "<|7.30|>": 152380,
2734
+ "<|7.31|>": 152381,
2735
+ "<|7.32|>": 152382,
2736
+ "<|7.33|>": 152383,
2737
+ "<|7.34|>": 152384,
2738
+ "<|7.35|>": 152385,
2739
+ "<|7.36|>": 152386,
2740
+ "<|7.37|>": 152387,
2741
+ "<|7.38|>": 152388,
2742
+ "<|7.39|>": 152389,
2743
+ "<|7.40|>": 152390,
2744
+ "<|7.41|>": 152391,
2745
+ "<|7.42|>": 152392,
2746
+ "<|7.43|>": 152393,
2747
+ "<|7.44|>": 152394,
2748
+ "<|7.45|>": 152395,
2749
+ "<|7.46|>": 152396,
2750
+ "<|7.47|>": 152397,
2751
+ "<|7.48|>": 152398,
2752
+ "<|7.49|>": 152399,
2753
+ "<|7.50|>": 152400,
2754
+ "<|7.51|>": 152401,
2755
+ "<|7.52|>": 152402,
2756
+ "<|7.53|>": 152403,
2757
+ "<|7.54|>": 152404,
2758
+ "<|7.55|>": 152405,
2759
+ "<|7.56|>": 152406,
2760
+ "<|7.57|>": 152407,
2761
+ "<|7.58|>": 152408,
2762
+ "<|7.59|>": 152409,
2763
+ "<|7.60|>": 152410,
2764
+ "<|7.61|>": 152411,
2765
+ "<|7.62|>": 152412,
2766
+ "<|7.63|>": 152413,
2767
+ "<|7.64|>": 152414,
2768
+ "<|7.65|>": 152415,
2769
+ "<|7.66|>": 152416,
2770
+ "<|7.67|>": 152417,
2771
+ "<|7.68|>": 152418,
2772
+ "<|7.69|>": 152419,
2773
+ "<|7.70|>": 152420,
2774
+ "<|7.71|>": 152421,
2775
+ "<|7.72|>": 152422,
2776
+ "<|7.73|>": 152423,
2777
+ "<|7.74|>": 152424,
2778
+ "<|7.75|>": 152425,
2779
+ "<|7.76|>": 152426,
2780
+ "<|7.77|>": 152427,
2781
+ "<|7.78|>": 152428,
2782
+ "<|7.79|>": 152429,
2783
+ "<|7.80|>": 152430,
2784
+ "<|7.81|>": 152431,
2785
+ "<|7.82|>": 152432,
2786
+ "<|7.83|>": 152433,
2787
+ "<|7.84|>": 152434,
2788
+ "<|7.85|>": 152435,
2789
+ "<|7.86|>": 152436,
2790
+ "<|7.87|>": 152437,
2791
+ "<|7.88|>": 152438,
2792
+ "<|7.89|>": 152439,
2793
+ "<|7.90|>": 152440,
2794
+ "<|7.91|>": 152441,
2795
+ "<|7.92|>": 152442,
2796
+ "<|7.93|>": 152443,
2797
+ "<|7.94|>": 152444,
2798
+ "<|7.95|>": 152445,
2799
+ "<|7.96|>": 152446,
2800
+ "<|7.97|>": 152447,
2801
+ "<|7.98|>": 152448,
2802
+ "<|7.99|>": 152449,
2803
+ "<|8.00|>": 152450,
2804
+ "<|8.01|>": 152451,
2805
+ "<|8.02|>": 152452,
2806
+ "<|8.03|>": 152453,
2807
+ "<|8.04|>": 152454,
2808
+ "<|8.05|>": 152455,
2809
+ "<|8.06|>": 152456,
2810
+ "<|8.07|>": 152457,
2811
+ "<|8.08|>": 152458,
2812
+ "<|8.09|>": 152459,
2813
+ "<|8.10|>": 152460,
2814
+ "<|8.11|>": 152461,
2815
+ "<|8.12|>": 152462,
2816
+ "<|8.13|>": 152463,
2817
+ "<|8.14|>": 152464,
2818
+ "<|8.15|>": 152465,
2819
+ "<|8.16|>": 152466,
2820
+ "<|8.17|>": 152467,
2821
+ "<|8.18|>": 152468,
2822
+ "<|8.19|>": 152469,
2823
+ "<|8.20|>": 152470,
2824
+ "<|8.21|>": 152471,
2825
+ "<|8.22|>": 152472,
2826
+ "<|8.23|>": 152473,
2827
+ "<|8.24|>": 152474,
2828
+ "<|8.25|>": 152475,
2829
+ "<|8.26|>": 152476,
2830
+ "<|8.27|>": 152477,
2831
+ "<|8.28|>": 152478,
2832
+ "<|8.29|>": 152479,
2833
+ "<|8.30|>": 152480,
2834
+ "<|8.31|>": 152481,
2835
+ "<|8.32|>": 152482,
2836
+ "<|8.33|>": 152483,
2837
+ "<|8.34|>": 152484,
2838
+ "<|8.35|>": 152485,
2839
+ "<|8.36|>": 152486,
2840
+ "<|8.37|>": 152487,
2841
+ "<|8.38|>": 152488,
2842
+ "<|8.39|>": 152489,
2843
+ "<|8.40|>": 152490,
2844
+ "<|8.41|>": 152491,
2845
+ "<|8.42|>": 152492,
2846
+ "<|8.43|>": 152493,
2847
+ "<|8.44|>": 152494,
2848
+ "<|8.45|>": 152495,
2849
+ "<|8.46|>": 152496,
2850
+ "<|8.47|>": 152497,
2851
+ "<|8.48|>": 152498,
2852
+ "<|8.49|>": 152499,
2853
+ "<|8.50|>": 152500,
2854
+ "<|8.51|>": 152501,
2855
+ "<|8.52|>": 152502,
2856
+ "<|8.53|>": 152503,
2857
+ "<|8.54|>": 152504,
2858
+ "<|8.55|>": 152505,
2859
+ "<|8.56|>": 152506,
2860
+ "<|8.57|>": 152507,
2861
+ "<|8.58|>": 152508,
2862
+ "<|8.59|>": 152509,
2863
+ "<|8.60|>": 152510,
2864
+ "<|8.61|>": 152511,
2865
+ "<|8.62|>": 152512,
2866
+ "<|8.63|>": 152513,
2867
+ "<|8.64|>": 152514,
2868
+ "<|8.65|>": 152515,
2869
+ "<|8.66|>": 152516,
2870
+ "<|8.67|>": 152517,
2871
+ "<|8.68|>": 152518,
2872
+ "<|8.69|>": 152519,
2873
+ "<|8.70|>": 152520,
2874
+ "<|8.71|>": 152521,
2875
+ "<|8.72|>": 152522,
2876
+ "<|8.73|>": 152523,
2877
+ "<|8.74|>": 152524,
2878
+ "<|8.75|>": 152525,
2879
+ "<|8.76|>": 152526,
2880
+ "<|8.77|>": 152527,
2881
+ "<|8.78|>": 152528,
2882
+ "<|8.79|>": 152529,
2883
+ "<|8.80|>": 152530,
2884
+ "<|8.81|>": 152531,
2885
+ "<|8.82|>": 152532,
2886
+ "<|8.83|>": 152533,
2887
+ "<|8.84|>": 152534,
2888
+ "<|8.85|>": 152535,
2889
+ "<|8.86|>": 152536,
2890
+ "<|8.87|>": 152537,
2891
+ "<|8.88|>": 152538,
2892
+ "<|8.89|>": 152539,
2893
+ "<|8.90|>": 152540,
2894
+ "<|8.91|>": 152541,
2895
+ "<|8.92|>": 152542,
2896
+ "<|8.93|>": 152543,
2897
+ "<|8.94|>": 152544,
2898
+ "<|8.95|>": 152545,
2899
+ "<|8.96|>": 152546,
2900
+ "<|8.97|>": 152547,
2901
+ "<|8.98|>": 152548,
2902
+ "<|8.99|>": 152549,
2903
+ "<|9.00|>": 152550,
2904
+ "<|9.01|>": 152551,
2905
+ "<|9.02|>": 152552,
2906
+ "<|9.03|>": 152553,
2907
+ "<|9.04|>": 152554,
2908
+ "<|9.05|>": 152555,
2909
+ "<|9.06|>": 152556,
2910
+ "<|9.07|>": 152557,
2911
+ "<|9.08|>": 152558,
2912
+ "<|9.09|>": 152559,
2913
+ "<|9.10|>": 152560,
2914
+ "<|9.11|>": 152561,
2915
+ "<|9.12|>": 152562,
2916
+ "<|9.13|>": 152563,
2917
+ "<|9.14|>": 152564,
2918
+ "<|9.15|>": 152565,
2919
+ "<|9.16|>": 152566,
2920
+ "<|9.17|>": 152567,
2921
+ "<|9.18|>": 152568,
2922
+ "<|9.19|>": 152569,
2923
+ "<|9.20|>": 152570,
2924
+ "<|9.21|>": 152571,
2925
+ "<|9.22|>": 152572,
2926
+ "<|9.23|>": 152573,
2927
+ "<|9.24|>": 152574,
2928
+ "<|9.25|>": 152575,
2929
+ "<|9.26|>": 152576,
2930
+ "<|9.27|>": 152577,
2931
+ "<|9.28|>": 152578,
2932
+ "<|9.29|>": 152579,
2933
+ "<|9.30|>": 152580,
2934
+ "<|9.31|>": 152581,
2935
+ "<|9.32|>": 152582,
2936
+ "<|9.33|>": 152583,
2937
+ "<|9.34|>": 152584,
2938
+ "<|9.35|>": 152585,
2939
+ "<|9.36|>": 152586,
2940
+ "<|9.37|>": 152587,
2941
+ "<|9.38|>": 152588,
2942
+ "<|9.39|>": 152589,
2943
+ "<|9.40|>": 152590,
2944
+ "<|9.41|>": 152591,
2945
+ "<|9.42|>": 152592,
2946
+ "<|9.43|>": 152593,
2947
+ "<|9.44|>": 152594,
2948
+ "<|9.45|>": 152595,
2949
+ "<|9.46|>": 152596,
2950
+ "<|9.47|>": 152597,
2951
+ "<|9.48|>": 152598,
2952
+ "<|9.49|>": 152599,
2953
+ "<|9.50|>": 152600,
2954
+ "<|9.51|>": 152601,
2955
+ "<|9.52|>": 152602,
2956
+ "<|9.53|>": 152603,
2957
+ "<|9.54|>": 152604,
2958
+ "<|9.55|>": 152605,
2959
+ "<|9.56|>": 152606,
2960
+ "<|9.57|>": 152607,
2961
+ "<|9.58|>": 152608,
2962
+ "<|9.59|>": 152609,
2963
+ "<|9.60|>": 152610,
2964
+ "<|9.61|>": 152611,
2965
+ "<|9.62|>": 152612,
2966
+ "<|9.63|>": 152613,
2967
+ "<|9.64|>": 152614,
2968
+ "<|9.65|>": 152615,
2969
+ "<|9.66|>": 152616,
2970
+ "<|9.67|>": 152617,
2971
+ "<|9.68|>": 152618,
2972
+ "<|9.69|>": 152619,
2973
+ "<|9.70|>": 152620,
2974
+ "<|9.71|>": 152621,
2975
+ "<|9.72|>": 152622,
2976
+ "<|9.73|>": 152623,
2977
+ "<|9.74|>": 152624,
2978
+ "<|9.75|>": 152625,
2979
+ "<|9.76|>": 152626,
2980
+ "<|9.77|>": 152627,
2981
+ "<|9.78|>": 152628,
2982
+ "<|9.79|>": 152629,
2983
+ "<|9.80|>": 152630,
2984
+ "<|9.81|>": 152631,
2985
+ "<|9.82|>": 152632,
2986
+ "<|9.83|>": 152633,
2987
+ "<|9.84|>": 152634,
2988
+ "<|9.85|>": 152635,
2989
+ "<|9.86|>": 152636,
2990
+ "<|9.87|>": 152637,
2991
+ "<|9.88|>": 152638,
2992
+ "<|9.89|>": 152639,
2993
+ "<|9.90|>": 152640,
2994
+ "<|9.91|>": 152641,
2995
+ "<|9.92|>": 152642,
2996
+ "<|9.93|>": 152643,
2997
+ "<|9.94|>": 152644,
2998
+ "<|9.95|>": 152645,
2999
+ "<|9.96|>": 152646,
3000
+ "<|9.97|>": 152647,
3001
+ "<|9.98|>": 152648,
3002
+ "<|9.99|>": 152649,
3003
+ "<|AUDIO|>": 151646,
3004
+ "<|ar|>": 154927,
3005
+ "<|audio_bos|>": 151647,
3006
+ "<|audio_eos|>": 151648,
3007
+ "<|de|>": 154919,
3008
+ "<|endofentitytype|>": 154654,
3009
+ "<|endofentityvalue|>": 154652,
3010
+ "<|endoftext|>": 151643,
3011
+ "<|endoftime|>": 154658,
3012
+ "<|endofword|>": 154656,
3013
+ "<|en|>": 154917,
3014
+ "<|es|>": 154920,
3015
+ "<|fr|>": 154922,
3016
+ "<|im_end|>": 151645,
3017
+ "<|im_start|>": 151644,
3018
+ "<|it|>": 154924,
3019
+ "<|ja|>": 154923,
3020
+ "<|ko|>": 154921,
3021
+ "<|midi_pitch_0|>": 154659,
3022
+ "<|midi_pitch_100|>": 154759,
3023
+ "<|midi_pitch_101|>": 154760,
3024
+ "<|midi_pitch_102|>": 154761,
3025
+ "<|midi_pitch_103|>": 154762,
3026
+ "<|midi_pitch_104|>": 154763,
3027
+ "<|midi_pitch_105|>": 154764,
3028
+ "<|midi_pitch_106|>": 154765,
3029
+ "<|midi_pitch_107|>": 154766,
3030
+ "<|midi_pitch_108|>": 154767,
3031
+ "<|midi_pitch_109|>": 154768,
3032
+ "<|midi_pitch_10|>": 154669,
3033
+ "<|midi_pitch_110|>": 154769,
3034
+ "<|midi_pitch_111|>": 154770,
3035
+ "<|midi_pitch_112|>": 154771,
3036
+ "<|midi_pitch_113|>": 154772,
3037
+ "<|midi_pitch_114|>": 154773,
3038
+ "<|midi_pitch_115|>": 154774,
3039
+ "<|midi_pitch_116|>": 154775,
3040
+ "<|midi_pitch_117|>": 154776,
3041
+ "<|midi_pitch_118|>": 154777,
3042
+ "<|midi_pitch_119|>": 154778,
3043
+ "<|midi_pitch_11|>": 154670,
3044
+ "<|midi_pitch_120|>": 154779,
3045
+ "<|midi_pitch_121|>": 154780,
3046
+ "<|midi_pitch_122|>": 154781,
3047
+ "<|midi_pitch_123|>": 154782,
3048
+ "<|midi_pitch_124|>": 154783,
3049
+ "<|midi_pitch_125|>": 154784,
3050
+ "<|midi_pitch_126|>": 154785,
3051
+ "<|midi_pitch_127|>": 154786,
3052
+ "<|midi_pitch_12|>": 154671,
3053
+ "<|midi_pitch_13|>": 154672,
3054
+ "<|midi_pitch_14|>": 154673,
3055
+ "<|midi_pitch_15|>": 154674,
3056
+ "<|midi_pitch_16|>": 154675,
3057
+ "<|midi_pitch_17|>": 154676,
3058
+ "<|midi_pitch_18|>": 154677,
3059
+ "<|midi_pitch_19|>": 154678,
3060
+ "<|midi_pitch_1|>": 154660,
3061
+ "<|midi_pitch_20|>": 154679,
3062
+ "<|midi_pitch_21|>": 154680,
3063
+ "<|midi_pitch_22|>": 154681,
3064
+ "<|midi_pitch_23|>": 154682,
3065
+ "<|midi_pitch_24|>": 154683,
3066
+ "<|midi_pitch_25|>": 154684,
3067
+ "<|midi_pitch_26|>": 154685,
3068
+ "<|midi_pitch_27|>": 154686,
3069
+ "<|midi_pitch_28|>": 154687,
3070
+ "<|midi_pitch_29|>": 154688,
3071
+ "<|midi_pitch_2|>": 154661,
3072
+ "<|midi_pitch_30|>": 154689,
3073
+ "<|midi_pitch_31|>": 154690,
3074
+ "<|midi_pitch_32|>": 154691,
3075
+ "<|midi_pitch_33|>": 154692,
3076
+ "<|midi_pitch_34|>": 154693,
3077
+ "<|midi_pitch_35|>": 154694,
3078
+ "<|midi_pitch_36|>": 154695,
3079
+ "<|midi_pitch_37|>": 154696,
3080
+ "<|midi_pitch_38|>": 154697,
3081
+ "<|midi_pitch_39|>": 154698,
3082
+ "<|midi_pitch_3|>": 154662,
3083
+ "<|midi_pitch_40|>": 154699,
3084
+ "<|midi_pitch_41|>": 154700,
3085
+ "<|midi_pitch_42|>": 154701,
3086
+ "<|midi_pitch_43|>": 154702,
3087
+ "<|midi_pitch_44|>": 154703,
3088
+ "<|midi_pitch_45|>": 154704,
3089
+ "<|midi_pitch_46|>": 154705,
3090
+ "<|midi_pitch_47|>": 154706,
3091
+ "<|midi_pitch_48|>": 154707,
3092
+ "<|midi_pitch_49|>": 154708,
3093
+ "<|midi_pitch_4|>": 154663,
3094
+ "<|midi_pitch_50|>": 154709,
3095
+ "<|midi_pitch_51|>": 154710,
3096
+ "<|midi_pitch_52|>": 154711,
3097
+ "<|midi_pitch_53|>": 154712,
3098
+ "<|midi_pitch_54|>": 154713,
3099
+ "<|midi_pitch_55|>": 154714,
3100
+ "<|midi_pitch_56|>": 154715,
3101
+ "<|midi_pitch_57|>": 154716,
3102
+ "<|midi_pitch_58|>": 154717,
3103
+ "<|midi_pitch_59|>": 154718,
3104
+ "<|midi_pitch_5|>": 154664,
3105
+ "<|midi_pitch_60|>": 154719,
3106
+ "<|midi_pitch_61|>": 154720,
3107
+ "<|midi_pitch_62|>": 154721,
3108
+ "<|midi_pitch_63|>": 154722,
3109
+ "<|midi_pitch_64|>": 154723,
3110
+ "<|midi_pitch_65|>": 154724,
3111
+ "<|midi_pitch_66|>": 154725,
3112
+ "<|midi_pitch_67|>": 154726,
3113
+ "<|midi_pitch_68|>": 154727,
3114
+ "<|midi_pitch_69|>": 154728,
3115
+ "<|midi_pitch_6|>": 154665,
3116
+ "<|midi_pitch_70|>": 154729,
3117
+ "<|midi_pitch_71|>": 154730,
3118
+ "<|midi_pitch_72|>": 154731,
3119
+ "<|midi_pitch_73|>": 154732,
3120
+ "<|midi_pitch_74|>": 154733,
3121
+ "<|midi_pitch_75|>": 154734,
3122
+ "<|midi_pitch_76|>": 154735,
3123
+ "<|midi_pitch_77|>": 154736,
3124
+ "<|midi_pitch_78|>": 154737,
3125
+ "<|midi_pitch_79|>": 154738,
3126
+ "<|midi_pitch_7|>": 154666,
3127
+ "<|midi_pitch_80|>": 154739,
3128
+ "<|midi_pitch_81|>": 154740,
3129
+ "<|midi_pitch_82|>": 154741,
3130
+ "<|midi_pitch_83|>": 154742,
3131
+ "<|midi_pitch_84|>": 154743,
3132
+ "<|midi_pitch_85|>": 154744,
3133
+ "<|midi_pitch_86|>": 154745,
3134
+ "<|midi_pitch_87|>": 154746,
3135
+ "<|midi_pitch_88|>": 154747,
3136
+ "<|midi_pitch_89|>": 154748,
3137
+ "<|midi_pitch_8|>": 154667,
3138
+ "<|midi_pitch_90|>": 154749,
3139
+ "<|midi_pitch_91|>": 154750,
3140
+ "<|midi_pitch_92|>": 154751,
3141
+ "<|midi_pitch_93|>": 154752,
3142
+ "<|midi_pitch_94|>": 154753,
3143
+ "<|midi_pitch_95|>": 154754,
3144
+ "<|midi_pitch_96|>": 154755,
3145
+ "<|midi_pitch_97|>": 154756,
3146
+ "<|midi_pitch_98|>": 154757,
3147
+ "<|midi_pitch_99|>": 154758,
3148
+ "<|midi_pitch_9|>": 154668,
3149
+ "<|midi_velocity_0|>": 154787,
3150
+ "<|midi_velocity_100|>": 154887,
3151
+ "<|midi_velocity_101|>": 154888,
3152
+ "<|midi_velocity_102|>": 154889,
3153
+ "<|midi_velocity_103|>": 154890,
3154
+ "<|midi_velocity_104|>": 154891,
3155
+ "<|midi_velocity_105|>": 154892,
3156
+ "<|midi_velocity_106|>": 154893,
3157
+ "<|midi_velocity_107|>": 154894,
3158
+ "<|midi_velocity_108|>": 154895,
3159
+ "<|midi_velocity_109|>": 154896,
3160
+ "<|midi_velocity_10|>": 154797,
3161
+ "<|midi_velocity_110|>": 154897,
3162
+ "<|midi_velocity_111|>": 154898,
3163
+ "<|midi_velocity_112|>": 154899,
3164
+ "<|midi_velocity_113|>": 154900,
3165
+ "<|midi_velocity_114|>": 154901,
3166
+ "<|midi_velocity_115|>": 154902,
3167
+ "<|midi_velocity_116|>": 154903,
3168
+ "<|midi_velocity_117|>": 154904,
3169
+ "<|midi_velocity_118|>": 154905,
3170
+ "<|midi_velocity_119|>": 154906,
3171
+ "<|midi_velocity_11|>": 154798,
3172
+ "<|midi_velocity_120|>": 154907,
3173
+ "<|midi_velocity_121|>": 154908,
3174
+ "<|midi_velocity_122|>": 154909,
3175
+ "<|midi_velocity_123|>": 154910,
3176
+ "<|midi_velocity_124|>": 154911,
3177
+ "<|midi_velocity_125|>": 154912,
3178
+ "<|midi_velocity_126|>": 154913,
3179
+ "<|midi_velocity_127|>": 154914,
3180
+ "<|midi_velocity_12|>": 154799,
3181
+ "<|midi_velocity_13|>": 154800,
3182
+ "<|midi_velocity_14|>": 154801,
3183
+ "<|midi_velocity_15|>": 154802,
3184
+ "<|midi_velocity_16|>": 154803,
3185
+ "<|midi_velocity_17|>": 154804,
3186
+ "<|midi_velocity_18|>": 154805,
3187
+ "<|midi_velocity_19|>": 154806,
3188
+ "<|midi_velocity_1|>": 154788,
3189
+ "<|midi_velocity_20|>": 154807,
3190
+ "<|midi_velocity_21|>": 154808,
3191
+ "<|midi_velocity_22|>": 154809,
3192
+ "<|midi_velocity_23|>": 154810,
3193
+ "<|midi_velocity_24|>": 154811,
3194
+ "<|midi_velocity_25|>": 154812,
3195
+ "<|midi_velocity_26|>": 154813,
3196
+ "<|midi_velocity_27|>": 154814,
3197
+ "<|midi_velocity_28|>": 154815,
3198
+ "<|midi_velocity_29|>": 154816,
3199
+ "<|midi_velocity_2|>": 154789,
3200
+ "<|midi_velocity_30|>": 154817,
3201
+ "<|midi_velocity_31|>": 154818,
3202
+ "<|midi_velocity_32|>": 154819,
3203
+ "<|midi_velocity_33|>": 154820,
3204
+ "<|midi_velocity_34|>": 154821,
3205
+ "<|midi_velocity_35|>": 154822,
3206
+ "<|midi_velocity_36|>": 154823,
3207
+ "<|midi_velocity_37|>": 154824,
3208
+ "<|midi_velocity_38|>": 154825,
3209
+ "<|midi_velocity_39|>": 154826,
3210
+ "<|midi_velocity_3|>": 154790,
3211
+ "<|midi_velocity_40|>": 154827,
3212
+ "<|midi_velocity_41|>": 154828,
3213
+ "<|midi_velocity_42|>": 154829,
3214
+ "<|midi_velocity_43|>": 154830,
3215
+ "<|midi_velocity_44|>": 154831,
3216
+ "<|midi_velocity_45|>": 154832,
3217
+ "<|midi_velocity_46|>": 154833,
3218
+ "<|midi_velocity_47|>": 154834,
3219
+ "<|midi_velocity_48|>": 154835,
3220
+ "<|midi_velocity_49|>": 154836,
3221
+ "<|midi_velocity_4|>": 154791,
3222
+ "<|midi_velocity_50|>": 154837,
3223
+ "<|midi_velocity_51|>": 154838,
3224
+ "<|midi_velocity_52|>": 154839,
3225
+ "<|midi_velocity_53|>": 154840,
3226
+ "<|midi_velocity_54|>": 154841,
3227
+ "<|midi_velocity_55|>": 154842,
3228
+ "<|midi_velocity_56|>": 154843,
3229
+ "<|midi_velocity_57|>": 154844,
3230
+ "<|midi_velocity_58|>": 154845,
3231
+ "<|midi_velocity_59|>": 154846,
3232
+ "<|midi_velocity_5|>": 154792,
3233
+ "<|midi_velocity_60|>": 154847,
3234
+ "<|midi_velocity_61|>": 154848,
3235
+ "<|midi_velocity_62|>": 154849,
3236
+ "<|midi_velocity_63|>": 154850,
3237
+ "<|midi_velocity_64|>": 154851,
3238
+ "<|midi_velocity_65|>": 154852,
3239
+ "<|midi_velocity_66|>": 154853,
3240
+ "<|midi_velocity_67|>": 154854,
3241
+ "<|midi_velocity_68|>": 154855,
3242
+ "<|midi_velocity_69|>": 154856,
3243
+ "<|midi_velocity_6|>": 154793,
3244
+ "<|midi_velocity_70|>": 154857,
3245
+ "<|midi_velocity_71|>": 154858,
3246
+ "<|midi_velocity_72|>": 154859,
3247
+ "<|midi_velocity_73|>": 154860,
3248
+ "<|midi_velocity_74|>": 154861,
3249
+ "<|midi_velocity_75|>": 154862,
3250
+ "<|midi_velocity_76|>": 154863,
3251
+ "<|midi_velocity_77|>": 154864,
3252
+ "<|midi_velocity_78|>": 154865,
3253
+ "<|midi_velocity_79|>": 154866,
3254
+ "<|midi_velocity_7|>": 154794,
3255
+ "<|midi_velocity_80|>": 154867,
3256
+ "<|midi_velocity_81|>": 154868,
3257
+ "<|midi_velocity_82|>": 154869,
3258
+ "<|midi_velocity_83|>": 154870,
3259
+ "<|midi_velocity_84|>": 154871,
3260
+ "<|midi_velocity_85|>": 154872,
3261
+ "<|midi_velocity_86|>": 154873,
3262
+ "<|midi_velocity_87|>": 154874,
3263
+ "<|midi_velocity_88|>": 154875,
3264
+ "<|midi_velocity_89|>": 154876,
3265
+ "<|midi_velocity_8|>": 154795,
3266
+ "<|midi_velocity_90|>": 154877,
3267
+ "<|midi_velocity_91|>": 154878,
3268
+ "<|midi_velocity_92|>": 154879,
3269
+ "<|midi_velocity_93|>": 154880,
3270
+ "<|midi_velocity_94|>": 154881,
3271
+ "<|midi_velocity_95|>": 154882,
3272
+ "<|midi_velocity_96|>": 154883,
3273
+ "<|midi_velocity_97|>": 154884,
3274
+ "<|midi_velocity_98|>": 154885,
3275
+ "<|midi_velocity_99|>": 154886,
3276
+ "<|midi_velocity_9|>": 154796,
3277
+ "<|nan|>": 154930,
3278
+ "<|pt|>": 154926,
3279
+ "<|ru|>": 154925,
3280
+ "<|sil|>": 151649,
3281
+ "<|startofentitytype|>": 154653,
3282
+ "<|startofentityvalue|>": 154651,
3283
+ "<|startoftime|>": 154657,
3284
+ "<|startofword|>": 154655,
3285
+ "<|unknown|>": 154915,
3286
+ "<|wuu|>": 154929,
3287
+ "<|yue|>": 154928,
3288
+ "<|zh_tw|>": 154916,
3289
+ "<|zh|>": 154918
3290
+ }
audio/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set audio_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if 'audio' in content or 'audio_url' in content %}{% set audio_count.value = audio_count.value + 1 %}Audio {{ audio_count.value }}: <|audio_bos|><|AUDIO|><|audio_eos|>\n{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
audio/config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/petrelfs/caoyuhang/InternLM-XComposer/finetune_audio/models/sft_base_3x_with_pt_extra",
3
+ "architectures": [
4
+ "Qwen2AudioForConditionalGeneration"
5
+ ],
6
+ "audio_config": {
7
+ "model_type": "qwen2_audio_encoder"
8
+ },
9
+ "audio_token_index": 151646,
10
+ "hidden_size": 1536,
11
+ "ignore_index": -100,
12
+ "model_type": "qwen2_audio",
13
+ "text_config": {
14
+ "bos_token_id": 151643,
15
+ "eos_token_id": 151645,
16
+ "hidden_size": 1536,
17
+ "intermediate_size": 8960,
18
+ "max_position_embeddings": 8192,
19
+ "model_type": "qwen2",
20
+ "num_attention_heads": 12,
21
+ "num_hidden_layers": 28,
22
+ "num_key_value_heads": 2,
23
+ "rms_norm_eps": 1e-05,
24
+ "tie_word_embeddings": true,
25
+ "torch_dtype": "bfloat16",
26
+ "use_mrope": false,
27
+ "vocab_size": 156032
28
+ },
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.45.0.dev0",
31
+ "use_cache": false,
32
+ "vocab_size": 156032
33
+ }
audio/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151645,
4
+ "max_new_tokens": 2048,
5
+ "pad_token_id": 151643,
6
+ "transformers_version": "4.45.0.dev0"
7
+ }
audio/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aba6b80d0789dc7ea0ff5576d0ef1d189fff78c1ce6f4abf66c570549875e5d2
3
+ size 4377984696
audio/preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 128,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "Qwen2AudioProcessor",
12
+ "return_attention_mask": true,
13
+ "sampling_rate": 16000
14
+ }
audio/sft_args.json ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "qwen2-audio-7b-instruct",
3
+ "model_id_or_path": "/mnt/petrelfs/caoyuhang/InternLM-XComposer/finetune_audio/models/sft_base_3x_with_pt_extra",
4
+ "model_revision": "master",
5
+ "full_determinism": false,
6
+ "sft_type": "full",
7
+ "freeze_parameters": [
8
+ "audio_tower"
9
+ ],
10
+ "freeze_vit": false,
11
+ "freeze_parameters_ratio": 0.0,
12
+ "additional_trainable_parameters": [],
13
+ "tuner_backend": "peft",
14
+ "template_type": "qwen2-audio",
15
+ "output_dir": "/mnt/petrelfs/caoyuhang/InternLM-XComposer/finetune_audio/output/sft-continue_base_silence/qwen2-audio-7b-instruct/v0-20241120-155458",
16
+ "add_output_dir_suffix": true,
17
+ "ddp_backend": "nccl",
18
+ "ddp_find_unused_parameters": null,
19
+ "ddp_broadcast_buffers": null,
20
+ "ddp_timeout": 1800,
21
+ "seed": 42,
22
+ "resume_from_checkpoint": null,
23
+ "resume_only_model": false,
24
+ "ignore_data_skip": false,
25
+ "dtype": "bf16",
26
+ "packing": false,
27
+ "train_backend": "transformers",
28
+ "tp": 1,
29
+ "pp": 1,
30
+ "min_lr": null,
31
+ "sequence_parallel": false,
32
+ "model_kwargs": null,
33
+ "loss_name": null,
34
+ "dataset": [
35
+ "data/sft_base_silence.jsonl"
36
+ ],
37
+ "val_dataset": [],
38
+ "dataset_seed": 42,
39
+ "dataset_test_ratio": 0.01,
40
+ "use_loss_scale": false,
41
+ "loss_scale_config_path": "/mnt/petrelfs/caoyuhang/ms-swift/swift/llm/agent/default_loss_scale_config.json",
42
+ "system": "You are a helpful assistant.",
43
+ "tools_prompt": "react_en",
44
+ "max_length": 2048,
45
+ "truncation_strategy": "delete",
46
+ "check_dataset_strategy": "none",
47
+ "streaming": false,
48
+ "streaming_val_size": 0,
49
+ "streaming_buffer_size": 16384,
50
+ "model_name": [
51
+ null,
52
+ null
53
+ ],
54
+ "model_author": [
55
+ null,
56
+ null
57
+ ],
58
+ "quant_method": null,
59
+ "quantization_bit": 0,
60
+ "hqq_axis": 0,
61
+ "hqq_dynamic_config_path": null,
62
+ "bnb_4bit_comp_dtype": "bf16",
63
+ "bnb_4bit_quant_type": "nf4",
64
+ "bnb_4bit_use_double_quant": true,
65
+ "bnb_4bit_quant_storage": null,
66
+ "rescale_image": -1,
67
+ "target_modules": "^(language_model|multi_modal_projector)(?!.*(lm_head|output|emb|wte|shared)).*",
68
+ "target_regex": null,
69
+ "modules_to_save": [],
70
+ "lora_rank": 8,
71
+ "lora_alpha": 32,
72
+ "lora_dropout": 0.05,
73
+ "lora_bias_trainable": "none",
74
+ "lora_dtype": "AUTO",
75
+ "lora_lr_ratio": null,
76
+ "use_rslora": false,
77
+ "use_dora": false,
78
+ "init_lora_weights": "true",
79
+ "fourier_n_frequency": 2000,
80
+ "fourier_scaling": 300.0,
81
+ "rope_scaling": null,
82
+ "boft_block_size": 4,
83
+ "boft_block_num": 0,
84
+ "boft_n_butterfly_factor": 1,
85
+ "boft_dropout": 0.0,
86
+ "vera_rank": 256,
87
+ "vera_projection_prng_key": 0,
88
+ "vera_dropout": 0.0,
89
+ "vera_d_initial": 0.1,
90
+ "adapter_act": "gelu",
91
+ "adapter_length": 128,
92
+ "use_galore": false,
93
+ "galore_target_modules": null,
94
+ "galore_rank": 128,
95
+ "galore_update_proj_gap": 50,
96
+ "galore_scale": 1.0,
97
+ "galore_proj_type": "std",
98
+ "galore_optim_per_parameter": false,
99
+ "galore_with_embedding": false,
100
+ "galore_quantization": false,
101
+ "galore_proj_quant": false,
102
+ "galore_proj_bits": 4,
103
+ "galore_proj_group_size": 256,
104
+ "galore_cos_threshold": 0.4,
105
+ "galore_gamma_proj": 2,
106
+ "galore_queue_size": 5,
107
+ "adalora_target_r": 8,
108
+ "adalora_init_r": 12,
109
+ "adalora_tinit": 0,
110
+ "adalora_tfinal": 0,
111
+ "adalora_deltaT": 1,
112
+ "adalora_beta1": 0.85,
113
+ "adalora_beta2": 0.85,
114
+ "adalora_orth_reg_weight": 0.5,
115
+ "ia3_feedforward_modules": [],
116
+ "llamapro_num_new_blocks": 4,
117
+ "llamapro_num_groups": null,
118
+ "neftune_noise_alpha": null,
119
+ "neftune_backend": "transformers",
120
+ "lisa_activated_layers": 0,
121
+ "lisa_step_interval": 20,
122
+ "reft_layer_key": null,
123
+ "reft_layers": null,
124
+ "reft_rank": 4,
125
+ "reft_intervention_type": "LoreftIntervention",
126
+ "reft_args": null,
127
+ "use_liger": false,
128
+ "gradient_checkpointing": true,
129
+ "deepspeed": null,
130
+ "batch_size": 16,
131
+ "eval_batch_size": 16,
132
+ "auto_find_batch_size": false,
133
+ "num_train_epochs": 3,
134
+ "max_steps": -1,
135
+ "optim": "adamw_torch",
136
+ "adam_beta1": 0.9,
137
+ "adam_beta2": 0.95,
138
+ "adam_epsilon": 1e-08,
139
+ "learning_rate": 0.0002,
140
+ "weight_decay": 0.1,
141
+ "gradient_accumulation_steps": 1,
142
+ "max_grad_norm": 1,
143
+ "predict_with_generate": false,
144
+ "lr_scheduler_type": "cosine",
145
+ "lr_scheduler_kwargs": {},
146
+ "warmup_ratio": 0.05,
147
+ "warmup_steps": 0,
148
+ "eval_steps": 2000,
149
+ "save_steps": 2000,
150
+ "save_only_model": false,
151
+ "save_total_limit": 2,
152
+ "logging_steps": 20,
153
+ "acc_steps": 1,
154
+ "dataloader_num_workers": 4,
155
+ "dataloader_pin_memory": true,
156
+ "dataloader_drop_last": false,
157
+ "push_to_hub": false,
158
+ "hub_model_id": null,
159
+ "hub_token": null,
160
+ "hub_private_repo": false,
161
+ "hub_strategy": "every_save",
162
+ "test_oom_error": false,
163
+ "disable_tqdm": false,
164
+ "lazy_tokenize": true,
165
+ "preprocess_num_proc": 1,
166
+ "use_flash_attn": null,
167
+ "ignore_args_error": false,
168
+ "check_model_is_latest": true,
169
+ "logging_dir": "/mnt/petrelfs/caoyuhang/InternLM-XComposer/finetune_audio/output/sft-continue_base_silence/qwen2-audio-7b-instruct/v0-20241120-155458/runs",
170
+ "report_to": [
171
+ "tensorboard"
172
+ ],
173
+ "acc_strategy": "token",
174
+ "save_on_each_node": false,
175
+ "evaluation_strategy": "steps",
176
+ "save_strategy": "steps",
177
+ "save_safetensors": true,
178
+ "gpu_memory_fraction": null,
179
+ "include_num_input_tokens_seen": false,
180
+ "local_repo_path": null,
181
+ "custom_register_path": null,
182
+ "custom_dataset_info": null,
183
+ "device_map_config": null,
184
+ "device_max_memory": [],
185
+ "max_new_tokens": 2048,
186
+ "do_sample": null,
187
+ "temperature": null,
188
+ "top_k": null,
189
+ "top_p": null,
190
+ "repetition_penalty": null,
191
+ "num_beams": 1,
192
+ "fsdp": "",
193
+ "fsdp_config": null,
194
+ "sequence_parallel_size": 1,
195
+ "model_layer_cls_name": null,
196
+ "metric_warmup_step": 0,
197
+ "fsdp_num": 1,
198
+ "per_device_train_batch_size": null,
199
+ "per_device_eval_batch_size": null,
200
+ "eval_strategy": null,
201
+ "self_cognition_sample": 0,
202
+ "train_dataset_mix_ratio": 0.0,
203
+ "train_dataset_mix_ds": [
204
+ "ms-bench"
205
+ ],
206
+ "train_dataset_sample": -1,
207
+ "val_dataset_sample": null,
208
+ "safe_serialization": null,
209
+ "only_save_model": null,
210
+ "neftune_alpha": null,
211
+ "deepspeed_config_path": null,
212
+ "model_cache_dir": null,
213
+ "lora_dropout_p": null,
214
+ "lora_target_modules": [],
215
+ "lora_target_regex": null,
216
+ "lora_modules_to_save": [],
217
+ "boft_target_modules": [],
218
+ "boft_modules_to_save": [],
219
+ "vera_target_modules": [],
220
+ "vera_modules_to_save": [],
221
+ "ia3_target_modules": [],
222
+ "ia3_modules_to_save": [],
223
+ "custom_train_dataset_path": [],
224
+ "custom_val_dataset_path": [],
225
+ "device_map_config_path": null,
226
+ "push_hub_strategy": null,
227
+ "use_self_cognition": false,
228
+ "is_multimodal": true,
229
+ "is_vision": false,
230
+ "lora_use_embedding": false,
231
+ "lora_use_all": false,
232
+ "lora_m2s_use_embedding": false,
233
+ "lora_m2s_use_ln": false,
234
+ "torch_dtype": "torch.bfloat16",
235
+ "fp16": false,
236
+ "bf16": true,
237
+ "rank": 0,
238
+ "local_rank": 0,
239
+ "world_size": 8,
240
+ "local_world_size": 8,
241
+ "bnb_4bit_compute_dtype": "torch.bfloat16",
242
+ "load_in_4bit": false,
243
+ "load_in_8bit": false,
244
+ "train_sampler_random": true,
245
+ "train_type": "sft",
246
+ "training_args": "Seq2SeqTrainingArguments(output_dir='/mnt/petrelfs/caoyuhang/InternLM-XComposer/finetune_audio/output/sft-continue_base_silence/qwen2-audio-7b-instruct/v0-20241120-155458', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=16, per_device_eval_batch_size=16, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=1, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=0.0002, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=1, num_train_epochs=3, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs={}, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/mnt/petrelfs/caoyuhang/InternLM-XComposer/finetune_audio/output/sft-continue_base_silence/qwen2-audio-7b-instruct/v0-20241120-155458/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=20, logging_nan_inf_filter=True, save_strategy=<IntervalStrategy.STEPS: 'steps'>, save_steps=2000, save_total_limit=2, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend='nccl', tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=2000, dataloader_num_workers=4, dataloader_prefetch_factor=None, past_index=-1, run_name='/mnt/petrelfs/caoyuhang/InternLM-XComposer/finetune_audio/output/sft-continue_base_silence/qwen2-audio-7b-instruct/v0-20241120-155458', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed=None, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=False, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=False, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=False, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy=None, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=False, include_num_input_tokens_seen=False, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=GenerationConfig {\n \"bos_token_id\": 151643,\n \"eos_token_id\": 151645,\n \"max_new_tokens\": 2048,\n \"pad_token_id\": 151643\n}\n, acc_strategy='token', loss_name=None, additional_saved_files=[], train_sampler_random=True, metric_warmup_step=0, train_dataset_sample=-1)"
247
+ }
audio/special_tokens_map.json ADDED
@@ -0,0 +1,3305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|AUDIO|>",
6
+ "<|audio_bos|>",
7
+ "<|audio_eos|>",
8
+ "<|sil|>",
9
+ "<|0.00|>",
10
+ "<|0.01|>",
11
+ "<|0.02|>",
12
+ "<|0.03|>",
13
+ "<|0.04|>",
14
+ "<|0.05|>",
15
+ "<|0.06|>",
16
+ "<|0.07|>",
17
+ "<|0.08|>",
18
+ "<|0.09|>",
19
+ "<|0.10|>",
20
+ "<|0.11|>",
21
+ "<|0.12|>",
22
+ "<|0.13|>",
23
+ "<|0.14|>",
24
+ "<|0.15|>",
25
+ "<|0.16|>",
26
+ "<|0.17|>",
27
+ "<|0.18|>",
28
+ "<|0.19|>",
29
+ "<|0.20|>",
30
+ "<|0.21|>",
31
+ "<|0.22|>",
32
+ "<|0.23|>",
33
+ "<|0.24|>",
34
+ "<|0.25|>",
35
+ "<|0.26|>",
36
+ "<|0.27|>",
37
+ "<|0.28|>",
38
+ "<|0.29|>",
39
+ "<|0.30|>",
40
+ "<|0.31|>",
41
+ "<|0.32|>",
42
+ "<|0.33|>",
43
+ "<|0.34|>",
44
+ "<|0.35|>",
45
+ "<|0.36|>",
46
+ "<|0.37|>",
47
+ "<|0.38|>",
48
+ "<|0.39|>",
49
+ "<|0.40|>",
50
+ "<|0.41|>",
51
+ "<|0.42|>",
52
+ "<|0.43|>",
53
+ "<|0.44|>",
54
+ "<|0.45|>",
55
+ "<|0.46|>",
56
+ "<|0.47|>",
57
+ "<|0.48|>",
58
+ "<|0.49|>",
59
+ "<|0.50|>",
60
+ "<|0.51|>",
61
+ "<|0.52|>",
62
+ "<|0.53|>",
63
+ "<|0.54|>",
64
+ "<|0.55|>",
65
+ "<|0.56|>",
66
+ "<|0.57|>",
67
+ "<|0.58|>",
68
+ "<|0.59|>",
69
+ "<|0.60|>",
70
+ "<|0.61|>",
71
+ "<|0.62|>",
72
+ "<|0.63|>",
73
+ "<|0.64|>",
74
+ "<|0.65|>",
75
+ "<|0.66|>",
76
+ "<|0.67|>",
77
+ "<|0.68|>",
78
+ "<|0.69|>",
79
+ "<|0.70|>",
80
+ "<|0.71|>",
81
+ "<|0.72|>",
82
+ "<|0.73|>",
83
+ "<|0.74|>",
84
+ "<|0.75|>",
85
+ "<|0.76|>",
86
+ "<|0.77|>",
87
+ "<|0.78|>",
88
+ "<|0.79|>",
89
+ "<|0.80|>",
90
+ "<|0.81|>",
91
+ "<|0.82|>",
92
+ "<|0.83|>",
93
+ "<|0.84|>",
94
+ "<|0.85|>",
95
+ "<|0.86|>",
96
+ "<|0.87|>",
97
+ "<|0.88|>",
98
+ "<|0.89|>",
99
+ "<|0.90|>",
100
+ "<|0.91|>",
101
+ "<|0.92|>",
102
+ "<|0.93|>",
103
+ "<|0.94|>",
104
+ "<|0.95|>",
105
+ "<|0.96|>",
106
+ "<|0.97|>",
107
+ "<|0.98|>",
108
+ "<|0.99|>",
109
+ "<|1.00|>",
110
+ "<|1.01|>",
111
+ "<|1.02|>",
112
+ "<|1.03|>",
113
+ "<|1.04|>",
114
+ "<|1.05|>",
115
+ "<|1.06|>",
116
+ "<|1.07|>",
117
+ "<|1.08|>",
118
+ "<|1.09|>",
119
+ "<|1.10|>",
120
+ "<|1.11|>",
121
+ "<|1.12|>",
122
+ "<|1.13|>",
123
+ "<|1.14|>",
124
+ "<|1.15|>",
125
+ "<|1.16|>",
126
+ "<|1.17|>",
127
+ "<|1.18|>",
128
+ "<|1.19|>",
129
+ "<|1.20|>",
130
+ "<|1.21|>",
131
+ "<|1.22|>",
132
+ "<|1.23|>",
133
+ "<|1.24|>",
134
+ "<|1.25|>",
135
+ "<|1.26|>",
136
+ "<|1.27|>",
137
+ "<|1.28|>",
138
+ "<|1.29|>",
139
+ "<|1.30|>",
140
+ "<|1.31|>",
141
+ "<|1.32|>",
142
+ "<|1.33|>",
143
+ "<|1.34|>",
144
+ "<|1.35|>",
145
+ "<|1.36|>",
146
+ "<|1.37|>",
147
+ "<|1.38|>",
148
+ "<|1.39|>",
149
+ "<|1.40|>",
150
+ "<|1.41|>",
151
+ "<|1.42|>",
152
+ "<|1.43|>",
153
+ "<|1.44|>",
154
+ "<|1.45|>",
155
+ "<|1.46|>",
156
+ "<|1.47|>",
157
+ "<|1.48|>",
158
+ "<|1.49|>",
159
+ "<|1.50|>",
160
+ "<|1.51|>",
161
+ "<|1.52|>",
162
+ "<|1.53|>",
163
+ "<|1.54|>",
164
+ "<|1.55|>",
165
+ "<|1.56|>",
166
+ "<|1.57|>",
167
+ "<|1.58|>",
168
+ "<|1.59|>",
169
+ "<|1.60|>",
170
+ "<|1.61|>",
171
+ "<|1.62|>",
172
+ "<|1.63|>",
173
+ "<|1.64|>",
174
+ "<|1.65|>",
175
+ "<|1.66|>",
176
+ "<|1.67|>",
177
+ "<|1.68|>",
178
+ "<|1.69|>",
179
+ "<|1.70|>",
180
+ "<|1.71|>",
181
+ "<|1.72|>",
182
+ "<|1.73|>",
183
+ "<|1.74|>",
184
+ "<|1.75|>",
185
+ "<|1.76|>",
186
+ "<|1.77|>",
187
+ "<|1.78|>",
188
+ "<|1.79|>",
189
+ "<|1.80|>",
190
+ "<|1.81|>",
191
+ "<|1.82|>",
192
+ "<|1.83|>",
193
+ "<|1.84|>",
194
+ "<|1.85|>",
195
+ "<|1.86|>",
196
+ "<|1.87|>",
197
+ "<|1.88|>",
198
+ "<|1.89|>",
199
+ "<|1.90|>",
200
+ "<|1.91|>",
201
+ "<|1.92|>",
202
+ "<|1.93|>",
203
+ "<|1.94|>",
204
+ "<|1.95|>",
205
+ "<|1.96|>",
206
+ "<|1.97|>",
207
+ "<|1.98|>",
208
+ "<|1.99|>",
209
+ "<|2.00|>",
210
+ "<|2.01|>",
211
+ "<|2.02|>",
212
+ "<|2.03|>",
213
+ "<|2.04|>",
214
+ "<|2.05|>",
215
+ "<|2.06|>",
216
+ "<|2.07|>",
217
+ "<|2.08|>",
218
+ "<|2.09|>",
219
+ "<|2.10|>",
220
+ "<|2.11|>",
221
+ "<|2.12|>",
222
+ "<|2.13|>",
223
+ "<|2.14|>",
224
+ "<|2.15|>",
225
+ "<|2.16|>",
226
+ "<|2.17|>",
227
+ "<|2.18|>",
228
+ "<|2.19|>",
229
+ "<|2.20|>",
230
+ "<|2.21|>",
231
+ "<|2.22|>",
232
+ "<|2.23|>",
233
+ "<|2.24|>",
234
+ "<|2.25|>",
235
+ "<|2.26|>",
236
+ "<|2.27|>",
237
+ "<|2.28|>",
238
+ "<|2.29|>",
239
+ "<|2.30|>",
240
+ "<|2.31|>",
241
+ "<|2.32|>",
242
+ "<|2.33|>",
243
+ "<|2.34|>",
244
+ "<|2.35|>",
245
+ "<|2.36|>",
246
+ "<|2.37|>",
247
+ "<|2.38|>",
248
+ "<|2.39|>",
249
+ "<|2.40|>",
250
+ "<|2.41|>",
251
+ "<|2.42|>",
252
+ "<|2.43|>",
253
+ "<|2.44|>",
254
+ "<|2.45|>",
255
+ "<|2.46|>",
256
+ "<|2.47|>",
257
+ "<|2.48|>",
258
+ "<|2.49|>",
259
+ "<|2.50|>",
260
+ "<|2.51|>",
261
+ "<|2.52|>",
262
+ "<|2.53|>",
263
+ "<|2.54|>",
264
+ "<|2.55|>",
265
+ "<|2.56|>",
266
+ "<|2.57|>",
267
+ "<|2.58|>",
268
+ "<|2.59|>",
269
+ "<|2.60|>",
270
+ "<|2.61|>",
271
+ "<|2.62|>",
272
+ "<|2.63|>",
273
+ "<|2.64|>",
274
+ "<|2.65|>",
275
+ "<|2.66|>",
276
+ "<|2.67|>",
277
+ "<|2.68|>",
278
+ "<|2.69|>",
279
+ "<|2.70|>",
280
+ "<|2.71|>",
281
+ "<|2.72|>",
282
+ "<|2.73|>",
283
+ "<|2.74|>",
284
+ "<|2.75|>",
285
+ "<|2.76|>",
286
+ "<|2.77|>",
287
+ "<|2.78|>",
288
+ "<|2.79|>",
289
+ "<|2.80|>",
290
+ "<|2.81|>",
291
+ "<|2.82|>",
292
+ "<|2.83|>",
293
+ "<|2.84|>",
294
+ "<|2.85|>",
295
+ "<|2.86|>",
296
+ "<|2.87|>",
297
+ "<|2.88|>",
298
+ "<|2.89|>",
299
+ "<|2.90|>",
300
+ "<|2.91|>",
301
+ "<|2.92|>",
302
+ "<|2.93|>",
303
+ "<|2.94|>",
304
+ "<|2.95|>",
305
+ "<|2.96|>",
306
+ "<|2.97|>",
307
+ "<|2.98|>",
308
+ "<|2.99|>",
309
+ "<|3.00|>",
310
+ "<|3.01|>",
311
+ "<|3.02|>",
312
+ "<|3.03|>",
313
+ "<|3.04|>",
314
+ "<|3.05|>",
315
+ "<|3.06|>",
316
+ "<|3.07|>",
317
+ "<|3.08|>",
318
+ "<|3.09|>",
319
+ "<|3.10|>",
320
+ "<|3.11|>",
321
+ "<|3.12|>",
322
+ "<|3.13|>",
323
+ "<|3.14|>",
324
+ "<|3.15|>",
325
+ "<|3.16|>",
326
+ "<|3.17|>",
327
+ "<|3.18|>",
328
+ "<|3.19|>",
329
+ "<|3.20|>",
330
+ "<|3.21|>",
331
+ "<|3.22|>",
332
+ "<|3.23|>",
333
+ "<|3.24|>",
334
+ "<|3.25|>",
335
+ "<|3.26|>",
336
+ "<|3.27|>",
337
+ "<|3.28|>",
338
+ "<|3.29|>",
339
+ "<|3.30|>",
340
+ "<|3.31|>",
341
+ "<|3.32|>",
342
+ "<|3.33|>",
343
+ "<|3.34|>",
344
+ "<|3.35|>",
345
+ "<|3.36|>",
346
+ "<|3.37|>",
347
+ "<|3.38|>",
348
+ "<|3.39|>",
349
+ "<|3.40|>",
350
+ "<|3.41|>",
351
+ "<|3.42|>",
352
+ "<|3.43|>",
353
+ "<|3.44|>",
354
+ "<|3.45|>",
355
+ "<|3.46|>",
356
+ "<|3.47|>",
357
+ "<|3.48|>",
358
+ "<|3.49|>",
359
+ "<|3.50|>",
360
+ "<|3.51|>",
361
+ "<|3.52|>",
362
+ "<|3.53|>",
363
+ "<|3.54|>",
364
+ "<|3.55|>",
365
+ "<|3.56|>",
366
+ "<|3.57|>",
367
+ "<|3.58|>",
368
+ "<|3.59|>",
369
+ "<|3.60|>",
370
+ "<|3.61|>",
371
+ "<|3.62|>",
372
+ "<|3.63|>",
373
+ "<|3.64|>",
374
+ "<|3.65|>",
375
+ "<|3.66|>",
376
+ "<|3.67|>",
377
+ "<|3.68|>",
378
+ "<|3.69|>",
379
+ "<|3.70|>",
380
+ "<|3.71|>",
381
+ "<|3.72|>",
382
+ "<|3.73|>",
383
+ "<|3.74|>",
384
+ "<|3.75|>",
385
+ "<|3.76|>",
386
+ "<|3.77|>",
387
+ "<|3.78|>",
388
+ "<|3.79|>",
389
+ "<|3.80|>",
390
+ "<|3.81|>",
391
+ "<|3.82|>",
392
+ "<|3.83|>",
393
+ "<|3.84|>",
394
+ "<|3.85|>",
395
+ "<|3.86|>",
396
+ "<|3.87|>",
397
+ "<|3.88|>",
398
+ "<|3.89|>",
399
+ "<|3.90|>",
400
+ "<|3.91|>",
401
+ "<|3.92|>",
402
+ "<|3.93|>",
403
+ "<|3.94|>",
404
+ "<|3.95|>",
405
+ "<|3.96|>",
406
+ "<|3.97|>",
407
+ "<|3.98|>",
408
+ "<|3.99|>",
409
+ "<|4.00|>",
410
+ "<|4.01|>",
411
+ "<|4.02|>",
412
+ "<|4.03|>",
413
+ "<|4.04|>",
414
+ "<|4.05|>",
415
+ "<|4.06|>",
416
+ "<|4.07|>",
417
+ "<|4.08|>",
418
+ "<|4.09|>",
419
+ "<|4.10|>",
420
+ "<|4.11|>",
421
+ "<|4.12|>",
422
+ "<|4.13|>",
423
+ "<|4.14|>",
424
+ "<|4.15|>",
425
+ "<|4.16|>",
426
+ "<|4.17|>",
427
+ "<|4.18|>",
428
+ "<|4.19|>",
429
+ "<|4.20|>",
430
+ "<|4.21|>",
431
+ "<|4.22|>",
432
+ "<|4.23|>",
433
+ "<|4.24|>",
434
+ "<|4.25|>",
435
+ "<|4.26|>",
436
+ "<|4.27|>",
437
+ "<|4.28|>",
438
+ "<|4.29|>",
439
+ "<|4.30|>",
440
+ "<|4.31|>",
441
+ "<|4.32|>",
442
+ "<|4.33|>",
443
+ "<|4.34|>",
444
+ "<|4.35|>",
445
+ "<|4.36|>",
446
+ "<|4.37|>",
447
+ "<|4.38|>",
448
+ "<|4.39|>",
449
+ "<|4.40|>",
450
+ "<|4.41|>",
451
+ "<|4.42|>",
452
+ "<|4.43|>",
453
+ "<|4.44|>",
454
+ "<|4.45|>",
455
+ "<|4.46|>",
456
+ "<|4.47|>",
457
+ "<|4.48|>",
458
+ "<|4.49|>",
459
+ "<|4.50|>",
460
+ "<|4.51|>",
461
+ "<|4.52|>",
462
+ "<|4.53|>",
463
+ "<|4.54|>",
464
+ "<|4.55|>",
465
+ "<|4.56|>",
466
+ "<|4.57|>",
467
+ "<|4.58|>",
468
+ "<|4.59|>",
469
+ "<|4.60|>",
470
+ "<|4.61|>",
471
+ "<|4.62|>",
472
+ "<|4.63|>",
473
+ "<|4.64|>",
474
+ "<|4.65|>",
475
+ "<|4.66|>",
476
+ "<|4.67|>",
477
+ "<|4.68|>",
478
+ "<|4.69|>",
479
+ "<|4.70|>",
480
+ "<|4.71|>",
481
+ "<|4.72|>",
482
+ "<|4.73|>",
483
+ "<|4.74|>",
484
+ "<|4.75|>",
485
+ "<|4.76|>",
486
+ "<|4.77|>",
487
+ "<|4.78|>",
488
+ "<|4.79|>",
489
+ "<|4.80|>",
490
+ "<|4.81|>",
491
+ "<|4.82|>",
492
+ "<|4.83|>",
493
+ "<|4.84|>",
494
+ "<|4.85|>",
495
+ "<|4.86|>",
496
+ "<|4.87|>",
497
+ "<|4.88|>",
498
+ "<|4.89|>",
499
+ "<|4.90|>",
500
+ "<|4.91|>",
501
+ "<|4.92|>",
502
+ "<|4.93|>",
503
+ "<|4.94|>",
504
+ "<|4.95|>",
505
+ "<|4.96|>",
506
+ "<|4.97|>",
507
+ "<|4.98|>",
508
+ "<|4.99|>",
509
+ "<|5.00|>",
510
+ "<|5.01|>",
511
+ "<|5.02|>",
512
+ "<|5.03|>",
513
+ "<|5.04|>",
514
+ "<|5.05|>",
515
+ "<|5.06|>",
516
+ "<|5.07|>",
517
+ "<|5.08|>",
518
+ "<|5.09|>",
519
+ "<|5.10|>",
520
+ "<|5.11|>",
521
+ "<|5.12|>",
522
+ "<|5.13|>",
523
+ "<|5.14|>",
524
+ "<|5.15|>",
525
+ "<|5.16|>",
526
+ "<|5.17|>",
527
+ "<|5.18|>",
528
+ "<|5.19|>",
529
+ "<|5.20|>",
530
+ "<|5.21|>",
531
+ "<|5.22|>",
532
+ "<|5.23|>",
533
+ "<|5.24|>",
534
+ "<|5.25|>",
535
+ "<|5.26|>",
536
+ "<|5.27|>",
537
+ "<|5.28|>",
538
+ "<|5.29|>",
539
+ "<|5.30|>",
540
+ "<|5.31|>",
541
+ "<|5.32|>",
542
+ "<|5.33|>",
543
+ "<|5.34|>",
544
+ "<|5.35|>",
545
+ "<|5.36|>",
546
+ "<|5.37|>",
547
+ "<|5.38|>",
548
+ "<|5.39|>",
549
+ "<|5.40|>",
550
+ "<|5.41|>",
551
+ "<|5.42|>",
552
+ "<|5.43|>",
553
+ "<|5.44|>",
554
+ "<|5.45|>",
555
+ "<|5.46|>",
556
+ "<|5.47|>",
557
+ "<|5.48|>",
558
+ "<|5.49|>",
559
+ "<|5.50|>",
560
+ "<|5.51|>",
561
+ "<|5.52|>",
562
+ "<|5.53|>",
563
+ "<|5.54|>",
564
+ "<|5.55|>",
565
+ "<|5.56|>",
566
+ "<|5.57|>",
567
+ "<|5.58|>",
568
+ "<|5.59|>",
569
+ "<|5.60|>",
570
+ "<|5.61|>",
571
+ "<|5.62|>",
572
+ "<|5.63|>",
573
+ "<|5.64|>",
574
+ "<|5.65|>",
575
+ "<|5.66|>",
576
+ "<|5.67|>",
577
+ "<|5.68|>",
578
+ "<|5.69|>",
579
+ "<|5.70|>",
580
+ "<|5.71|>",
581
+ "<|5.72|>",
582
+ "<|5.73|>",
583
+ "<|5.74|>",
584
+ "<|5.75|>",
585
+ "<|5.76|>",
586
+ "<|5.77|>",
587
+ "<|5.78|>",
588
+ "<|5.79|>",
589
+ "<|5.80|>",
590
+ "<|5.81|>",
591
+ "<|5.82|>",
592
+ "<|5.83|>",
593
+ "<|5.84|>",
594
+ "<|5.85|>",
595
+ "<|5.86|>",
596
+ "<|5.87|>",
597
+ "<|5.88|>",
598
+ "<|5.89|>",
599
+ "<|5.90|>",
600
+ "<|5.91|>",
601
+ "<|5.92|>",
602
+ "<|5.93|>",
603
+ "<|5.94|>",
604
+ "<|5.95|>",
605
+ "<|5.96|>",
606
+ "<|5.97|>",
607
+ "<|5.98|>",
608
+ "<|5.99|>",
609
+ "<|6.00|>",
610
+ "<|6.01|>",
611
+ "<|6.02|>",
612
+ "<|6.03|>",
613
+ "<|6.04|>",
614
+ "<|6.05|>",
615
+ "<|6.06|>",
616
+ "<|6.07|>",
617
+ "<|6.08|>",
618
+ "<|6.09|>",
619
+ "<|6.10|>",
620
+ "<|6.11|>",
621
+ "<|6.12|>",
622
+ "<|6.13|>",
623
+ "<|6.14|>",
624
+ "<|6.15|>",
625
+ "<|6.16|>",
626
+ "<|6.17|>",
627
+ "<|6.18|>",
628
+ "<|6.19|>",
629
+ "<|6.20|>",
630
+ "<|6.21|>",
631
+ "<|6.22|>",
632
+ "<|6.23|>",
633
+ "<|6.24|>",
634
+ "<|6.25|>",
635
+ "<|6.26|>",
636
+ "<|6.27|>",
637
+ "<|6.28|>",
638
+ "<|6.29|>",
639
+ "<|6.30|>",
640
+ "<|6.31|>",
641
+ "<|6.32|>",
642
+ "<|6.33|>",
643
+ "<|6.34|>",
644
+ "<|6.35|>",
645
+ "<|6.36|>",
646
+ "<|6.37|>",
647
+ "<|6.38|>",
648
+ "<|6.39|>",
649
+ "<|6.40|>",
650
+ "<|6.41|>",
651
+ "<|6.42|>",
652
+ "<|6.43|>",
653
+ "<|6.44|>",
654
+ "<|6.45|>",
655
+ "<|6.46|>",
656
+ "<|6.47|>",
657
+ "<|6.48|>",
658
+ "<|6.49|>",
659
+ "<|6.50|>",
660
+ "<|6.51|>",
661
+ "<|6.52|>",
662
+ "<|6.53|>",
663
+ "<|6.54|>",
664
+ "<|6.55|>",
665
+ "<|6.56|>",
666
+ "<|6.57|>",
667
+ "<|6.58|>",
668
+ "<|6.59|>",
669
+ "<|6.60|>",
670
+ "<|6.61|>",
671
+ "<|6.62|>",
672
+ "<|6.63|>",
673
+ "<|6.64|>",
674
+ "<|6.65|>",
675
+ "<|6.66|>",
676
+ "<|6.67|>",
677
+ "<|6.68|>",
678
+ "<|6.69|>",
679
+ "<|6.70|>",
680
+ "<|6.71|>",
681
+ "<|6.72|>",
682
+ "<|6.73|>",
683
+ "<|6.74|>",
684
+ "<|6.75|>",
685
+ "<|6.76|>",
686
+ "<|6.77|>",
687
+ "<|6.78|>",
688
+ "<|6.79|>",
689
+ "<|6.80|>",
690
+ "<|6.81|>",
691
+ "<|6.82|>",
692
+ "<|6.83|>",
693
+ "<|6.84|>",
694
+ "<|6.85|>",
695
+ "<|6.86|>",
696
+ "<|6.87|>",
697
+ "<|6.88|>",
698
+ "<|6.89|>",
699
+ "<|6.90|>",
700
+ "<|6.91|>",
701
+ "<|6.92|>",
702
+ "<|6.93|>",
703
+ "<|6.94|>",
704
+ "<|6.95|>",
705
+ "<|6.96|>",
706
+ "<|6.97|>",
707
+ "<|6.98|>",
708
+ "<|6.99|>",
709
+ "<|7.00|>",
710
+ "<|7.01|>",
711
+ "<|7.02|>",
712
+ "<|7.03|>",
713
+ "<|7.04|>",
714
+ "<|7.05|>",
715
+ "<|7.06|>",
716
+ "<|7.07|>",
717
+ "<|7.08|>",
718
+ "<|7.09|>",
719
+ "<|7.10|>",
720
+ "<|7.11|>",
721
+ "<|7.12|>",
722
+ "<|7.13|>",
723
+ "<|7.14|>",
724
+ "<|7.15|>",
725
+ "<|7.16|>",
726
+ "<|7.17|>",
727
+ "<|7.18|>",
728
+ "<|7.19|>",
729
+ "<|7.20|>",
730
+ "<|7.21|>",
731
+ "<|7.22|>",
732
+ "<|7.23|>",
733
+ "<|7.24|>",
734
+ "<|7.25|>",
735
+ "<|7.26|>",
736
+ "<|7.27|>",
737
+ "<|7.28|>",
738
+ "<|7.29|>",
739
+ "<|7.30|>",
740
+ "<|7.31|>",
741
+ "<|7.32|>",
742
+ "<|7.33|>",
743
+ "<|7.34|>",
744
+ "<|7.35|>",
745
+ "<|7.36|>",
746
+ "<|7.37|>",
747
+ "<|7.38|>",
748
+ "<|7.39|>",
749
+ "<|7.40|>",
750
+ "<|7.41|>",
751
+ "<|7.42|>",
752
+ "<|7.43|>",
753
+ "<|7.44|>",
754
+ "<|7.45|>",
755
+ "<|7.46|>",
756
+ "<|7.47|>",
757
+ "<|7.48|>",
758
+ "<|7.49|>",
759
+ "<|7.50|>",
760
+ "<|7.51|>",
761
+ "<|7.52|>",
762
+ "<|7.53|>",
763
+ "<|7.54|>",
764
+ "<|7.55|>",
765
+ "<|7.56|>",
766
+ "<|7.57|>",
767
+ "<|7.58|>",
768
+ "<|7.59|>",
769
+ "<|7.60|>",
770
+ "<|7.61|>",
771
+ "<|7.62|>",
772
+ "<|7.63|>",
773
+ "<|7.64|>",
774
+ "<|7.65|>",
775
+ "<|7.66|>",
776
+ "<|7.67|>",
777
+ "<|7.68|>",
778
+ "<|7.69|>",
779
+ "<|7.70|>",
780
+ "<|7.71|>",
781
+ "<|7.72|>",
782
+ "<|7.73|>",
783
+ "<|7.74|>",
784
+ "<|7.75|>",
785
+ "<|7.76|>",
786
+ "<|7.77|>",
787
+ "<|7.78|>",
788
+ "<|7.79|>",
789
+ "<|7.80|>",
790
+ "<|7.81|>",
791
+ "<|7.82|>",
792
+ "<|7.83|>",
793
+ "<|7.84|>",
794
+ "<|7.85|>",
795
+ "<|7.86|>",
796
+ "<|7.87|>",
797
+ "<|7.88|>",
798
+ "<|7.89|>",
799
+ "<|7.90|>",
800
+ "<|7.91|>",
801
+ "<|7.92|>",
802
+ "<|7.93|>",
803
+ "<|7.94|>",
804
+ "<|7.95|>",
805
+ "<|7.96|>",
806
+ "<|7.97|>",
807
+ "<|7.98|>",
808
+ "<|7.99|>",
809
+ "<|8.00|>",
810
+ "<|8.01|>",
811
+ "<|8.02|>",
812
+ "<|8.03|>",
813
+ "<|8.04|>",
814
+ "<|8.05|>",
815
+ "<|8.06|>",
816
+ "<|8.07|>",
817
+ "<|8.08|>",
818
+ "<|8.09|>",
819
+ "<|8.10|>",
820
+ "<|8.11|>",
821
+ "<|8.12|>",
822
+ "<|8.13|>",
823
+ "<|8.14|>",
824
+ "<|8.15|>",
825
+ "<|8.16|>",
826
+ "<|8.17|>",
827
+ "<|8.18|>",
828
+ "<|8.19|>",
829
+ "<|8.20|>",
830
+ "<|8.21|>",
831
+ "<|8.22|>",
832
+ "<|8.23|>",
833
+ "<|8.24|>",
834
+ "<|8.25|>",
835
+ "<|8.26|>",
836
+ "<|8.27|>",
837
+ "<|8.28|>",
838
+ "<|8.29|>",
839
+ "<|8.30|>",
840
+ "<|8.31|>",
841
+ "<|8.32|>",
842
+ "<|8.33|>",
843
+ "<|8.34|>",
844
+ "<|8.35|>",
845
+ "<|8.36|>",
846
+ "<|8.37|>",
847
+ "<|8.38|>",
848
+ "<|8.39|>",
849
+ "<|8.40|>",
850
+ "<|8.41|>",
851
+ "<|8.42|>",
852
+ "<|8.43|>",
853
+ "<|8.44|>",
854
+ "<|8.45|>",
855
+ "<|8.46|>",
856
+ "<|8.47|>",
857
+ "<|8.48|>",
858
+ "<|8.49|>",
859
+ "<|8.50|>",
860
+ "<|8.51|>",
861
+ "<|8.52|>",
862
+ "<|8.53|>",
863
+ "<|8.54|>",
864
+ "<|8.55|>",
865
+ "<|8.56|>",
866
+ "<|8.57|>",
867
+ "<|8.58|>",
868
+ "<|8.59|>",
869
+ "<|8.60|>",
870
+ "<|8.61|>",
871
+ "<|8.62|>",
872
+ "<|8.63|>",
873
+ "<|8.64|>",
874
+ "<|8.65|>",
875
+ "<|8.66|>",
876
+ "<|8.67|>",
877
+ "<|8.68|>",
878
+ "<|8.69|>",
879
+ "<|8.70|>",
880
+ "<|8.71|>",
881
+ "<|8.72|>",
882
+ "<|8.73|>",
883
+ "<|8.74|>",
884
+ "<|8.75|>",
885
+ "<|8.76|>",
886
+ "<|8.77|>",
887
+ "<|8.78|>",
888
+ "<|8.79|>",
889
+ "<|8.80|>",
890
+ "<|8.81|>",
891
+ "<|8.82|>",
892
+ "<|8.83|>",
893
+ "<|8.84|>",
894
+ "<|8.85|>",
895
+ "<|8.86|>",
896
+ "<|8.87|>",
897
+ "<|8.88|>",
898
+ "<|8.89|>",
899
+ "<|8.90|>",
900
+ "<|8.91|>",
901
+ "<|8.92|>",
902
+ "<|8.93|>",
903
+ "<|8.94|>",
904
+ "<|8.95|>",
905
+ "<|8.96|>",
906
+ "<|8.97|>",
907
+ "<|8.98|>",
908
+ "<|8.99|>",
909
+ "<|9.00|>",
910
+ "<|9.01|>",
911
+ "<|9.02|>",
912
+ "<|9.03|>",
913
+ "<|9.04|>",
914
+ "<|9.05|>",
915
+ "<|9.06|>",
916
+ "<|9.07|>",
917
+ "<|9.08|>",
918
+ "<|9.09|>",
919
+ "<|9.10|>",
920
+ "<|9.11|>",
921
+ "<|9.12|>",
922
+ "<|9.13|>",
923
+ "<|9.14|>",
924
+ "<|9.15|>",
925
+ "<|9.16|>",
926
+ "<|9.17|>",
927
+ "<|9.18|>",
928
+ "<|9.19|>",
929
+ "<|9.20|>",
930
+ "<|9.21|>",
931
+ "<|9.22|>",
932
+ "<|9.23|>",
933
+ "<|9.24|>",
934
+ "<|9.25|>",
935
+ "<|9.26|>",
936
+ "<|9.27|>",
937
+ "<|9.28|>",
938
+ "<|9.29|>",
939
+ "<|9.30|>",
940
+ "<|9.31|>",
941
+ "<|9.32|>",
942
+ "<|9.33|>",
943
+ "<|9.34|>",
944
+ "<|9.35|>",
945
+ "<|9.36|>",
946
+ "<|9.37|>",
947
+ "<|9.38|>",
948
+ "<|9.39|>",
949
+ "<|9.40|>",
950
+ "<|9.41|>",
951
+ "<|9.42|>",
952
+ "<|9.43|>",
953
+ "<|9.44|>",
954
+ "<|9.45|>",
955
+ "<|9.46|>",
956
+ "<|9.47|>",
957
+ "<|9.48|>",
958
+ "<|9.49|>",
959
+ "<|9.50|>",
960
+ "<|9.51|>",
961
+ "<|9.52|>",
962
+ "<|9.53|>",
963
+ "<|9.54|>",
964
+ "<|9.55|>",
965
+ "<|9.56|>",
966
+ "<|9.57|>",
967
+ "<|9.58|>",
968
+ "<|9.59|>",
969
+ "<|9.60|>",
970
+ "<|9.61|>",
971
+ "<|9.62|>",
972
+ "<|9.63|>",
973
+ "<|9.64|>",
974
+ "<|9.65|>",
975
+ "<|9.66|>",
976
+ "<|9.67|>",
977
+ "<|9.68|>",
978
+ "<|9.69|>",
979
+ "<|9.70|>",
980
+ "<|9.71|>",
981
+ "<|9.72|>",
982
+ "<|9.73|>",
983
+ "<|9.74|>",
984
+ "<|9.75|>",
985
+ "<|9.76|>",
986
+ "<|9.77|>",
987
+ "<|9.78|>",
988
+ "<|9.79|>",
989
+ "<|9.80|>",
990
+ "<|9.81|>",
991
+ "<|9.82|>",
992
+ "<|9.83|>",
993
+ "<|9.84|>",
994
+ "<|9.85|>",
995
+ "<|9.86|>",
996
+ "<|9.87|>",
997
+ "<|9.88|>",
998
+ "<|9.89|>",
999
+ "<|9.90|>",
1000
+ "<|9.91|>",
1001
+ "<|9.92|>",
1002
+ "<|9.93|>",
1003
+ "<|9.94|>",
1004
+ "<|9.95|>",
1005
+ "<|9.96|>",
1006
+ "<|9.97|>",
1007
+ "<|9.98|>",
1008
+ "<|9.99|>",
1009
+ "<|10.00|>",
1010
+ "<|10.01|>",
1011
+ "<|10.02|>",
1012
+ "<|10.03|>",
1013
+ "<|10.04|>",
1014
+ "<|10.05|>",
1015
+ "<|10.06|>",
1016
+ "<|10.07|>",
1017
+ "<|10.08|>",
1018
+ "<|10.09|>",
1019
+ "<|10.10|>",
1020
+ "<|10.11|>",
1021
+ "<|10.12|>",
1022
+ "<|10.13|>",
1023
+ "<|10.14|>",
1024
+ "<|10.15|>",
1025
+ "<|10.16|>",
1026
+ "<|10.17|>",
1027
+ "<|10.18|>",
1028
+ "<|10.19|>",
1029
+ "<|10.20|>",
1030
+ "<|10.21|>",
1031
+ "<|10.22|>",
1032
+ "<|10.23|>",
1033
+ "<|10.24|>",
1034
+ "<|10.25|>",
1035
+ "<|10.26|>",
1036
+ "<|10.27|>",
1037
+ "<|10.28|>",
1038
+ "<|10.29|>",
1039
+ "<|10.30|>",
1040
+ "<|10.31|>",
1041
+ "<|10.32|>",
1042
+ "<|10.33|>",
1043
+ "<|10.34|>",
1044
+ "<|10.35|>",
1045
+ "<|10.36|>",
1046
+ "<|10.37|>",
1047
+ "<|10.38|>",
1048
+ "<|10.39|>",
1049
+ "<|10.40|>",
1050
+ "<|10.41|>",
1051
+ "<|10.42|>",
1052
+ "<|10.43|>",
1053
+ "<|10.44|>",
1054
+ "<|10.45|>",
1055
+ "<|10.46|>",
1056
+ "<|10.47|>",
1057
+ "<|10.48|>",
1058
+ "<|10.49|>",
1059
+ "<|10.50|>",
1060
+ "<|10.51|>",
1061
+ "<|10.52|>",
1062
+ "<|10.53|>",
1063
+ "<|10.54|>",
1064
+ "<|10.55|>",
1065
+ "<|10.56|>",
1066
+ "<|10.57|>",
1067
+ "<|10.58|>",
1068
+ "<|10.59|>",
1069
+ "<|10.60|>",
1070
+ "<|10.61|>",
1071
+ "<|10.62|>",
1072
+ "<|10.63|>",
1073
+ "<|10.64|>",
1074
+ "<|10.65|>",
1075
+ "<|10.66|>",
1076
+ "<|10.67|>",
1077
+ "<|10.68|>",
1078
+ "<|10.69|>",
1079
+ "<|10.70|>",
1080
+ "<|10.71|>",
1081
+ "<|10.72|>",
1082
+ "<|10.73|>",
1083
+ "<|10.74|>",
1084
+ "<|10.75|>",
1085
+ "<|10.76|>",
1086
+ "<|10.77|>",
1087
+ "<|10.78|>",
1088
+ "<|10.79|>",
1089
+ "<|10.80|>",
1090
+ "<|10.81|>",
1091
+ "<|10.82|>",
1092
+ "<|10.83|>",
1093
+ "<|10.84|>",
1094
+ "<|10.85|>",
1095
+ "<|10.86|>",
1096
+ "<|10.87|>",
1097
+ "<|10.88|>",
1098
+ "<|10.89|>",
1099
+ "<|10.90|>",
1100
+ "<|10.91|>",
1101
+ "<|10.92|>",
1102
+ "<|10.93|>",
1103
+ "<|10.94|>",
1104
+ "<|10.95|>",
1105
+ "<|10.96|>",
1106
+ "<|10.97|>",
1107
+ "<|10.98|>",
1108
+ "<|10.99|>",
1109
+ "<|11.00|>",
1110
+ "<|11.01|>",
1111
+ "<|11.02|>",
1112
+ "<|11.03|>",
1113
+ "<|11.04|>",
1114
+ "<|11.05|>",
1115
+ "<|11.06|>",
1116
+ "<|11.07|>",
1117
+ "<|11.08|>",
1118
+ "<|11.09|>",
1119
+ "<|11.10|>",
1120
+ "<|11.11|>",
1121
+ "<|11.12|>",
1122
+ "<|11.13|>",
1123
+ "<|11.14|>",
1124
+ "<|11.15|>",
1125
+ "<|11.16|>",
1126
+ "<|11.17|>",
1127
+ "<|11.18|>",
1128
+ "<|11.19|>",
1129
+ "<|11.20|>",
1130
+ "<|11.21|>",
1131
+ "<|11.22|>",
1132
+ "<|11.23|>",
1133
+ "<|11.24|>",
1134
+ "<|11.25|>",
1135
+ "<|11.26|>",
1136
+ "<|11.27|>",
1137
+ "<|11.28|>",
1138
+ "<|11.29|>",
1139
+ "<|11.30|>",
1140
+ "<|11.31|>",
1141
+ "<|11.32|>",
1142
+ "<|11.33|>",
1143
+ "<|11.34|>",
1144
+ "<|11.35|>",
1145
+ "<|11.36|>",
1146
+ "<|11.37|>",
1147
+ "<|11.38|>",
1148
+ "<|11.39|>",
1149
+ "<|11.40|>",
1150
+ "<|11.41|>",
1151
+ "<|11.42|>",
1152
+ "<|11.43|>",
1153
+ "<|11.44|>",
1154
+ "<|11.45|>",
1155
+ "<|11.46|>",
1156
+ "<|11.47|>",
1157
+ "<|11.48|>",
1158
+ "<|11.49|>",
1159
+ "<|11.50|>",
1160
+ "<|11.51|>",
1161
+ "<|11.52|>",
1162
+ "<|11.53|>",
1163
+ "<|11.54|>",
1164
+ "<|11.55|>",
1165
+ "<|11.56|>",
1166
+ "<|11.57|>",
1167
+ "<|11.58|>",
1168
+ "<|11.59|>",
1169
+ "<|11.60|>",
1170
+ "<|11.61|>",
1171
+ "<|11.62|>",
1172
+ "<|11.63|>",
1173
+ "<|11.64|>",
1174
+ "<|11.65|>",
1175
+ "<|11.66|>",
1176
+ "<|11.67|>",
1177
+ "<|11.68|>",
1178
+ "<|11.69|>",
1179
+ "<|11.70|>",
1180
+ "<|11.71|>",
1181
+ "<|11.72|>",
1182
+ "<|11.73|>",
1183
+ "<|11.74|>",
1184
+ "<|11.75|>",
1185
+ "<|11.76|>",
1186
+ "<|11.77|>",
1187
+ "<|11.78|>",
1188
+ "<|11.79|>",
1189
+ "<|11.80|>",
1190
+ "<|11.81|>",
1191
+ "<|11.82|>",
1192
+ "<|11.83|>",
1193
+ "<|11.84|>",
1194
+ "<|11.85|>",
1195
+ "<|11.86|>",
1196
+ "<|11.87|>",
1197
+ "<|11.88|>",
1198
+ "<|11.89|>",
1199
+ "<|11.90|>",
1200
+ "<|11.91|>",
1201
+ "<|11.92|>",
1202
+ "<|11.93|>",
1203
+ "<|11.94|>",
1204
+ "<|11.95|>",
1205
+ "<|11.96|>",
1206
+ "<|11.97|>",
1207
+ "<|11.98|>",
1208
+ "<|11.99|>",
1209
+ "<|12.00|>",
1210
+ "<|12.01|>",
1211
+ "<|12.02|>",
1212
+ "<|12.03|>",
1213
+ "<|12.04|>",
1214
+ "<|12.05|>",
1215
+ "<|12.06|>",
1216
+ "<|12.07|>",
1217
+ "<|12.08|>",
1218
+ "<|12.09|>",
1219
+ "<|12.10|>",
1220
+ "<|12.11|>",
1221
+ "<|12.12|>",
1222
+ "<|12.13|>",
1223
+ "<|12.14|>",
1224
+ "<|12.15|>",
1225
+ "<|12.16|>",
1226
+ "<|12.17|>",
1227
+ "<|12.18|>",
1228
+ "<|12.19|>",
1229
+ "<|12.20|>",
1230
+ "<|12.21|>",
1231
+ "<|12.22|>",
1232
+ "<|12.23|>",
1233
+ "<|12.24|>",
1234
+ "<|12.25|>",
1235
+ "<|12.26|>",
1236
+ "<|12.27|>",
1237
+ "<|12.28|>",
1238
+ "<|12.29|>",
1239
+ "<|12.30|>",
1240
+ "<|12.31|>",
1241
+ "<|12.32|>",
1242
+ "<|12.33|>",
1243
+ "<|12.34|>",
1244
+ "<|12.35|>",
1245
+ "<|12.36|>",
1246
+ "<|12.37|>",
1247
+ "<|12.38|>",
1248
+ "<|12.39|>",
1249
+ "<|12.40|>",
1250
+ "<|12.41|>",
1251
+ "<|12.42|>",
1252
+ "<|12.43|>",
1253
+ "<|12.44|>",
1254
+ "<|12.45|>",
1255
+ "<|12.46|>",
1256
+ "<|12.47|>",
1257
+ "<|12.48|>",
1258
+ "<|12.49|>",
1259
+ "<|12.50|>",
1260
+ "<|12.51|>",
1261
+ "<|12.52|>",
1262
+ "<|12.53|>",
1263
+ "<|12.54|>",
1264
+ "<|12.55|>",
1265
+ "<|12.56|>",
1266
+ "<|12.57|>",
1267
+ "<|12.58|>",
1268
+ "<|12.59|>",
1269
+ "<|12.60|>",
1270
+ "<|12.61|>",
1271
+ "<|12.62|>",
1272
+ "<|12.63|>",
1273
+ "<|12.64|>",
1274
+ "<|12.65|>",
1275
+ "<|12.66|>",
1276
+ "<|12.67|>",
1277
+ "<|12.68|>",
1278
+ "<|12.69|>",
1279
+ "<|12.70|>",
1280
+ "<|12.71|>",
1281
+ "<|12.72|>",
1282
+ "<|12.73|>",
1283
+ "<|12.74|>",
1284
+ "<|12.75|>",
1285
+ "<|12.76|>",
1286
+ "<|12.77|>",
1287
+ "<|12.78|>",
1288
+ "<|12.79|>",
1289
+ "<|12.80|>",
1290
+ "<|12.81|>",
1291
+ "<|12.82|>",
1292
+ "<|12.83|>",
1293
+ "<|12.84|>",
1294
+ "<|12.85|>",
1295
+ "<|12.86|>",
1296
+ "<|12.87|>",
1297
+ "<|12.88|>",
1298
+ "<|12.89|>",
1299
+ "<|12.90|>",
1300
+ "<|12.91|>",
1301
+ "<|12.92|>",
1302
+ "<|12.93|>",
1303
+ "<|12.94|>",
1304
+ "<|12.95|>",
1305
+ "<|12.96|>",
1306
+ "<|12.97|>",
1307
+ "<|12.98|>",
1308
+ "<|12.99|>",
1309
+ "<|13.00|>",
1310
+ "<|13.01|>",
1311
+ "<|13.02|>",
1312
+ "<|13.03|>",
1313
+ "<|13.04|>",
1314
+ "<|13.05|>",
1315
+ "<|13.06|>",
1316
+ "<|13.07|>",
1317
+ "<|13.08|>",
1318
+ "<|13.09|>",
1319
+ "<|13.10|>",
1320
+ "<|13.11|>",
1321
+ "<|13.12|>",
1322
+ "<|13.13|>",
1323
+ "<|13.14|>",
1324
+ "<|13.15|>",
1325
+ "<|13.16|>",
1326
+ "<|13.17|>",
1327
+ "<|13.18|>",
1328
+ "<|13.19|>",
1329
+ "<|13.20|>",
1330
+ "<|13.21|>",
1331
+ "<|13.22|>",
1332
+ "<|13.23|>",
1333
+ "<|13.24|>",
1334
+ "<|13.25|>",
1335
+ "<|13.26|>",
1336
+ "<|13.27|>",
1337
+ "<|13.28|>",
1338
+ "<|13.29|>",
1339
+ "<|13.30|>",
1340
+ "<|13.31|>",
1341
+ "<|13.32|>",
1342
+ "<|13.33|>",
1343
+ "<|13.34|>",
1344
+ "<|13.35|>",
1345
+ "<|13.36|>",
1346
+ "<|13.37|>",
1347
+ "<|13.38|>",
1348
+ "<|13.39|>",
1349
+ "<|13.40|>",
1350
+ "<|13.41|>",
1351
+ "<|13.42|>",
1352
+ "<|13.43|>",
1353
+ "<|13.44|>",
1354
+ "<|13.45|>",
1355
+ "<|13.46|>",
1356
+ "<|13.47|>",
1357
+ "<|13.48|>",
1358
+ "<|13.49|>",
1359
+ "<|13.50|>",
1360
+ "<|13.51|>",
1361
+ "<|13.52|>",
1362
+ "<|13.53|>",
1363
+ "<|13.54|>",
1364
+ "<|13.55|>",
1365
+ "<|13.56|>",
1366
+ "<|13.57|>",
1367
+ "<|13.58|>",
1368
+ "<|13.59|>",
1369
+ "<|13.60|>",
1370
+ "<|13.61|>",
1371
+ "<|13.62|>",
1372
+ "<|13.63|>",
1373
+ "<|13.64|>",
1374
+ "<|13.65|>",
1375
+ "<|13.66|>",
1376
+ "<|13.67|>",
1377
+ "<|13.68|>",
1378
+ "<|13.69|>",
1379
+ "<|13.70|>",
1380
+ "<|13.71|>",
1381
+ "<|13.72|>",
1382
+ "<|13.73|>",
1383
+ "<|13.74|>",
1384
+ "<|13.75|>",
1385
+ "<|13.76|>",
1386
+ "<|13.77|>",
1387
+ "<|13.78|>",
1388
+ "<|13.79|>",
1389
+ "<|13.80|>",
1390
+ "<|13.81|>",
1391
+ "<|13.82|>",
1392
+ "<|13.83|>",
1393
+ "<|13.84|>",
1394
+ "<|13.85|>",
1395
+ "<|13.86|>",
1396
+ "<|13.87|>",
1397
+ "<|13.88|>",
1398
+ "<|13.89|>",
1399
+ "<|13.90|>",
1400
+ "<|13.91|>",
1401
+ "<|13.92|>",
1402
+ "<|13.93|>",
1403
+ "<|13.94|>",
1404
+ "<|13.95|>",
1405
+ "<|13.96|>",
1406
+ "<|13.97|>",
1407
+ "<|13.98|>",
1408
+ "<|13.99|>",
1409
+ "<|14.00|>",
1410
+ "<|14.01|>",
1411
+ "<|14.02|>",
1412
+ "<|14.03|>",
1413
+ "<|14.04|>",
1414
+ "<|14.05|>",
1415
+ "<|14.06|>",
1416
+ "<|14.07|>",
1417
+ "<|14.08|>",
1418
+ "<|14.09|>",
1419
+ "<|14.10|>",
1420
+ "<|14.11|>",
1421
+ "<|14.12|>",
1422
+ "<|14.13|>",
1423
+ "<|14.14|>",
1424
+ "<|14.15|>",
1425
+ "<|14.16|>",
1426
+ "<|14.17|>",
1427
+ "<|14.18|>",
1428
+ "<|14.19|>",
1429
+ "<|14.20|>",
1430
+ "<|14.21|>",
1431
+ "<|14.22|>",
1432
+ "<|14.23|>",
1433
+ "<|14.24|>",
1434
+ "<|14.25|>",
1435
+ "<|14.26|>",
1436
+ "<|14.27|>",
1437
+ "<|14.28|>",
1438
+ "<|14.29|>",
1439
+ "<|14.30|>",
1440
+ "<|14.31|>",
1441
+ "<|14.32|>",
1442
+ "<|14.33|>",
1443
+ "<|14.34|>",
1444
+ "<|14.35|>",
1445
+ "<|14.36|>",
1446
+ "<|14.37|>",
1447
+ "<|14.38|>",
1448
+ "<|14.39|>",
1449
+ "<|14.40|>",
1450
+ "<|14.41|>",
1451
+ "<|14.42|>",
1452
+ "<|14.43|>",
1453
+ "<|14.44|>",
1454
+ "<|14.45|>",
1455
+ "<|14.46|>",
1456
+ "<|14.47|>",
1457
+ "<|14.48|>",
1458
+ "<|14.49|>",
1459
+ "<|14.50|>",
1460
+ "<|14.51|>",
1461
+ "<|14.52|>",
1462
+ "<|14.53|>",
1463
+ "<|14.54|>",
1464
+ "<|14.55|>",
1465
+ "<|14.56|>",
1466
+ "<|14.57|>",
1467
+ "<|14.58|>",
1468
+ "<|14.59|>",
1469
+ "<|14.60|>",
1470
+ "<|14.61|>",
1471
+ "<|14.62|>",
1472
+ "<|14.63|>",
1473
+ "<|14.64|>",
1474
+ "<|14.65|>",
1475
+ "<|14.66|>",
1476
+ "<|14.67|>",
1477
+ "<|14.68|>",
1478
+ "<|14.69|>",
1479
+ "<|14.70|>",
1480
+ "<|14.71|>",
1481
+ "<|14.72|>",
1482
+ "<|14.73|>",
1483
+ "<|14.74|>",
1484
+ "<|14.75|>",
1485
+ "<|14.76|>",
1486
+ "<|14.77|>",
1487
+ "<|14.78|>",
1488
+ "<|14.79|>",
1489
+ "<|14.80|>",
1490
+ "<|14.81|>",
1491
+ "<|14.82|>",
1492
+ "<|14.83|>",
1493
+ "<|14.84|>",
1494
+ "<|14.85|>",
1495
+ "<|14.86|>",
1496
+ "<|14.87|>",
1497
+ "<|14.88|>",
1498
+ "<|14.89|>",
1499
+ "<|14.90|>",
1500
+ "<|14.91|>",
1501
+ "<|14.92|>",
1502
+ "<|14.93|>",
1503
+ "<|14.94|>",
1504
+ "<|14.95|>",
1505
+ "<|14.96|>",
1506
+ "<|14.97|>",
1507
+ "<|14.98|>",
1508
+ "<|14.99|>",
1509
+ "<|15.00|>",
1510
+ "<|15.01|>",
1511
+ "<|15.02|>",
1512
+ "<|15.03|>",
1513
+ "<|15.04|>",
1514
+ "<|15.05|>",
1515
+ "<|15.06|>",
1516
+ "<|15.07|>",
1517
+ "<|15.08|>",
1518
+ "<|15.09|>",
1519
+ "<|15.10|>",
1520
+ "<|15.11|>",
1521
+ "<|15.12|>",
1522
+ "<|15.13|>",
1523
+ "<|15.14|>",
1524
+ "<|15.15|>",
1525
+ "<|15.16|>",
1526
+ "<|15.17|>",
1527
+ "<|15.18|>",
1528
+ "<|15.19|>",
1529
+ "<|15.20|>",
1530
+ "<|15.21|>",
1531
+ "<|15.22|>",
1532
+ "<|15.23|>",
1533
+ "<|15.24|>",
1534
+ "<|15.25|>",
1535
+ "<|15.26|>",
1536
+ "<|15.27|>",
1537
+ "<|15.28|>",
1538
+ "<|15.29|>",
1539
+ "<|15.30|>",
1540
+ "<|15.31|>",
1541
+ "<|15.32|>",
1542
+ "<|15.33|>",
1543
+ "<|15.34|>",
1544
+ "<|15.35|>",
1545
+ "<|15.36|>",
1546
+ "<|15.37|>",
1547
+ "<|15.38|>",
1548
+ "<|15.39|>",
1549
+ "<|15.40|>",
1550
+ "<|15.41|>",
1551
+ "<|15.42|>",
1552
+ "<|15.43|>",
1553
+ "<|15.44|>",
1554
+ "<|15.45|>",
1555
+ "<|15.46|>",
1556
+ "<|15.47|>",
1557
+ "<|15.48|>",
1558
+ "<|15.49|>",
1559
+ "<|15.50|>",
1560
+ "<|15.51|>",
1561
+ "<|15.52|>",
1562
+ "<|15.53|>",
1563
+ "<|15.54|>",
1564
+ "<|15.55|>",
1565
+ "<|15.56|>",
1566
+ "<|15.57|>",
1567
+ "<|15.58|>",
1568
+ "<|15.59|>",
1569
+ "<|15.60|>",
1570
+ "<|15.61|>",
1571
+ "<|15.62|>",
1572
+ "<|15.63|>",
1573
+ "<|15.64|>",
1574
+ "<|15.65|>",
1575
+ "<|15.66|>",
1576
+ "<|15.67|>",
1577
+ "<|15.68|>",
1578
+ "<|15.69|>",
1579
+ "<|15.70|>",
1580
+ "<|15.71|>",
1581
+ "<|15.72|>",
1582
+ "<|15.73|>",
1583
+ "<|15.74|>",
1584
+ "<|15.75|>",
1585
+ "<|15.76|>",
1586
+ "<|15.77|>",
1587
+ "<|15.78|>",
1588
+ "<|15.79|>",
1589
+ "<|15.80|>",
1590
+ "<|15.81|>",
1591
+ "<|15.82|>",
1592
+ "<|15.83|>",
1593
+ "<|15.84|>",
1594
+ "<|15.85|>",
1595
+ "<|15.86|>",
1596
+ "<|15.87|>",
1597
+ "<|15.88|>",
1598
+ "<|15.89|>",
1599
+ "<|15.90|>",
1600
+ "<|15.91|>",
1601
+ "<|15.92|>",
1602
+ "<|15.93|>",
1603
+ "<|15.94|>",
1604
+ "<|15.95|>",
1605
+ "<|15.96|>",
1606
+ "<|15.97|>",
1607
+ "<|15.98|>",
1608
+ "<|15.99|>",
1609
+ "<|16.00|>",
1610
+ "<|16.01|>",
1611
+ "<|16.02|>",
1612
+ "<|16.03|>",
1613
+ "<|16.04|>",
1614
+ "<|16.05|>",
1615
+ "<|16.06|>",
1616
+ "<|16.07|>",
1617
+ "<|16.08|>",
1618
+ "<|16.09|>",
1619
+ "<|16.10|>",
1620
+ "<|16.11|>",
1621
+ "<|16.12|>",
1622
+ "<|16.13|>",
1623
+ "<|16.14|>",
1624
+ "<|16.15|>",
1625
+ "<|16.16|>",
1626
+ "<|16.17|>",
1627
+ "<|16.18|>",
1628
+ "<|16.19|>",
1629
+ "<|16.20|>",
1630
+ "<|16.21|>",
1631
+ "<|16.22|>",
1632
+ "<|16.23|>",
1633
+ "<|16.24|>",
1634
+ "<|16.25|>",
1635
+ "<|16.26|>",
1636
+ "<|16.27|>",
1637
+ "<|16.28|>",
1638
+ "<|16.29|>",
1639
+ "<|16.30|>",
1640
+ "<|16.31|>",
1641
+ "<|16.32|>",
1642
+ "<|16.33|>",
1643
+ "<|16.34|>",
1644
+ "<|16.35|>",
1645
+ "<|16.36|>",
1646
+ "<|16.37|>",
1647
+ "<|16.38|>",
1648
+ "<|16.39|>",
1649
+ "<|16.40|>",
1650
+ "<|16.41|>",
1651
+ "<|16.42|>",
1652
+ "<|16.43|>",
1653
+ "<|16.44|>",
1654
+ "<|16.45|>",
1655
+ "<|16.46|>",
1656
+ "<|16.47|>",
1657
+ "<|16.48|>",
1658
+ "<|16.49|>",
1659
+ "<|16.50|>",
1660
+ "<|16.51|>",
1661
+ "<|16.52|>",
1662
+ "<|16.53|>",
1663
+ "<|16.54|>",
1664
+ "<|16.55|>",
1665
+ "<|16.56|>",
1666
+ "<|16.57|>",
1667
+ "<|16.58|>",
1668
+ "<|16.59|>",
1669
+ "<|16.60|>",
1670
+ "<|16.61|>",
1671
+ "<|16.62|>",
1672
+ "<|16.63|>",
1673
+ "<|16.64|>",
1674
+ "<|16.65|>",
1675
+ "<|16.66|>",
1676
+ "<|16.67|>",
1677
+ "<|16.68|>",
1678
+ "<|16.69|>",
1679
+ "<|16.70|>",
1680
+ "<|16.71|>",
1681
+ "<|16.72|>",
1682
+ "<|16.73|>",
1683
+ "<|16.74|>",
1684
+ "<|16.75|>",
1685
+ "<|16.76|>",
1686
+ "<|16.77|>",
1687
+ "<|16.78|>",
1688
+ "<|16.79|>",
1689
+ "<|16.80|>",
1690
+ "<|16.81|>",
1691
+ "<|16.82|>",
1692
+ "<|16.83|>",
1693
+ "<|16.84|>",
1694
+ "<|16.85|>",
1695
+ "<|16.86|>",
1696
+ "<|16.87|>",
1697
+ "<|16.88|>",
1698
+ "<|16.89|>",
1699
+ "<|16.90|>",
1700
+ "<|16.91|>",
1701
+ "<|16.92|>",
1702
+ "<|16.93|>",
1703
+ "<|16.94|>",
1704
+ "<|16.95|>",
1705
+ "<|16.96|>",
1706
+ "<|16.97|>",
1707
+ "<|16.98|>",
1708
+ "<|16.99|>",
1709
+ "<|17.00|>",
1710
+ "<|17.01|>",
1711
+ "<|17.02|>",
1712
+ "<|17.03|>",
1713
+ "<|17.04|>",
1714
+ "<|17.05|>",
1715
+ "<|17.06|>",
1716
+ "<|17.07|>",
1717
+ "<|17.08|>",
1718
+ "<|17.09|>",
1719
+ "<|17.10|>",
1720
+ "<|17.11|>",
1721
+ "<|17.12|>",
1722
+ "<|17.13|>",
1723
+ "<|17.14|>",
1724
+ "<|17.15|>",
1725
+ "<|17.16|>",
1726
+ "<|17.17|>",
1727
+ "<|17.18|>",
1728
+ "<|17.19|>",
1729
+ "<|17.20|>",
1730
+ "<|17.21|>",
1731
+ "<|17.22|>",
1732
+ "<|17.23|>",
1733
+ "<|17.24|>",
1734
+ "<|17.25|>",
1735
+ "<|17.26|>",
1736
+ "<|17.27|>",
1737
+ "<|17.28|>",
1738
+ "<|17.29|>",
1739
+ "<|17.30|>",
1740
+ "<|17.31|>",
1741
+ "<|17.32|>",
1742
+ "<|17.33|>",
1743
+ "<|17.34|>",
1744
+ "<|17.35|>",
1745
+ "<|17.36|>",
1746
+ "<|17.37|>",
1747
+ "<|17.38|>",
1748
+ "<|17.39|>",
1749
+ "<|17.40|>",
1750
+ "<|17.41|>",
1751
+ "<|17.42|>",
1752
+ "<|17.43|>",
1753
+ "<|17.44|>",
1754
+ "<|17.45|>",
1755
+ "<|17.46|>",
1756
+ "<|17.47|>",
1757
+ "<|17.48|>",
1758
+ "<|17.49|>",
1759
+ "<|17.50|>",
1760
+ "<|17.51|>",
1761
+ "<|17.52|>",
1762
+ "<|17.53|>",
1763
+ "<|17.54|>",
1764
+ "<|17.55|>",
1765
+ "<|17.56|>",
1766
+ "<|17.57|>",
1767
+ "<|17.58|>",
1768
+ "<|17.59|>",
1769
+ "<|17.60|>",
1770
+ "<|17.61|>",
1771
+ "<|17.62|>",
1772
+ "<|17.63|>",
1773
+ "<|17.64|>",
1774
+ "<|17.65|>",
1775
+ "<|17.66|>",
1776
+ "<|17.67|>",
1777
+ "<|17.68|>",
1778
+ "<|17.69|>",
1779
+ "<|17.70|>",
1780
+ "<|17.71|>",
1781
+ "<|17.72|>",
1782
+ "<|17.73|>",
1783
+ "<|17.74|>",
1784
+ "<|17.75|>",
1785
+ "<|17.76|>",
1786
+ "<|17.77|>",
1787
+ "<|17.78|>",
1788
+ "<|17.79|>",
1789
+ "<|17.80|>",
1790
+ "<|17.81|>",
1791
+ "<|17.82|>",
1792
+ "<|17.83|>",
1793
+ "<|17.84|>",
1794
+ "<|17.85|>",
1795
+ "<|17.86|>",
1796
+ "<|17.87|>",
1797
+ "<|17.88|>",
1798
+ "<|17.89|>",
1799
+ "<|17.90|>",
1800
+ "<|17.91|>",
1801
+ "<|17.92|>",
1802
+ "<|17.93|>",
1803
+ "<|17.94|>",
1804
+ "<|17.95|>",
1805
+ "<|17.96|>",
1806
+ "<|17.97|>",
1807
+ "<|17.98|>",
1808
+ "<|17.99|>",
1809
+ "<|18.00|>",
1810
+ "<|18.01|>",
1811
+ "<|18.02|>",
1812
+ "<|18.03|>",
1813
+ "<|18.04|>",
1814
+ "<|18.05|>",
1815
+ "<|18.06|>",
1816
+ "<|18.07|>",
1817
+ "<|18.08|>",
1818
+ "<|18.09|>",
1819
+ "<|18.10|>",
1820
+ "<|18.11|>",
1821
+ "<|18.12|>",
1822
+ "<|18.13|>",
1823
+ "<|18.14|>",
1824
+ "<|18.15|>",
1825
+ "<|18.16|>",
1826
+ "<|18.17|>",
1827
+ "<|18.18|>",
1828
+ "<|18.19|>",
1829
+ "<|18.20|>",
1830
+ "<|18.21|>",
1831
+ "<|18.22|>",
1832
+ "<|18.23|>",
1833
+ "<|18.24|>",
1834
+ "<|18.25|>",
1835
+ "<|18.26|>",
1836
+ "<|18.27|>",
1837
+ "<|18.28|>",
1838
+ "<|18.29|>",
1839
+ "<|18.30|>",
1840
+ "<|18.31|>",
1841
+ "<|18.32|>",
1842
+ "<|18.33|>",
1843
+ "<|18.34|>",
1844
+ "<|18.35|>",
1845
+ "<|18.36|>",
1846
+ "<|18.37|>",
1847
+ "<|18.38|>",
1848
+ "<|18.39|>",
1849
+ "<|18.40|>",
1850
+ "<|18.41|>",
1851
+ "<|18.42|>",
1852
+ "<|18.43|>",
1853
+ "<|18.44|>",
1854
+ "<|18.45|>",
1855
+ "<|18.46|>",
1856
+ "<|18.47|>",
1857
+ "<|18.48|>",
1858
+ "<|18.49|>",
1859
+ "<|18.50|>",
1860
+ "<|18.51|>",
1861
+ "<|18.52|>",
1862
+ "<|18.53|>",
1863
+ "<|18.54|>",
1864
+ "<|18.55|>",
1865
+ "<|18.56|>",
1866
+ "<|18.57|>",
1867
+ "<|18.58|>",
1868
+ "<|18.59|>",
1869
+ "<|18.60|>",
1870
+ "<|18.61|>",
1871
+ "<|18.62|>",
1872
+ "<|18.63|>",
1873
+ "<|18.64|>",
1874
+ "<|18.65|>",
1875
+ "<|18.66|>",
1876
+ "<|18.67|>",
1877
+ "<|18.68|>",
1878
+ "<|18.69|>",
1879
+ "<|18.70|>",
1880
+ "<|18.71|>",
1881
+ "<|18.72|>",
1882
+ "<|18.73|>",
1883
+ "<|18.74|>",
1884
+ "<|18.75|>",
1885
+ "<|18.76|>",
1886
+ "<|18.77|>",
1887
+ "<|18.78|>",
1888
+ "<|18.79|>",
1889
+ "<|18.80|>",
1890
+ "<|18.81|>",
1891
+ "<|18.82|>",
1892
+ "<|18.83|>",
1893
+ "<|18.84|>",
1894
+ "<|18.85|>",
1895
+ "<|18.86|>",
1896
+ "<|18.87|>",
1897
+ "<|18.88|>",
1898
+ "<|18.89|>",
1899
+ "<|18.90|>",
1900
+ "<|18.91|>",
1901
+ "<|18.92|>",
1902
+ "<|18.93|>",
1903
+ "<|18.94|>",
1904
+ "<|18.95|>",
1905
+ "<|18.96|>",
1906
+ "<|18.97|>",
1907
+ "<|18.98|>",
1908
+ "<|18.99|>",
1909
+ "<|19.00|>",
1910
+ "<|19.01|>",
1911
+ "<|19.02|>",
1912
+ "<|19.03|>",
1913
+ "<|19.04|>",
1914
+ "<|19.05|>",
1915
+ "<|19.06|>",
1916
+ "<|19.07|>",
1917
+ "<|19.08|>",
1918
+ "<|19.09|>",
1919
+ "<|19.10|>",
1920
+ "<|19.11|>",
1921
+ "<|19.12|>",
1922
+ "<|19.13|>",
1923
+ "<|19.14|>",
1924
+ "<|19.15|>",
1925
+ "<|19.16|>",
1926
+ "<|19.17|>",
1927
+ "<|19.18|>",
1928
+ "<|19.19|>",
1929
+ "<|19.20|>",
1930
+ "<|19.21|>",
1931
+ "<|19.22|>",
1932
+ "<|19.23|>",
1933
+ "<|19.24|>",
1934
+ "<|19.25|>",
1935
+ "<|19.26|>",
1936
+ "<|19.27|>",
1937
+ "<|19.28|>",
1938
+ "<|19.29|>",
1939
+ "<|19.30|>",
1940
+ "<|19.31|>",
1941
+ "<|19.32|>",
1942
+ "<|19.33|>",
1943
+ "<|19.34|>",
1944
+ "<|19.35|>",
1945
+ "<|19.36|>",
1946
+ "<|19.37|>",
1947
+ "<|19.38|>",
1948
+ "<|19.39|>",
1949
+ "<|19.40|>",
1950
+ "<|19.41|>",
1951
+ "<|19.42|>",
1952
+ "<|19.43|>",
1953
+ "<|19.44|>",
1954
+ "<|19.45|>",
1955
+ "<|19.46|>",
1956
+ "<|19.47|>",
1957
+ "<|19.48|>",
1958
+ "<|19.49|>",
1959
+ "<|19.50|>",
1960
+ "<|19.51|>",
1961
+ "<|19.52|>",
1962
+ "<|19.53|>",
1963
+ "<|19.54|>",
1964
+ "<|19.55|>",
1965
+ "<|19.56|>",
1966
+ "<|19.57|>",
1967
+ "<|19.58|>",
1968
+ "<|19.59|>",
1969
+ "<|19.60|>",
1970
+ "<|19.61|>",
1971
+ "<|19.62|>",
1972
+ "<|19.63|>",
1973
+ "<|19.64|>",
1974
+ "<|19.65|>",
1975
+ "<|19.66|>",
1976
+ "<|19.67|>",
1977
+ "<|19.68|>",
1978
+ "<|19.69|>",
1979
+ "<|19.70|>",
1980
+ "<|19.71|>",
1981
+ "<|19.72|>",
1982
+ "<|19.73|>",
1983
+ "<|19.74|>",
1984
+ "<|19.75|>",
1985
+ "<|19.76|>",
1986
+ "<|19.77|>",
1987
+ "<|19.78|>",
1988
+ "<|19.79|>",
1989
+ "<|19.80|>",
1990
+ "<|19.81|>",
1991
+ "<|19.82|>",
1992
+ "<|19.83|>",
1993
+ "<|19.84|>",
1994
+ "<|19.85|>",
1995
+ "<|19.86|>",
1996
+ "<|19.87|>",
1997
+ "<|19.88|>",
1998
+ "<|19.89|>",
1999
+ "<|19.90|>",
2000
+ "<|19.91|>",
2001
+ "<|19.92|>",
2002
+ "<|19.93|>",
2003
+ "<|19.94|>",
2004
+ "<|19.95|>",
2005
+ "<|19.96|>",
2006
+ "<|19.97|>",
2007
+ "<|19.98|>",
2008
+ "<|19.99|>",
2009
+ "<|20.00|>",
2010
+ "<|20.01|>",
2011
+ "<|20.02|>",
2012
+ "<|20.03|>",
2013
+ "<|20.04|>",
2014
+ "<|20.05|>",
2015
+ "<|20.06|>",
2016
+ "<|20.07|>",
2017
+ "<|20.08|>",
2018
+ "<|20.09|>",
2019
+ "<|20.10|>",
2020
+ "<|20.11|>",
2021
+ "<|20.12|>",
2022
+ "<|20.13|>",
2023
+ "<|20.14|>",
2024
+ "<|20.15|>",
2025
+ "<|20.16|>",
2026
+ "<|20.17|>",
2027
+ "<|20.18|>",
2028
+ "<|20.19|>",
2029
+ "<|20.20|>",
2030
+ "<|20.21|>",
2031
+ "<|20.22|>",
2032
+ "<|20.23|>",
2033
+ "<|20.24|>",
2034
+ "<|20.25|>",
2035
+ "<|20.26|>",
2036
+ "<|20.27|>",
2037
+ "<|20.28|>",
2038
+ "<|20.29|>",
2039
+ "<|20.30|>",
2040
+ "<|20.31|>",
2041
+ "<|20.32|>",
2042
+ "<|20.33|>",
2043
+ "<|20.34|>",
2044
+ "<|20.35|>",
2045
+ "<|20.36|>",
2046
+ "<|20.37|>",
2047
+ "<|20.38|>",
2048
+ "<|20.39|>",
2049
+ "<|20.40|>",
2050
+ "<|20.41|>",
2051
+ "<|20.42|>",
2052
+ "<|20.43|>",
2053
+ "<|20.44|>",
2054
+ "<|20.45|>",
2055
+ "<|20.46|>",
2056
+ "<|20.47|>",
2057
+ "<|20.48|>",
2058
+ "<|20.49|>",
2059
+ "<|20.50|>",
2060
+ "<|20.51|>",
2061
+ "<|20.52|>",
2062
+ "<|20.53|>",
2063
+ "<|20.54|>",
2064
+ "<|20.55|>",
2065
+ "<|20.56|>",
2066
+ "<|20.57|>",
2067
+ "<|20.58|>",
2068
+ "<|20.59|>",
2069
+ "<|20.60|>",
2070
+ "<|20.61|>",
2071
+ "<|20.62|>",
2072
+ "<|20.63|>",
2073
+ "<|20.64|>",
2074
+ "<|20.65|>",
2075
+ "<|20.66|>",
2076
+ "<|20.67|>",
2077
+ "<|20.68|>",
2078
+ "<|20.69|>",
2079
+ "<|20.70|>",
2080
+ "<|20.71|>",
2081
+ "<|20.72|>",
2082
+ "<|20.73|>",
2083
+ "<|20.74|>",
2084
+ "<|20.75|>",
2085
+ "<|20.76|>",
2086
+ "<|20.77|>",
2087
+ "<|20.78|>",
2088
+ "<|20.79|>",
2089
+ "<|20.80|>",
2090
+ "<|20.81|>",
2091
+ "<|20.82|>",
2092
+ "<|20.83|>",
2093
+ "<|20.84|>",
2094
+ "<|20.85|>",
2095
+ "<|20.86|>",
2096
+ "<|20.87|>",
2097
+ "<|20.88|>",
2098
+ "<|20.89|>",
2099
+ "<|20.90|>",
2100
+ "<|20.91|>",
2101
+ "<|20.92|>",
2102
+ "<|20.93|>",
2103
+ "<|20.94|>",
2104
+ "<|20.95|>",
2105
+ "<|20.96|>",
2106
+ "<|20.97|>",
2107
+ "<|20.98|>",
2108
+ "<|20.99|>",
2109
+ "<|21.00|>",
2110
+ "<|21.01|>",
2111
+ "<|21.02|>",
2112
+ "<|21.03|>",
2113
+ "<|21.04|>",
2114
+ "<|21.05|>",
2115
+ "<|21.06|>",
2116
+ "<|21.07|>",
2117
+ "<|21.08|>",
2118
+ "<|21.09|>",
2119
+ "<|21.10|>",
2120
+ "<|21.11|>",
2121
+ "<|21.12|>",
2122
+ "<|21.13|>",
2123
+ "<|21.14|>",
2124
+ "<|21.15|>",
2125
+ "<|21.16|>",
2126
+ "<|21.17|>",
2127
+ "<|21.18|>",
2128
+ "<|21.19|>",
2129
+ "<|21.20|>",
2130
+ "<|21.21|>",
2131
+ "<|21.22|>",
2132
+ "<|21.23|>",
2133
+ "<|21.24|>",
2134
+ "<|21.25|>",
2135
+ "<|21.26|>",
2136
+ "<|21.27|>",
2137
+ "<|21.28|>",
2138
+ "<|21.29|>",
2139
+ "<|21.30|>",
2140
+ "<|21.31|>",
2141
+ "<|21.32|>",
2142
+ "<|21.33|>",
2143
+ "<|21.34|>",
2144
+ "<|21.35|>",
2145
+ "<|21.36|>",
2146
+ "<|21.37|>",
2147
+ "<|21.38|>",
2148
+ "<|21.39|>",
2149
+ "<|21.40|>",
2150
+ "<|21.41|>",
2151
+ "<|21.42|>",
2152
+ "<|21.43|>",
2153
+ "<|21.44|>",
2154
+ "<|21.45|>",
2155
+ "<|21.46|>",
2156
+ "<|21.47|>",
2157
+ "<|21.48|>",
2158
+ "<|21.49|>",
2159
+ "<|21.50|>",
2160
+ "<|21.51|>",
2161
+ "<|21.52|>",
2162
+ "<|21.53|>",
2163
+ "<|21.54|>",
2164
+ "<|21.55|>",
2165
+ "<|21.56|>",
2166
+ "<|21.57|>",
2167
+ "<|21.58|>",
2168
+ "<|21.59|>",
2169
+ "<|21.60|>",
2170
+ "<|21.61|>",
2171
+ "<|21.62|>",
2172
+ "<|21.63|>",
2173
+ "<|21.64|>",
2174
+ "<|21.65|>",
2175
+ "<|21.66|>",
2176
+ "<|21.67|>",
2177
+ "<|21.68|>",
2178
+ "<|21.69|>",
2179
+ "<|21.70|>",
2180
+ "<|21.71|>",
2181
+ "<|21.72|>",
2182
+ "<|21.73|>",
2183
+ "<|21.74|>",
2184
+ "<|21.75|>",
2185
+ "<|21.76|>",
2186
+ "<|21.77|>",
2187
+ "<|21.78|>",
2188
+ "<|21.79|>",
2189
+ "<|21.80|>",
2190
+ "<|21.81|>",
2191
+ "<|21.82|>",
2192
+ "<|21.83|>",
2193
+ "<|21.84|>",
2194
+ "<|21.85|>",
2195
+ "<|21.86|>",
2196
+ "<|21.87|>",
2197
+ "<|21.88|>",
2198
+ "<|21.89|>",
2199
+ "<|21.90|>",
2200
+ "<|21.91|>",
2201
+ "<|21.92|>",
2202
+ "<|21.93|>",
2203
+ "<|21.94|>",
2204
+ "<|21.95|>",
2205
+ "<|21.96|>",
2206
+ "<|21.97|>",
2207
+ "<|21.98|>",
2208
+ "<|21.99|>",
2209
+ "<|22.00|>",
2210
+ "<|22.01|>",
2211
+ "<|22.02|>",
2212
+ "<|22.03|>",
2213
+ "<|22.04|>",
2214
+ "<|22.05|>",
2215
+ "<|22.06|>",
2216
+ "<|22.07|>",
2217
+ "<|22.08|>",
2218
+ "<|22.09|>",
2219
+ "<|22.10|>",
2220
+ "<|22.11|>",
2221
+ "<|22.12|>",
2222
+ "<|22.13|>",
2223
+ "<|22.14|>",
2224
+ "<|22.15|>",
2225
+ "<|22.16|>",
2226
+ "<|22.17|>",
2227
+ "<|22.18|>",
2228
+ "<|22.19|>",
2229
+ "<|22.20|>",
2230
+ "<|22.21|>",
2231
+ "<|22.22|>",
2232
+ "<|22.23|>",
2233
+ "<|22.24|>",
2234
+ "<|22.25|>",
2235
+ "<|22.26|>",
2236
+ "<|22.27|>",
2237
+ "<|22.28|>",
2238
+ "<|22.29|>",
2239
+ "<|22.30|>",
2240
+ "<|22.31|>",
2241
+ "<|22.32|>",
2242
+ "<|22.33|>",
2243
+ "<|22.34|>",
2244
+ "<|22.35|>",
2245
+ "<|22.36|>",
2246
+ "<|22.37|>",
2247
+ "<|22.38|>",
2248
+ "<|22.39|>",
2249
+ "<|22.40|>",
2250
+ "<|22.41|>",
2251
+ "<|22.42|>",
2252
+ "<|22.43|>",
2253
+ "<|22.44|>",
2254
+ "<|22.45|>",
2255
+ "<|22.46|>",
2256
+ "<|22.47|>",
2257
+ "<|22.48|>",
2258
+ "<|22.49|>",
2259
+ "<|22.50|>",
2260
+ "<|22.51|>",
2261
+ "<|22.52|>",
2262
+ "<|22.53|>",
2263
+ "<|22.54|>",
2264
+ "<|22.55|>",
2265
+ "<|22.56|>",
2266
+ "<|22.57|>",
2267
+ "<|22.58|>",
2268
+ "<|22.59|>",
2269
+ "<|22.60|>",
2270
+ "<|22.61|>",
2271
+ "<|22.62|>",
2272
+ "<|22.63|>",
2273
+ "<|22.64|>",
2274
+ "<|22.65|>",
2275
+ "<|22.66|>",
2276
+ "<|22.67|>",
2277
+ "<|22.68|>",
2278
+ "<|22.69|>",
2279
+ "<|22.70|>",
2280
+ "<|22.71|>",
2281
+ "<|22.72|>",
2282
+ "<|22.73|>",
2283
+ "<|22.74|>",
2284
+ "<|22.75|>",
2285
+ "<|22.76|>",
2286
+ "<|22.77|>",
2287
+ "<|22.78|>",
2288
+ "<|22.79|>",
2289
+ "<|22.80|>",
2290
+ "<|22.81|>",
2291
+ "<|22.82|>",
2292
+ "<|22.83|>",
2293
+ "<|22.84|>",
2294
+ "<|22.85|>",
2295
+ "<|22.86|>",
2296
+ "<|22.87|>",
2297
+ "<|22.88|>",
2298
+ "<|22.89|>",
2299
+ "<|22.90|>",
2300
+ "<|22.91|>",
2301
+ "<|22.92|>",
2302
+ "<|22.93|>",
2303
+ "<|22.94|>",
2304
+ "<|22.95|>",
2305
+ "<|22.96|>",
2306
+ "<|22.97|>",
2307
+ "<|22.98|>",
2308
+ "<|22.99|>",
2309
+ "<|23.00|>",
2310
+ "<|23.01|>",
2311
+ "<|23.02|>",
2312
+ "<|23.03|>",
2313
+ "<|23.04|>",
2314
+ "<|23.05|>",
2315
+ "<|23.06|>",
2316
+ "<|23.07|>",
2317
+ "<|23.08|>",
2318
+ "<|23.09|>",
2319
+ "<|23.10|>",
2320
+ "<|23.11|>",
2321
+ "<|23.12|>",
2322
+ "<|23.13|>",
2323
+ "<|23.14|>",
2324
+ "<|23.15|>",
2325
+ "<|23.16|>",
2326
+ "<|23.17|>",
2327
+ "<|23.18|>",
2328
+ "<|23.19|>",
2329
+ "<|23.20|>",
2330
+ "<|23.21|>",
2331
+ "<|23.22|>",
2332
+ "<|23.23|>",
2333
+ "<|23.24|>",
2334
+ "<|23.25|>",
2335
+ "<|23.26|>",
2336
+ "<|23.27|>",
2337
+ "<|23.28|>",
2338
+ "<|23.29|>",
2339
+ "<|23.30|>",
2340
+ "<|23.31|>",
2341
+ "<|23.32|>",
2342
+ "<|23.33|>",
2343
+ "<|23.34|>",
2344
+ "<|23.35|>",
2345
+ "<|23.36|>",
2346
+ "<|23.37|>",
2347
+ "<|23.38|>",
2348
+ "<|23.39|>",
2349
+ "<|23.40|>",
2350
+ "<|23.41|>",
2351
+ "<|23.42|>",
2352
+ "<|23.43|>",
2353
+ "<|23.44|>",
2354
+ "<|23.45|>",
2355
+ "<|23.46|>",
2356
+ "<|23.47|>",
2357
+ "<|23.48|>",
2358
+ "<|23.49|>",
2359
+ "<|23.50|>",
2360
+ "<|23.51|>",
2361
+ "<|23.52|>",
2362
+ "<|23.53|>",
2363
+ "<|23.54|>",
2364
+ "<|23.55|>",
2365
+ "<|23.56|>",
2366
+ "<|23.57|>",
2367
+ "<|23.58|>",
2368
+ "<|23.59|>",
2369
+ "<|23.60|>",
2370
+ "<|23.61|>",
2371
+ "<|23.62|>",
2372
+ "<|23.63|>",
2373
+ "<|23.64|>",
2374
+ "<|23.65|>",
2375
+ "<|23.66|>",
2376
+ "<|23.67|>",
2377
+ "<|23.68|>",
2378
+ "<|23.69|>",
2379
+ "<|23.70|>",
2380
+ "<|23.71|>",
2381
+ "<|23.72|>",
2382
+ "<|23.73|>",
2383
+ "<|23.74|>",
2384
+ "<|23.75|>",
2385
+ "<|23.76|>",
2386
+ "<|23.77|>",
2387
+ "<|23.78|>",
2388
+ "<|23.79|>",
2389
+ "<|23.80|>",
2390
+ "<|23.81|>",
2391
+ "<|23.82|>",
2392
+ "<|23.83|>",
2393
+ "<|23.84|>",
2394
+ "<|23.85|>",
2395
+ "<|23.86|>",
2396
+ "<|23.87|>",
2397
+ "<|23.88|>",
2398
+ "<|23.89|>",
2399
+ "<|23.90|>",
2400
+ "<|23.91|>",
2401
+ "<|23.92|>",
2402
+ "<|23.93|>",
2403
+ "<|23.94|>",
2404
+ "<|23.95|>",
2405
+ "<|23.96|>",
2406
+ "<|23.97|>",
2407
+ "<|23.98|>",
2408
+ "<|23.99|>",
2409
+ "<|24.00|>",
2410
+ "<|24.01|>",
2411
+ "<|24.02|>",
2412
+ "<|24.03|>",
2413
+ "<|24.04|>",
2414
+ "<|24.05|>",
2415
+ "<|24.06|>",
2416
+ "<|24.07|>",
2417
+ "<|24.08|>",
2418
+ "<|24.09|>",
2419
+ "<|24.10|>",
2420
+ "<|24.11|>",
2421
+ "<|24.12|>",
2422
+ "<|24.13|>",
2423
+ "<|24.14|>",
2424
+ "<|24.15|>",
2425
+ "<|24.16|>",
2426
+ "<|24.17|>",
2427
+ "<|24.18|>",
2428
+ "<|24.19|>",
2429
+ "<|24.20|>",
2430
+ "<|24.21|>",
2431
+ "<|24.22|>",
2432
+ "<|24.23|>",
2433
+ "<|24.24|>",
2434
+ "<|24.25|>",
2435
+ "<|24.26|>",
2436
+ "<|24.27|>",
2437
+ "<|24.28|>",
2438
+ "<|24.29|>",
2439
+ "<|24.30|>",
2440
+ "<|24.31|>",
2441
+ "<|24.32|>",
2442
+ "<|24.33|>",
2443
+ "<|24.34|>",
2444
+ "<|24.35|>",
2445
+ "<|24.36|>",
2446
+ "<|24.37|>",
2447
+ "<|24.38|>",
2448
+ "<|24.39|>",
2449
+ "<|24.40|>",
2450
+ "<|24.41|>",
2451
+ "<|24.42|>",
2452
+ "<|24.43|>",
2453
+ "<|24.44|>",
2454
+ "<|24.45|>",
2455
+ "<|24.46|>",
2456
+ "<|24.47|>",
2457
+ "<|24.48|>",
2458
+ "<|24.49|>",
2459
+ "<|24.50|>",
2460
+ "<|24.51|>",
2461
+ "<|24.52|>",
2462
+ "<|24.53|>",
2463
+ "<|24.54|>",
2464
+ "<|24.55|>",
2465
+ "<|24.56|>",
2466
+ "<|24.57|>",
2467
+ "<|24.58|>",
2468
+ "<|24.59|>",
2469
+ "<|24.60|>",
2470
+ "<|24.61|>",
2471
+ "<|24.62|>",
2472
+ "<|24.63|>",
2473
+ "<|24.64|>",
2474
+ "<|24.65|>",
2475
+ "<|24.66|>",
2476
+ "<|24.67|>",
2477
+ "<|24.68|>",
2478
+ "<|24.69|>",
2479
+ "<|24.70|>",
2480
+ "<|24.71|>",
2481
+ "<|24.72|>",
2482
+ "<|24.73|>",
2483
+ "<|24.74|>",
2484
+ "<|24.75|>",
2485
+ "<|24.76|>",
2486
+ "<|24.77|>",
2487
+ "<|24.78|>",
2488
+ "<|24.79|>",
2489
+ "<|24.80|>",
2490
+ "<|24.81|>",
2491
+ "<|24.82|>",
2492
+ "<|24.83|>",
2493
+ "<|24.84|>",
2494
+ "<|24.85|>",
2495
+ "<|24.86|>",
2496
+ "<|24.87|>",
2497
+ "<|24.88|>",
2498
+ "<|24.89|>",
2499
+ "<|24.90|>",
2500
+ "<|24.91|>",
2501
+ "<|24.92|>",
2502
+ "<|24.93|>",
2503
+ "<|24.94|>",
2504
+ "<|24.95|>",
2505
+ "<|24.96|>",
2506
+ "<|24.97|>",
2507
+ "<|24.98|>",
2508
+ "<|24.99|>",
2509
+ "<|25.00|>",
2510
+ "<|25.01|>",
2511
+ "<|25.02|>",
2512
+ "<|25.03|>",
2513
+ "<|25.04|>",
2514
+ "<|25.05|>",
2515
+ "<|25.06|>",
2516
+ "<|25.07|>",
2517
+ "<|25.08|>",
2518
+ "<|25.09|>",
2519
+ "<|25.10|>",
2520
+ "<|25.11|>",
2521
+ "<|25.12|>",
2522
+ "<|25.13|>",
2523
+ "<|25.14|>",
2524
+ "<|25.15|>",
2525
+ "<|25.16|>",
2526
+ "<|25.17|>",
2527
+ "<|25.18|>",
2528
+ "<|25.19|>",
2529
+ "<|25.20|>",
2530
+ "<|25.21|>",
2531
+ "<|25.22|>",
2532
+ "<|25.23|>",
2533
+ "<|25.24|>",
2534
+ "<|25.25|>",
2535
+ "<|25.26|>",
2536
+ "<|25.27|>",
2537
+ "<|25.28|>",
2538
+ "<|25.29|>",
2539
+ "<|25.30|>",
2540
+ "<|25.31|>",
2541
+ "<|25.32|>",
2542
+ "<|25.33|>",
2543
+ "<|25.34|>",
2544
+ "<|25.35|>",
2545
+ "<|25.36|>",
2546
+ "<|25.37|>",
2547
+ "<|25.38|>",
2548
+ "<|25.39|>",
2549
+ "<|25.40|>",
2550
+ "<|25.41|>",
2551
+ "<|25.42|>",
2552
+ "<|25.43|>",
2553
+ "<|25.44|>",
2554
+ "<|25.45|>",
2555
+ "<|25.46|>",
2556
+ "<|25.47|>",
2557
+ "<|25.48|>",
2558
+ "<|25.49|>",
2559
+ "<|25.50|>",
2560
+ "<|25.51|>",
2561
+ "<|25.52|>",
2562
+ "<|25.53|>",
2563
+ "<|25.54|>",
2564
+ "<|25.55|>",
2565
+ "<|25.56|>",
2566
+ "<|25.57|>",
2567
+ "<|25.58|>",
2568
+ "<|25.59|>",
2569
+ "<|25.60|>",
2570
+ "<|25.61|>",
2571
+ "<|25.62|>",
2572
+ "<|25.63|>",
2573
+ "<|25.64|>",
2574
+ "<|25.65|>",
2575
+ "<|25.66|>",
2576
+ "<|25.67|>",
2577
+ "<|25.68|>",
2578
+ "<|25.69|>",
2579
+ "<|25.70|>",
2580
+ "<|25.71|>",
2581
+ "<|25.72|>",
2582
+ "<|25.73|>",
2583
+ "<|25.74|>",
2584
+ "<|25.75|>",
2585
+ "<|25.76|>",
2586
+ "<|25.77|>",
2587
+ "<|25.78|>",
2588
+ "<|25.79|>",
2589
+ "<|25.80|>",
2590
+ "<|25.81|>",
2591
+ "<|25.82|>",
2592
+ "<|25.83|>",
2593
+ "<|25.84|>",
2594
+ "<|25.85|>",
2595
+ "<|25.86|>",
2596
+ "<|25.87|>",
2597
+ "<|25.88|>",
2598
+ "<|25.89|>",
2599
+ "<|25.90|>",
2600
+ "<|25.91|>",
2601
+ "<|25.92|>",
2602
+ "<|25.93|>",
2603
+ "<|25.94|>",
2604
+ "<|25.95|>",
2605
+ "<|25.96|>",
2606
+ "<|25.97|>",
2607
+ "<|25.98|>",
2608
+ "<|25.99|>",
2609
+ "<|26.00|>",
2610
+ "<|26.01|>",
2611
+ "<|26.02|>",
2612
+ "<|26.03|>",
2613
+ "<|26.04|>",
2614
+ "<|26.05|>",
2615
+ "<|26.06|>",
2616
+ "<|26.07|>",
2617
+ "<|26.08|>",
2618
+ "<|26.09|>",
2619
+ "<|26.10|>",
2620
+ "<|26.11|>",
2621
+ "<|26.12|>",
2622
+ "<|26.13|>",
2623
+ "<|26.14|>",
2624
+ "<|26.15|>",
2625
+ "<|26.16|>",
2626
+ "<|26.17|>",
2627
+ "<|26.18|>",
2628
+ "<|26.19|>",
2629
+ "<|26.20|>",
2630
+ "<|26.21|>",
2631
+ "<|26.22|>",
2632
+ "<|26.23|>",
2633
+ "<|26.24|>",
2634
+ "<|26.25|>",
2635
+ "<|26.26|>",
2636
+ "<|26.27|>",
2637
+ "<|26.28|>",
2638
+ "<|26.29|>",
2639
+ "<|26.30|>",
2640
+ "<|26.31|>",
2641
+ "<|26.32|>",
2642
+ "<|26.33|>",
2643
+ "<|26.34|>",
2644
+ "<|26.35|>",
2645
+ "<|26.36|>",
2646
+ "<|26.37|>",
2647
+ "<|26.38|>",
2648
+ "<|26.39|>",
2649
+ "<|26.40|>",
2650
+ "<|26.41|>",
2651
+ "<|26.42|>",
2652
+ "<|26.43|>",
2653
+ "<|26.44|>",
2654
+ "<|26.45|>",
2655
+ "<|26.46|>",
2656
+ "<|26.47|>",
2657
+ "<|26.48|>",
2658
+ "<|26.49|>",
2659
+ "<|26.50|>",
2660
+ "<|26.51|>",
2661
+ "<|26.52|>",
2662
+ "<|26.53|>",
2663
+ "<|26.54|>",
2664
+ "<|26.55|>",
2665
+ "<|26.56|>",
2666
+ "<|26.57|>",
2667
+ "<|26.58|>",
2668
+ "<|26.59|>",
2669
+ "<|26.60|>",
2670
+ "<|26.61|>",
2671
+ "<|26.62|>",
2672
+ "<|26.63|>",
2673
+ "<|26.64|>",
2674
+ "<|26.65|>",
2675
+ "<|26.66|>",
2676
+ "<|26.67|>",
2677
+ "<|26.68|>",
2678
+ "<|26.69|>",
2679
+ "<|26.70|>",
2680
+ "<|26.71|>",
2681
+ "<|26.72|>",
2682
+ "<|26.73|>",
2683
+ "<|26.74|>",
2684
+ "<|26.75|>",
2685
+ "<|26.76|>",
2686
+ "<|26.77|>",
2687
+ "<|26.78|>",
2688
+ "<|26.79|>",
2689
+ "<|26.80|>",
2690
+ "<|26.81|>",
2691
+ "<|26.82|>",
2692
+ "<|26.83|>",
2693
+ "<|26.84|>",
2694
+ "<|26.85|>",
2695
+ "<|26.86|>",
2696
+ "<|26.87|>",
2697
+ "<|26.88|>",
2698
+ "<|26.89|>",
2699
+ "<|26.90|>",
2700
+ "<|26.91|>",
2701
+ "<|26.92|>",
2702
+ "<|26.93|>",
2703
+ "<|26.94|>",
2704
+ "<|26.95|>",
2705
+ "<|26.96|>",
2706
+ "<|26.97|>",
2707
+ "<|26.98|>",
2708
+ "<|26.99|>",
2709
+ "<|27.00|>",
2710
+ "<|27.01|>",
2711
+ "<|27.02|>",
2712
+ "<|27.03|>",
2713
+ "<|27.04|>",
2714
+ "<|27.05|>",
2715
+ "<|27.06|>",
2716
+ "<|27.07|>",
2717
+ "<|27.08|>",
2718
+ "<|27.09|>",
2719
+ "<|27.10|>",
2720
+ "<|27.11|>",
2721
+ "<|27.12|>",
2722
+ "<|27.13|>",
2723
+ "<|27.14|>",
2724
+ "<|27.15|>",
2725
+ "<|27.16|>",
2726
+ "<|27.17|>",
2727
+ "<|27.18|>",
2728
+ "<|27.19|>",
2729
+ "<|27.20|>",
2730
+ "<|27.21|>",
2731
+ "<|27.22|>",
2732
+ "<|27.23|>",
2733
+ "<|27.24|>",
2734
+ "<|27.25|>",
2735
+ "<|27.26|>",
2736
+ "<|27.27|>",
2737
+ "<|27.28|>",
2738
+ "<|27.29|>",
2739
+ "<|27.30|>",
2740
+ "<|27.31|>",
2741
+ "<|27.32|>",
2742
+ "<|27.33|>",
2743
+ "<|27.34|>",
2744
+ "<|27.35|>",
2745
+ "<|27.36|>",
2746
+ "<|27.37|>",
2747
+ "<|27.38|>",
2748
+ "<|27.39|>",
2749
+ "<|27.40|>",
2750
+ "<|27.41|>",
2751
+ "<|27.42|>",
2752
+ "<|27.43|>",
2753
+ "<|27.44|>",
2754
+ "<|27.45|>",
2755
+ "<|27.46|>",
2756
+ "<|27.47|>",
2757
+ "<|27.48|>",
2758
+ "<|27.49|>",
2759
+ "<|27.50|>",
2760
+ "<|27.51|>",
2761
+ "<|27.52|>",
2762
+ "<|27.53|>",
2763
+ "<|27.54|>",
2764
+ "<|27.55|>",
2765
+ "<|27.56|>",
2766
+ "<|27.57|>",
2767
+ "<|27.58|>",
2768
+ "<|27.59|>",
2769
+ "<|27.60|>",
2770
+ "<|27.61|>",
2771
+ "<|27.62|>",
2772
+ "<|27.63|>",
2773
+ "<|27.64|>",
2774
+ "<|27.65|>",
2775
+ "<|27.66|>",
2776
+ "<|27.67|>",
2777
+ "<|27.68|>",
2778
+ "<|27.69|>",
2779
+ "<|27.70|>",
2780
+ "<|27.71|>",
2781
+ "<|27.72|>",
2782
+ "<|27.73|>",
2783
+ "<|27.74|>",
2784
+ "<|27.75|>",
2785
+ "<|27.76|>",
2786
+ "<|27.77|>",
2787
+ "<|27.78|>",
2788
+ "<|27.79|>",
2789
+ "<|27.80|>",
2790
+ "<|27.81|>",
2791
+ "<|27.82|>",
2792
+ "<|27.83|>",
2793
+ "<|27.84|>",
2794
+ "<|27.85|>",
2795
+ "<|27.86|>",
2796
+ "<|27.87|>",
2797
+ "<|27.88|>",
2798
+ "<|27.89|>",
2799
+ "<|27.90|>",
2800
+ "<|27.91|>",
2801
+ "<|27.92|>",
2802
+ "<|27.93|>",
2803
+ "<|27.94|>",
2804
+ "<|27.95|>",
2805
+ "<|27.96|>",
2806
+ "<|27.97|>",
2807
+ "<|27.98|>",
2808
+ "<|27.99|>",
2809
+ "<|28.00|>",
2810
+ "<|28.01|>",
2811
+ "<|28.02|>",
2812
+ "<|28.03|>",
2813
+ "<|28.04|>",
2814
+ "<|28.05|>",
2815
+ "<|28.06|>",
2816
+ "<|28.07|>",
2817
+ "<|28.08|>",
2818
+ "<|28.09|>",
2819
+ "<|28.10|>",
2820
+ "<|28.11|>",
2821
+ "<|28.12|>",
2822
+ "<|28.13|>",
2823
+ "<|28.14|>",
2824
+ "<|28.15|>",
2825
+ "<|28.16|>",
2826
+ "<|28.17|>",
2827
+ "<|28.18|>",
2828
+ "<|28.19|>",
2829
+ "<|28.20|>",
2830
+ "<|28.21|>",
2831
+ "<|28.22|>",
2832
+ "<|28.23|>",
2833
+ "<|28.24|>",
2834
+ "<|28.25|>",
2835
+ "<|28.26|>",
2836
+ "<|28.27|>",
2837
+ "<|28.28|>",
2838
+ "<|28.29|>",
2839
+ "<|28.30|>",
2840
+ "<|28.31|>",
2841
+ "<|28.32|>",
2842
+ "<|28.33|>",
2843
+ "<|28.34|>",
2844
+ "<|28.35|>",
2845
+ "<|28.36|>",
2846
+ "<|28.37|>",
2847
+ "<|28.38|>",
2848
+ "<|28.39|>",
2849
+ "<|28.40|>",
2850
+ "<|28.41|>",
2851
+ "<|28.42|>",
2852
+ "<|28.43|>",
2853
+ "<|28.44|>",
2854
+ "<|28.45|>",
2855
+ "<|28.46|>",
2856
+ "<|28.47|>",
2857
+ "<|28.48|>",
2858
+ "<|28.49|>",
2859
+ "<|28.50|>",
2860
+ "<|28.51|>",
2861
+ "<|28.52|>",
2862
+ "<|28.53|>",
2863
+ "<|28.54|>",
2864
+ "<|28.55|>",
2865
+ "<|28.56|>",
2866
+ "<|28.57|>",
2867
+ "<|28.58|>",
2868
+ "<|28.59|>",
2869
+ "<|28.60|>",
2870
+ "<|28.61|>",
2871
+ "<|28.62|>",
2872
+ "<|28.63|>",
2873
+ "<|28.64|>",
2874
+ "<|28.65|>",
2875
+ "<|28.66|>",
2876
+ "<|28.67|>",
2877
+ "<|28.68|>",
2878
+ "<|28.69|>",
2879
+ "<|28.70|>",
2880
+ "<|28.71|>",
2881
+ "<|28.72|>",
2882
+ "<|28.73|>",
2883
+ "<|28.74|>",
2884
+ "<|28.75|>",
2885
+ "<|28.76|>",
2886
+ "<|28.77|>",
2887
+ "<|28.78|>",
2888
+ "<|28.79|>",
2889
+ "<|28.80|>",
2890
+ "<|28.81|>",
2891
+ "<|28.82|>",
2892
+ "<|28.83|>",
2893
+ "<|28.84|>",
2894
+ "<|28.85|>",
2895
+ "<|28.86|>",
2896
+ "<|28.87|>",
2897
+ "<|28.88|>",
2898
+ "<|28.89|>",
2899
+ "<|28.90|>",
2900
+ "<|28.91|>",
2901
+ "<|28.92|>",
2902
+ "<|28.93|>",
2903
+ "<|28.94|>",
2904
+ "<|28.95|>",
2905
+ "<|28.96|>",
2906
+ "<|28.97|>",
2907
+ "<|28.98|>",
2908
+ "<|28.99|>",
2909
+ "<|29.00|>",
2910
+ "<|29.01|>",
2911
+ "<|29.02|>",
2912
+ "<|29.03|>",
2913
+ "<|29.04|>",
2914
+ "<|29.05|>",
2915
+ "<|29.06|>",
2916
+ "<|29.07|>",
2917
+ "<|29.08|>",
2918
+ "<|29.09|>",
2919
+ "<|29.10|>",
2920
+ "<|29.11|>",
2921
+ "<|29.12|>",
2922
+ "<|29.13|>",
2923
+ "<|29.14|>",
2924
+ "<|29.15|>",
2925
+ "<|29.16|>",
2926
+ "<|29.17|>",
2927
+ "<|29.18|>",
2928
+ "<|29.19|>",
2929
+ "<|29.20|>",
2930
+ "<|29.21|>",
2931
+ "<|29.22|>",
2932
+ "<|29.23|>",
2933
+ "<|29.24|>",
2934
+ "<|29.25|>",
2935
+ "<|29.26|>",
2936
+ "<|29.27|>",
2937
+ "<|29.28|>",
2938
+ "<|29.29|>",
2939
+ "<|29.30|>",
2940
+ "<|29.31|>",
2941
+ "<|29.32|>",
2942
+ "<|29.33|>",
2943
+ "<|29.34|>",
2944
+ "<|29.35|>",
2945
+ "<|29.36|>",
2946
+ "<|29.37|>",
2947
+ "<|29.38|>",
2948
+ "<|29.39|>",
2949
+ "<|29.40|>",
2950
+ "<|29.41|>",
2951
+ "<|29.42|>",
2952
+ "<|29.43|>",
2953
+ "<|29.44|>",
2954
+ "<|29.45|>",
2955
+ "<|29.46|>",
2956
+ "<|29.47|>",
2957
+ "<|29.48|>",
2958
+ "<|29.49|>",
2959
+ "<|29.50|>",
2960
+ "<|29.51|>",
2961
+ "<|29.52|>",
2962
+ "<|29.53|>",
2963
+ "<|29.54|>",
2964
+ "<|29.55|>",
2965
+ "<|29.56|>",
2966
+ "<|29.57|>",
2967
+ "<|29.58|>",
2968
+ "<|29.59|>",
2969
+ "<|29.60|>",
2970
+ "<|29.61|>",
2971
+ "<|29.62|>",
2972
+ "<|29.63|>",
2973
+ "<|29.64|>",
2974
+ "<|29.65|>",
2975
+ "<|29.66|>",
2976
+ "<|29.67|>",
2977
+ "<|29.68|>",
2978
+ "<|29.69|>",
2979
+ "<|29.70|>",
2980
+ "<|29.71|>",
2981
+ "<|29.72|>",
2982
+ "<|29.73|>",
2983
+ "<|29.74|>",
2984
+ "<|29.75|>",
2985
+ "<|29.76|>",
2986
+ "<|29.77|>",
2987
+ "<|29.78|>",
2988
+ "<|29.79|>",
2989
+ "<|29.80|>",
2990
+ "<|29.81|>",
2991
+ "<|29.82|>",
2992
+ "<|29.83|>",
2993
+ "<|29.84|>",
2994
+ "<|29.85|>",
2995
+ "<|29.86|>",
2996
+ "<|29.87|>",
2997
+ "<|29.88|>",
2998
+ "<|29.89|>",
2999
+ "<|29.90|>",
3000
+ "<|29.91|>",
3001
+ "<|29.92|>",
3002
+ "<|29.93|>",
3003
+ "<|29.94|>",
3004
+ "<|29.95|>",
3005
+ "<|29.96|>",
3006
+ "<|29.97|>",
3007
+ "<|29.98|>",
3008
+ "<|29.99|>",
3009
+ "<|30.00|>",
3010
+ "<|startofentityvalue|>",
3011
+ "<|endofentityvalue|>",
3012
+ "<|startofentitytype|>",
3013
+ "<|endofentitytype|>",
3014
+ "<|startofword|>",
3015
+ "<|endofword|>",
3016
+ "<|startoftime|>",
3017
+ "<|endoftime|>",
3018
+ "<|midi_pitch_0|>",
3019
+ "<|midi_pitch_1|>",
3020
+ "<|midi_pitch_2|>",
3021
+ "<|midi_pitch_3|>",
3022
+ "<|midi_pitch_4|>",
3023
+ "<|midi_pitch_5|>",
3024
+ "<|midi_pitch_6|>",
3025
+ "<|midi_pitch_7|>",
3026
+ "<|midi_pitch_8|>",
3027
+ "<|midi_pitch_9|>",
3028
+ "<|midi_pitch_10|>",
3029
+ "<|midi_pitch_11|>",
3030
+ "<|midi_pitch_12|>",
3031
+ "<|midi_pitch_13|>",
3032
+ "<|midi_pitch_14|>",
3033
+ "<|midi_pitch_15|>",
3034
+ "<|midi_pitch_16|>",
3035
+ "<|midi_pitch_17|>",
3036
+ "<|midi_pitch_18|>",
3037
+ "<|midi_pitch_19|>",
3038
+ "<|midi_pitch_20|>",
3039
+ "<|midi_pitch_21|>",
3040
+ "<|midi_pitch_22|>",
3041
+ "<|midi_pitch_23|>",
3042
+ "<|midi_pitch_24|>",
3043
+ "<|midi_pitch_25|>",
3044
+ "<|midi_pitch_26|>",
3045
+ "<|midi_pitch_27|>",
3046
+ "<|midi_pitch_28|>",
3047
+ "<|midi_pitch_29|>",
3048
+ "<|midi_pitch_30|>",
3049
+ "<|midi_pitch_31|>",
3050
+ "<|midi_pitch_32|>",
3051
+ "<|midi_pitch_33|>",
3052
+ "<|midi_pitch_34|>",
3053
+ "<|midi_pitch_35|>",
3054
+ "<|midi_pitch_36|>",
3055
+ "<|midi_pitch_37|>",
3056
+ "<|midi_pitch_38|>",
3057
+ "<|midi_pitch_39|>",
3058
+ "<|midi_pitch_40|>",
3059
+ "<|midi_pitch_41|>",
3060
+ "<|midi_pitch_42|>",
3061
+ "<|midi_pitch_43|>",
3062
+ "<|midi_pitch_44|>",
3063
+ "<|midi_pitch_45|>",
3064
+ "<|midi_pitch_46|>",
3065
+ "<|midi_pitch_47|>",
3066
+ "<|midi_pitch_48|>",
3067
+ "<|midi_pitch_49|>",
3068
+ "<|midi_pitch_50|>",
3069
+ "<|midi_pitch_51|>",
3070
+ "<|midi_pitch_52|>",
3071
+ "<|midi_pitch_53|>",
3072
+ "<|midi_pitch_54|>",
3073
+ "<|midi_pitch_55|>",
3074
+ "<|midi_pitch_56|>",
3075
+ "<|midi_pitch_57|>",
3076
+ "<|midi_pitch_58|>",
3077
+ "<|midi_pitch_59|>",
3078
+ "<|midi_pitch_60|>",
3079
+ "<|midi_pitch_61|>",
3080
+ "<|midi_pitch_62|>",
3081
+ "<|midi_pitch_63|>",
3082
+ "<|midi_pitch_64|>",
3083
+ "<|midi_pitch_65|>",
3084
+ "<|midi_pitch_66|>",
3085
+ "<|midi_pitch_67|>",
3086
+ "<|midi_pitch_68|>",
3087
+ "<|midi_pitch_69|>",
3088
+ "<|midi_pitch_70|>",
3089
+ "<|midi_pitch_71|>",
3090
+ "<|midi_pitch_72|>",
3091
+ "<|midi_pitch_73|>",
3092
+ "<|midi_pitch_74|>",
3093
+ "<|midi_pitch_75|>",
3094
+ "<|midi_pitch_76|>",
3095
+ "<|midi_pitch_77|>",
3096
+ "<|midi_pitch_78|>",
3097
+ "<|midi_pitch_79|>",
3098
+ "<|midi_pitch_80|>",
3099
+ "<|midi_pitch_81|>",
3100
+ "<|midi_pitch_82|>",
3101
+ "<|midi_pitch_83|>",
3102
+ "<|midi_pitch_84|>",
3103
+ "<|midi_pitch_85|>",
3104
+ "<|midi_pitch_86|>",
3105
+ "<|midi_pitch_87|>",
3106
+ "<|midi_pitch_88|>",
3107
+ "<|midi_pitch_89|>",
3108
+ "<|midi_pitch_90|>",
3109
+ "<|midi_pitch_91|>",
3110
+ "<|midi_pitch_92|>",
3111
+ "<|midi_pitch_93|>",
3112
+ "<|midi_pitch_94|>",
3113
+ "<|midi_pitch_95|>",
3114
+ "<|midi_pitch_96|>",
3115
+ "<|midi_pitch_97|>",
3116
+ "<|midi_pitch_98|>",
3117
+ "<|midi_pitch_99|>",
3118
+ "<|midi_pitch_100|>",
3119
+ "<|midi_pitch_101|>",
3120
+ "<|midi_pitch_102|>",
3121
+ "<|midi_pitch_103|>",
3122
+ "<|midi_pitch_104|>",
3123
+ "<|midi_pitch_105|>",
3124
+ "<|midi_pitch_106|>",
3125
+ "<|midi_pitch_107|>",
3126
+ "<|midi_pitch_108|>",
3127
+ "<|midi_pitch_109|>",
3128
+ "<|midi_pitch_110|>",
3129
+ "<|midi_pitch_111|>",
3130
+ "<|midi_pitch_112|>",
3131
+ "<|midi_pitch_113|>",
3132
+ "<|midi_pitch_114|>",
3133
+ "<|midi_pitch_115|>",
3134
+ "<|midi_pitch_116|>",
3135
+ "<|midi_pitch_117|>",
3136
+ "<|midi_pitch_118|>",
3137
+ "<|midi_pitch_119|>",
3138
+ "<|midi_pitch_120|>",
3139
+ "<|midi_pitch_121|>",
3140
+ "<|midi_pitch_122|>",
3141
+ "<|midi_pitch_123|>",
3142
+ "<|midi_pitch_124|>",
3143
+ "<|midi_pitch_125|>",
3144
+ "<|midi_pitch_126|>",
3145
+ "<|midi_pitch_127|>",
3146
+ "<|midi_velocity_0|>",
3147
+ "<|midi_velocity_1|>",
3148
+ "<|midi_velocity_2|>",
3149
+ "<|midi_velocity_3|>",
3150
+ "<|midi_velocity_4|>",
3151
+ "<|midi_velocity_5|>",
3152
+ "<|midi_velocity_6|>",
3153
+ "<|midi_velocity_7|>",
3154
+ "<|midi_velocity_8|>",
3155
+ "<|midi_velocity_9|>",
3156
+ "<|midi_velocity_10|>",
3157
+ "<|midi_velocity_11|>",
3158
+ "<|midi_velocity_12|>",
3159
+ "<|midi_velocity_13|>",
3160
+ "<|midi_velocity_14|>",
3161
+ "<|midi_velocity_15|>",
3162
+ "<|midi_velocity_16|>",
3163
+ "<|midi_velocity_17|>",
3164
+ "<|midi_velocity_18|>",
3165
+ "<|midi_velocity_19|>",
3166
+ "<|midi_velocity_20|>",
3167
+ "<|midi_velocity_21|>",
3168
+ "<|midi_velocity_22|>",
3169
+ "<|midi_velocity_23|>",
3170
+ "<|midi_velocity_24|>",
3171
+ "<|midi_velocity_25|>",
3172
+ "<|midi_velocity_26|>",
3173
+ "<|midi_velocity_27|>",
3174
+ "<|midi_velocity_28|>",
3175
+ "<|midi_velocity_29|>",
3176
+ "<|midi_velocity_30|>",
3177
+ "<|midi_velocity_31|>",
3178
+ "<|midi_velocity_32|>",
3179
+ "<|midi_velocity_33|>",
3180
+ "<|midi_velocity_34|>",
3181
+ "<|midi_velocity_35|>",
3182
+ "<|midi_velocity_36|>",
3183
+ "<|midi_velocity_37|>",
3184
+ "<|midi_velocity_38|>",
3185
+ "<|midi_velocity_39|>",
3186
+ "<|midi_velocity_40|>",
3187
+ "<|midi_velocity_41|>",
3188
+ "<|midi_velocity_42|>",
3189
+ "<|midi_velocity_43|>",
3190
+ "<|midi_velocity_44|>",
3191
+ "<|midi_velocity_45|>",
3192
+ "<|midi_velocity_46|>",
3193
+ "<|midi_velocity_47|>",
3194
+ "<|midi_velocity_48|>",
3195
+ "<|midi_velocity_49|>",
3196
+ "<|midi_velocity_50|>",
3197
+ "<|midi_velocity_51|>",
3198
+ "<|midi_velocity_52|>",
3199
+ "<|midi_velocity_53|>",
3200
+ "<|midi_velocity_54|>",
3201
+ "<|midi_velocity_55|>",
3202
+ "<|midi_velocity_56|>",
3203
+ "<|midi_velocity_57|>",
3204
+ "<|midi_velocity_58|>",
3205
+ "<|midi_velocity_59|>",
3206
+ "<|midi_velocity_60|>",
3207
+ "<|midi_velocity_61|>",
3208
+ "<|midi_velocity_62|>",
3209
+ "<|midi_velocity_63|>",
3210
+ "<|midi_velocity_64|>",
3211
+ "<|midi_velocity_65|>",
3212
+ "<|midi_velocity_66|>",
3213
+ "<|midi_velocity_67|>",
3214
+ "<|midi_velocity_68|>",
3215
+ "<|midi_velocity_69|>",
3216
+ "<|midi_velocity_70|>",
3217
+ "<|midi_velocity_71|>",
3218
+ "<|midi_velocity_72|>",
3219
+ "<|midi_velocity_73|>",
3220
+ "<|midi_velocity_74|>",
3221
+ "<|midi_velocity_75|>",
3222
+ "<|midi_velocity_76|>",
3223
+ "<|midi_velocity_77|>",
3224
+ "<|midi_velocity_78|>",
3225
+ "<|midi_velocity_79|>",
3226
+ "<|midi_velocity_80|>",
3227
+ "<|midi_velocity_81|>",
3228
+ "<|midi_velocity_82|>",
3229
+ "<|midi_velocity_83|>",
3230
+ "<|midi_velocity_84|>",
3231
+ "<|midi_velocity_85|>",
3232
+ "<|midi_velocity_86|>",
3233
+ "<|midi_velocity_87|>",
3234
+ "<|midi_velocity_88|>",
3235
+ "<|midi_velocity_89|>",
3236
+ "<|midi_velocity_90|>",
3237
+ "<|midi_velocity_91|>",
3238
+ "<|midi_velocity_92|>",
3239
+ "<|midi_velocity_93|>",
3240
+ "<|midi_velocity_94|>",
3241
+ "<|midi_velocity_95|>",
3242
+ "<|midi_velocity_96|>",
3243
+ "<|midi_velocity_97|>",
3244
+ "<|midi_velocity_98|>",
3245
+ "<|midi_velocity_99|>",
3246
+ "<|midi_velocity_100|>",
3247
+ "<|midi_velocity_101|>",
3248
+ "<|midi_velocity_102|>",
3249
+ "<|midi_velocity_103|>",
3250
+ "<|midi_velocity_104|>",
3251
+ "<|midi_velocity_105|>",
3252
+ "<|midi_velocity_106|>",
3253
+ "<|midi_velocity_107|>",
3254
+ "<|midi_velocity_108|>",
3255
+ "<|midi_velocity_109|>",
3256
+ "<|midi_velocity_110|>",
3257
+ "<|midi_velocity_111|>",
3258
+ "<|midi_velocity_112|>",
3259
+ "<|midi_velocity_113|>",
3260
+ "<|midi_velocity_114|>",
3261
+ "<|midi_velocity_115|>",
3262
+ "<|midi_velocity_116|>",
3263
+ "<|midi_velocity_117|>",
3264
+ "<|midi_velocity_118|>",
3265
+ "<|midi_velocity_119|>",
3266
+ "<|midi_velocity_120|>",
3267
+ "<|midi_velocity_121|>",
3268
+ "<|midi_velocity_122|>",
3269
+ "<|midi_velocity_123|>",
3270
+ "<|midi_velocity_124|>",
3271
+ "<|midi_velocity_125|>",
3272
+ "<|midi_velocity_126|>",
3273
+ "<|midi_velocity_127|>",
3274
+ "<|unknown|>",
3275
+ "<|zh_tw|>",
3276
+ "<|en|>",
3277
+ "<|zh|>",
3278
+ "<|de|>",
3279
+ "<|es|>",
3280
+ "<|ko|>",
3281
+ "<|fr|>",
3282
+ "<|ja|>",
3283
+ "<|it|>",
3284
+ "<|ru|>",
3285
+ "<|pt|>",
3286
+ "<|ar|>",
3287
+ "<|yue|>",
3288
+ "<|wuu|>",
3289
+ "<|nan|>"
3290
+ ],
3291
+ "eos_token": {
3292
+ "content": "<|im_end|>",
3293
+ "lstrip": false,
3294
+ "normalized": false,
3295
+ "rstrip": false,
3296
+ "single_word": false
3297
+ },
3298
+ "pad_token": {
3299
+ "content": "<|endoftext|>",
3300
+ "lstrip": false,
3301
+ "normalized": false,
3302
+ "rstrip": false,
3303
+ "single_word": false
3304
+ }
3305
+ }
audio/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
audio/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
audio/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
base/.gitattributes ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ SimHei.ttf filter=lfs diff=lfs merge=lfs -text
37
+ examples/dubai.png filter=lfs diff=lfs merge=lfs -text
38
+ examples/liuxiang.mp4 filter=lfs diff=lfs merge=lfs -text
39
+ pytorch_model-00001-of-00002.bin filter=lfs diff=lfs merge=lfs -text
40
+ pytorch_model-00002-of-00002.bin filter=lfs diff=lfs merge=lfs -text
base/IXC2d5_clip_l_560/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/petrelfs/dongxiaoyi/gittest/IXC/output/clip_l_560_pro7b/",
3
+ "architectures": [
4
+ "CLIPVisionModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "dropout": 0.0,
8
+ "hidden_act": "quick_gelu",
9
+ "hidden_size": 1024,
10
+ "image_size": 560,
11
+ "initializer_factor": 1.0,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-05,
15
+ "model_type": "clip_vision_model",
16
+ "num_attention_heads": 16,
17
+ "num_channels": 3,
18
+ "num_hidden_layers": 24,
19
+ "patch_size": 14,
20
+ "projection_dim": 768,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.33.1"
23
+ }
base/IXC2d5_clip_l_560/preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 560,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "resample": 3,
18
+ "size": 560
19
+ }
base/IXC2d5_clip_l_560/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2345623c2fe3bd46d9251d7dfdbfc8d55cea5411a1e42940ee15cde730d45c4
3
+ size 1218353513
base/README.md ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ pipeline_tag: visual-question-answering
4
+ ---
5
+
6
+
7
+ <p align="center">
8
+ <img src="logo_en.png" width="600"/>
9
+ <p>
10
+
11
+ <p align="center">
12
+ <b><font size="6">InternLM-XComposer-2.5</font></b>
13
+ <p>
14
+
15
+ <div align="center">
16
+
17
+ [💻Github Repo](https://github.com/InternLM/InternLM-XComposer)
18
+
19
+ [Online Demo](https://huggingface.co/spaces/Willow123/InternLM-XComposer)
20
+
21
+ [Paper](https://huggingface.co/papers/2407.03320)
22
+
23
+ </div>
24
+
25
+ **InternLM-XComposer2.5** excels in various text-image comprehension and composition applications, achieving GPT-4V level capabilities with merely 7B LLM backend. IXC2.5 is trained with 24K interleaved image-text contexts, it can seamlessly extend to 96K long contexts via RoPE extrapolation. This long-context capability allows IXC-2.5 to excel in tasks requiring extensive input and output contexts.
26
+
27
+
28
+ ### Import from Transformers
29
+ To load the InternLM-XComposer2-4KHD model using Transformers, use the following code:
30
+ ```python
31
+ import torch
32
+ from transformers import AutoTokenizer, AutoModelForCausalLM
33
+ ckpt_path = "internlm/internlm-xcomposer2d5-7b"
34
+ tokenizer = AutoTokenizer.from_pretrained(ckpt_path, trust_remote_code=True).cuda()
35
+ # Set `torch_dtype=torch.floatb16` to load model in bfloat16, otherwise it will be loaded as float32 and might cause OOM Error.
36
+ model = AutoModelForCausalLM.from_pretrained(ckpt_path, torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
37
+ model = model.eval()
38
+ ```
39
+
40
+ ## Quickstart
41
+
42
+ We provide a simple example to show how to use InternLM-XComposer2.5 with 🤗 Transformers.
43
+
44
+ <details>
45
+ <summary>
46
+ <b>Video Understanding</b>
47
+ </summary>
48
+
49
+ ```python
50
+ import torch
51
+ from transformers import AutoModel, AutoTokenizer
52
+
53
+ torch.set_grad_enabled(False)
54
+
55
+ # init model and tokenizer
56
+ model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
57
+ tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
58
+ model.tokenizer = tokenizer
59
+
60
+ query = 'Here are some frames of a video. Describe this video in detail'
61
+ image = ['./examples/liuxiang.mp4',]
62
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
63
+ response, his = model.chat(tokenizer, query, image, do_sample=False, num_beams=3, use_meta=True)
64
+ print(response)
65
+ #The video opens with a shot of an athlete, dressed in a red and yellow uniform with the word "CHINA" emblazoned across the front, preparing for a race.
66
+ #The athlete, Liu Xiang, is seen in a crouched position, focused and ready, with the Olympic rings visible in the background, indicating the prestigious setting of the Olympic Games. As the race commences, the athletes are seen sprinting towards the hurdles, their determination evident in their powerful strides.
67
+ #The camera captures the intensity of the competition, with the athletes' numbers and times displayed on the screen, providing a real-time update on their performance. The race reaches a climax as Liu Xiang, still in his red and yellow uniform, triumphantly crosses the finish line, his arms raised in victory.
68
+ #The crowd in the stands erupts into cheers, their excitement palpable as they witness the athlete's success. The video concludes with a close-up shot of Liu Xiang, still basking in the glory of his victory, as the Olympic rings continue to symbolize the significance of the event.
69
+
70
+ query = 'tell me the athlete code of Liu Xiang'
71
+ image = ['./examples/liuxiang.mp4',]
72
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
73
+ response, _ = model.chat(tokenizer, query, image, history=his, do_sample=False, num_beams=3, use_meta=True)
74
+ print(response)
75
+ #The athlete code of Liu Xiang, as displayed on his uniform in the video, is "1363".
76
+ ```
77
+
78
+ </details>
79
+
80
+ <details>
81
+ <summary>
82
+ <b>Multi-Image Mutli-Tune Dialog</b>
83
+ </summary>
84
+
85
+ ```python
86
+ import torch
87
+ from transformers import AutoModel, AutoTokenizer
88
+
89
+ torch.set_grad_enabled(False)
90
+
91
+ # init model and tokenizer
92
+ model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
93
+ tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
94
+ model.tokenizer = tokenizer
95
+
96
+ query = 'Image1 <ImageHere>; Image2 <ImageHere>; Image3 <ImageHere>; I want to buy a car from the three given cars, analyze their advantages and weaknesses one by one'
97
+ image = ['./examples/cars1.jpg',
98
+ './examples/cars2.jpg',
99
+ './examples/cars3.jpg',]
100
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
101
+ response, his = model.chat(tokenizer, query, image, do_sample=False, num_beams=3, use_meta=True)
102
+ print(response)
103
+ #To analyze the advantages and disadvantages of each car, we need to consider factors such as brand reputation, performance, design, cost, and maintenance.
104
+ #1. Mercedes-Benz: - Advantages: Known for its luxury and reliability, the Mercedes-Benz brand offers a high level of comfort, advanced technology, and superior craftsmanship. The vehicle in the image appears to be an SUV, which is versatile for both city driving and off-road conditions. - Disadvantages: Typically, Mercedes-Benz vehicles are more expensive compared to other brands, and they may require more frequent maintenance due to their luxury status.
105
+ #2. Bugatti: - Advantages: Bugatti is renowned for producing some of the fastest and most powerful cars in the world. The vehicle in the image is a sports car, likely offering an exhilarating driving experience with its high-performance engine and advanced aerodynamics. - Disadvantages: Bugatti cars are extremely expensive, making them less accessible to the average consumer. They also require specialized knowledge for maintenance and may not be suitable for everyday driving due to their high-performance nature.
106
+ #3. BMW: - Advantages: BMW is a well-respected manufacturer known for its innovative engineering and design. The car in the image appears to be an electric vehicle (EV), which offers advantages such as lower emissions, reduced noise pollution, and potentially lower operating costs. - Disadvantages: EVs like the one in the image may have a shorter range compared to traditional gasoline-powered vehicles, limiting their suitability for long-distance travel.
107
+ #Additionally, the initial cost of purchasing an EV can be higher than that of a conventional car. In conclusion, each car has its own set of advantages and disadvantages. The Mercedes-Benz offers luxury and versatility, the Bugatti provides high performance and exclusivity, and the BMW represents innovation in electric vehicle technology. The choice ultimately depends on the buyer's priorities, such as comfort, performance, environmental impact, and budget.
108
+
109
+ query = 'Image4 <ImageHere>; How about the car in Image4'
110
+ image.append('./examples/cars4.jpg')
111
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
112
+ response, _ = model.chat(tokenizer, query, image, do_sample=False, num_beams=3, history= his, use_meta=True)
113
+ print(response)
114
+ #The car in Image4 is a red sports car, which appears to be a Ferrari. Ferrari is a renowned Italian manufacturer known for producing some of the most iconic and high-performance sports cars in the world. - Advantages: Ferrari vehicles are synonymous with speed, luxury, and engineering excellence.
115
+ #The car in the image likely offers an exhilarating driving experience with its powerful engine, advanced aerodynamics, and high-quality craftsmanship. The red color adds to the car's aesthetic appeal, making it stand out on the road. - Disadvantages: Ferrari cars are extremely expensive, making them less accessible to the average consumer.
116
+ #They also require specialized knowledge for maintenance and may not be suitable for everyday driving due to their high-performance nature. In conclusion, the Ferrari in Image4 represents a pinnacle of automotive engineering and design, offering unmatched performance and luxury.
117
+ #However, its high cost and specialized maintenance requirements make it less practical for everyday use compared to the other vehicles in the images.
118
+ ```
119
+
120
+
121
+ </details>
122
+
123
+ <details>
124
+ <summary>
125
+ <b>High Resolution Image Understanding</b>
126
+ </summary>
127
+
128
+ ```python
129
+ import torch
130
+ from transformers import AutoModel, AutoTokenizer
131
+
132
+ torch.set_grad_enabled(False)
133
+
134
+ # init model and tokenizer
135
+ model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
136
+ tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
137
+ model.tokenizer = tokenizer
138
+
139
+ query = 'Analyze the given image in a detail manner'
140
+ image = ['./examples/dubai.png']
141
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
142
+ response, _ = model.chat(tokenizer, query, image, do_sample=False, num_beams=3, use_meta=True)
143
+ print(response)
144
+ #The infographic is a visual representation of various facts about Dubai. It begins with a statement about Palm Jumeirah, highlighting it as the largest artificial island visible from space. It then provides a historical context, noting that in 1968, there were only a few cars in Dubai, contrasting this with the current figure of more than 1.5 million vehicles.
145
+ #The infographic also points out that Dubai has the world's largest Gold Chain, with 7 of the top 10 tallest hotels located there. Additionally, it mentions that the crime rate is near 0%, and the income tax rate is also 0%, with 20% of the world's total cranes operating in Dubai. Furthermore, it states that 17% of the population is Emirati, and 83% are immigrants.
146
+ #The Dubai Mall is highlighted as the largest shopping mall in the world, with 1200 stores. The infographic also notes that Dubai has no standard address system, with no zip codes, area codes, or postal services. It mentions that the Burj Khalifa is so tall that its residents on top floors need to wait longer to break fast during Ramadan.
147
+ #The infographic also includes information about Dubai's climate-controlled City, with the Royal Suite at Burj Al Arab costing $24,000 per night. Lastly, it notes that the net worth of the four listed billionaires is roughly equal to the GDP of Honduras.
148
+
149
+ ```
150
+
151
+ </details>
152
+
153
+
154
+ <details>
155
+ <summary>
156
+ <b>Instruction to Webpage</b>
157
+ </summary>
158
+
159
+ ```python
160
+ import torch
161
+ from transformers import AutoModel, AutoTokenizer
162
+
163
+ torch.set_grad_enabled(False)
164
+
165
+ # init model and tokenizer
166
+ model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
167
+ tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
168
+ model.tokenizer = tokenizer
169
+
170
+ query = 'A website for Research institutions. The name is Shanghai AI lab. Top Navigation Bar is blue.Below left, an image shows the logo of the lab. In the right, there is a passage of text below that describes the mission of the laboratory.There are several images to show the research projects of Shanghai AI lab.'
171
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
172
+ response = model.write_webpage(query, seed=202, task='Instruction-aware Webpage Generation', repetition_penalty=3.0)
173
+ print(response)
174
+ # see the Instruction-aware Webpage Generation.html
175
+ ```
176
+
177
+ See the [Instruction to Webpage](https://github.com/InternLM/InternLM-XComposer/blob/main/examples/Instruction-aware_Webpage_Generation.html) results here.
178
+ </details>
179
+
180
+ <details>
181
+ <summary>
182
+ <b>Resume to Webpage</b>
183
+ </summary>
184
+
185
+ ```python
186
+ import torch
187
+ from transformers import AutoModel, AutoTokenizer
188
+
189
+ torch.set_grad_enabled(False)
190
+
191
+ # init model and tokenizer
192
+ model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
193
+ tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
194
+ model.tokenizer = tokenizer
195
+
196
+ ## the input should be a resume in markdown format
197
+ query = './examples/resume.md'
198
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
199
+ response = model.resume_2_webpage(query, seed=202, repetition_penalty=3.0)
200
+ print(response)
201
+ ```
202
+ See the [Resume to Webpage](https://github.com/InternLM/InternLM-XComposer/blob/main/examples/Resume-to-Personal_Page.html) results here.
203
+
204
+
205
+ </details>
206
+
207
+
208
+ <details>
209
+ <summary>
210
+ <b>Screenshot to Webpage</b>
211
+ </summary>
212
+
213
+ ```python
214
+ import torch
215
+ from transformers import AutoModel, AutoTokenizer
216
+
217
+ torch.set_grad_enabled(False)
218
+
219
+ # init model and tokenizer
220
+ model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
221
+ tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
222
+ model.tokenizer = tokenizer
223
+
224
+ query = 'Generate the HTML code of this web image with Tailwind CSS.'
225
+ image = ['./examples/screenshot.jpg']
226
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
227
+ response = model.screen_2_webpage(query, image, seed=202, repetition_penalty=3.0)
228
+ print(response)
229
+ ```
230
+ See the [Screenshot to Webpage](https://github.com/InternLM/InternLM-XComposer/blob/main/examples/Screenshot-to-Webpage.html) results here.
231
+
232
+ </details>
233
+
234
+
235
+
236
+ <details>
237
+ <summary>
238
+ <b>Write Article</b>
239
+ </summary>
240
+
241
+ ```python
242
+ import torch
243
+ from transformers import AutoModel, AutoTokenizer
244
+
245
+ torch.set_grad_enabled(False)
246
+
247
+ # init model and tokenizer
248
+ model = AutoModel.from_pretrained('internlm/internlm-xcomposer2d5-7b', torch_dtype=torch.bfloat16, trust_remote_code=True).cuda().eval()
249
+ tokenizer = AutoTokenizer.from_pretrained('internlm/internlm-xcomposer2d5-7b', trust_remote_code=True)
250
+ model.tokenizer = tokenizer
251
+
252
+ query = '阅读下面的材料,根据要求写作。 电影《长安三万里》的出现让人感慨,影片并未将重点全落在大唐风华上,也展现了恢弘气象的阴暗面,即旧门阀的资源垄断、朝政的日益衰败与青年才俊的壮志难酬。高适仕进无门,只能回乡>沉潜修行。李白虽得玉真公主举荐,擢入翰林,但他只是成为唐玄宗的御用文人,不能真正实现有益于朝政的志意。然而,片中高潮部分《将进酒》一节,人至中年、挂着肚腩的李白引众人乘仙鹤上天,一路从水面、瀑布飞升至银河进入仙>宫,李白狂奔着与仙人们碰杯,最后大家纵身飞向漩涡般的九重天。肉身的微贱、世路的“天生我材必有用,坎坷,拘不住精神的高蹈。“天生我材必有用,千金散尽还复来。” 古往今来,身处闲顿、遭受挫折、被病痛折磨,很多人都曾经历>了人生的“失意”,却反而成就了他们“诗意”的人生。对正在追求人生价值的当代青年来说,如何对待人生中的缺憾和困顿?诗意人生中又有怎样的自我坚守和自我认同?请结合“失意”与“诗意”这两个关键词写一篇文章。 要求:选准角度,确定>立意,明确文体,自拟标题;不要套作,不得抄袭;不得泄露个人信息;不少于 800 字。'
253
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
254
+ response = model.write_artical(query, seed=8192)
255
+ print(response)
256
+ #诗意人生,贵在坚守
257
+ #《菜根谭》有云:“闲时要有吃紧的心思,忙里要留吃闲工夫。”人生在世,总有失意之时,当面对缺憾和困顿,诗意地生活着才能为人生增添一抹亮色。何谓诗意地生活? 所谓诗意地生活,便是在于坚守本心、直面遗憾、超越自我,在失意中寻找人生价值。
258
+ #诗意地生活,需坚守本心,淡然处之。
259
+ #陶渊明曾执意辞去彭泽县令,归隐田园,“采菊东篱下,悠然见南山”,在山水间寄情自娱;王维面对仕途失意,终日沉醉于诗酒之中,“兴来每独往,胜事空自知”,在诗酒中闲逸自如;李白仕途不顺,被赐金放还,但他依旧豪气干云,“天生我才必有用,千金散尽还复来”,在失意中坦然豁达。坚守本心,便能在遭遇失意之时守住自己的精神家园,让生活充满诗意。反之,若不能坚守本心,而只是一味迎合世俗以求得升迁,那纵使身居高位,亦会丧失生活的乐趣。
260
+ #诗意地生活,需直面遗憾,超越自我。
261
+ #“西塞山前白鹭飞,桃花流水鳜鱼肥。青箬笠,绿柳枝,半斤酒,一纶丝。五湖四海皆如此,何妨到此处归。”白居易的《渔歌子》写出了多少人的愿望:没有权势纷扰,没有贫困凄凉,只有青山绿水、白鹭鸥鸟作伴,如此自由自在的生活令人神往。然而,白居易却并没有因此真的归隐山林,而是直面人生,超越自我,写下了一首首诗意而富有现实关怀的作品。如果白居易只顾逃避人生,那又怎会拥有“大弦嘈嘈如急雨,小弦切切如私语”的绝美比喻呢?如果白居易只顾归隐山林,那又怎会写出“此曲只应天上有,人间哪得配白居易”这样的诗句呢?
262
+ #诗意地生活,需直面遗憾,坚守本心。
263
+ #李文波患有渐冻症,医生说他活不过五年,但他没有因此放弃对音乐的热爱,而是与病魔作斗争,演奏出美妙的乐曲;孙家林自幼患有脑瘫,但他不甘于命运的捉弄,终成全国最美教师;史铁生饱受疾病折磨,但他仍能发出“我常常在我的心头清点,我有什么?”的叩问,并由此走上文学道路,为后世留下丰厚的文化遗产。这些人没有逃避,而是选择直面人生的缺憾,在坚守本心的同时超越自我,最终实现了自己的价值。
264
+ #诗意地生活,是于失意中坚守本心,于缺憾中超越自我。当面对人生的缺憾与挫折,坚守本心、超越自我的同时,也必将书写属于自己的辉煌篇章。
265
+ #愿你我都能诗意地生活着!
266
+
267
+ query = 'Please write a blog based on the title: French Pastries: A Sweet Indulgence'
268
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
269
+ response = model.write_artical(query, seed=8192)
270
+ print(response)
271
+ #French Pastries: A Sweet Indulgence
272
+ #The French are well known for their love of pastries, and it’s a love that is passed down through generations. When one visits France, they are treated to an assortment of baked goods that can range from the delicate macaron to the rich and decadent chocolate mousse. While there are many delicious types of pastries found in France, five stand out as being the most iconic. Each of these pastries has its own unique qualities that make it special.
273
+ #1. Croissant
274
+ #One of the most famous pastries from France is the croissant. It is a buttery, flaky pastry that is best enjoyed fresh from the bakery. The dough is laminated with butter, giving it its signature layers. Croissants are typically eaten for breakfast or brunch, often accompanied by coffee or hot chocolate.
275
+ #2. Macaron
276
+ #The macaron is a small, delicate French confection made from almond flour, powdered sugar, and egg whites. The macaron itself is sandwiched with a ganache or jam filling. They come in a variety of colors and flavors, making them a popular choice for both casual snacking and upscale desserts.
277
+ #3. Madeleine
278
+ #The madeleine is a small shell-shaped cake that is light and sponge-like. It is often flavored with lemon or orange zest and sometimes dipped in chocolate. Madeleines are perfect for an afternoon snack with tea or coffee.
279
+ #4. Éclair
280
+ #The éclair is a long, thin pastry filled with cream and topped with chocolate glaze. It is a classic French treat that is both sweet and satisfying. Éclairs can be found in bakeries all over France and are often enjoyed with a cup of hot chocolate.
281
+ #5. Tarte Tatin
282
+ #The tarte Tatin is an apple tart that is known for its caramelized apples and puff pastry crust. It is named after the Tatin sisters who created the recipe in the late 19th century. Tarte Tatin is best served warm with a scoop of vanilla ice cream.
283
+ #These pastries are just a few of the many delicious treats that France has to offer. Whether you are a seasoned traveler or a first-time visitor, indulging in French pastries is a must-do activity. So go ahead, treat yourself—you deserve it!
284
+ ```
285
+
286
+ </details>
287
+
288
+
289
+ ### Open Source License
290
+ The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact internlm@pjlab.org.cn.
base/SimHei.ttf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:336a838f4a78e150826be608dae69de59d50948c3d2b71760e096ae764154bdc
3
+ size 9751960
base/__pycache__/build_mlp.cpython-39.pyc ADDED
Binary file (7.01 kB). View file
 
base/__pycache__/configuration_internlm_xcomposer2.cpython-39.pyc ADDED
Binary file (5.55 kB). View file
 
base/__pycache__/ixc_utils.cpython-39.pyc ADDED
Binary file (4.31 kB). View file
 
base/__pycache__/modeling_internlm2.cpython-39.pyc ADDED
Binary file (29.3 kB). View file
 
base/__pycache__/modeling_internlm_xcomposer2.cpython-39.pyc ADDED
Binary file (24.3 kB). View file
 
base/added_tokens.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|action_end|>": 92547,
3
+ "<|action_start|>": 92546,
4
+ "<|im_end|>": 92545,
5
+ "<|im_start|>": 92544,
6
+ "<|interpreter|>": 92548,
7
+ "<|plugin|>": 92549
8
+ }
base/build_mlp.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import re
4
+ import math
5
+ from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
6
+
7
+
8
+ def build_vision_tower():
9
+ vision_tower = 'internlm-xcomposer2d5-ol-7b/base/IXC2d5_clip_l_560'
10
+ return CLIPVisionTower(vision_tower)
11
+
12
+
13
+ def build_vision_projector(input_dim=4096):
14
+ projector_type = 'mlp2x_gelu'
15
+ mm_hidden_size = input_dim
16
+ mid_hidden_size = 4096
17
+ hidden_size = 4096
18
+
19
+ mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
20
+ if mlp_gelu_match:
21
+ mlp_depth = int(mlp_gelu_match.group(1))
22
+ modules = [nn.Linear(mm_hidden_size, mid_hidden_size)]
23
+ for _ in range(1, mlp_depth):
24
+ modules.append(nn.GELU())
25
+ modules.append(nn.Linear(mid_hidden_size, mid_hidden_size))
26
+
27
+ return nn.Sequential(*modules)
28
+
29
+ if projector_type == 'identity':
30
+ return IdentityMap()
31
+
32
+ raise ValueError(f'Unknown projector type: {projector_type}')
33
+
34
+
35
+ class IdentityMap(nn.Module):
36
+ def __init__(self):
37
+ super().__init__()
38
+
39
+ def forward(self, x, *args, **kwargs):
40
+ return x
41
+
42
+ @property
43
+ def config(self):
44
+ return {"mm_projector_type": 'identity'}
45
+
46
+
47
+ class CLIPVisionTower(nn.Module):
48
+ def __init__(self, vision_tower):
49
+ super().__init__()
50
+
51
+ self.is_loaded = False
52
+
53
+ self.vision_tower_name = vision_tower
54
+ # self.conv_dim = 8192
55
+ # self.conv = torch.nn.Conv2d(1024, self.conv_dim,3,2,1)
56
+ self.select_layer = -1
57
+ self.select_feature = 'patch'
58
+ self.load_model()
59
+
60
+ def load_model(self):
61
+ self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
62
+ self.vision_tower.requires_grad_(False)
63
+
64
+ self.is_loaded = True
65
+
66
+ def resize_pos(self):
67
+ print('Dummy Resized')
68
+
69
+ def feature_select(self, image_forward_outs):
70
+ image_features = image_forward_outs.hidden_states[self.select_layer]
71
+ if self.select_feature == 'patch':
72
+ image_features = image_features[:, 1:]
73
+ elif self.select_feature == 'cls_patch':
74
+ image_features = image_features
75
+ else:
76
+ raise ValueError(f'Unexpected select feature: {self.select_feature}')
77
+ return image_features
78
+
79
+ def forward(self, images, glb_GN, sub_GN):
80
+ if not self.is_loaded:
81
+ self.load_model()
82
+ assert type(images) is list
83
+ shapes = []
84
+ input_imgs = []
85
+ for img in images:
86
+ _, C, H, W = img.shape
87
+ shapes.append([H // 560, W // 560])
88
+ sub_img = img.reshape(1, 3, H // 560, 560, W // 560, 560).permute(0, 2, 4, 1, 3, 5).reshape(-1, 3, 560,
89
+ 560).contiguous()
90
+ glb_img = torch.nn.functional.interpolate(img.float(), size=(560, 560), mode='bicubic', ).to(sub_img.dtype)
91
+ input_imgs.append(glb_img)
92
+ input_imgs.append(sub_img)
93
+ input_imgs = torch.cat(input_imgs, dim=0)
94
+ '''
95
+ if input_imgs.shape[0] > 50:
96
+ image_f_1 = self.vision_tower(input_imgs[:50].to(device=self.device, dtype=self.dtype), output_hidden_states=True).hidden_states[self.select_layer][:, 1:]
97
+ with torch.no_grad():
98
+ image_f_2 = self.vision_tower(input_imgs[50:].to(device=self.device, dtype=self.dtype), output_hidden_states=True).hidden_states[self.select_layer][:, 1:]
99
+ image_features = torch.cat([image_f_1, image_f_2], dim=0).to(input_imgs.dtype)
100
+
101
+ else:
102
+ image_features = self.vision_tower(input_imgs.to(device=self.device, dtype=self.dtype), output_hidden_states=True).hidden_states[self.select_layer][:, 1:].to(input_imgs.dtype)
103
+ '''
104
+ image_features = \
105
+ self.vision_tower(input_imgs.to(device=self.device, dtype=self.dtype), output_hidden_states=True).hidden_states[
106
+ self.select_layer][:, 1:].to(input_imgs.dtype)
107
+ _, N, C = image_features.shape
108
+ H = int(math.sqrt(N))
109
+ assert N == 40 ** 2
110
+
111
+ output_imgs = []
112
+ output_len = []
113
+ for [h, w] in shapes:
114
+ B_ = h * w
115
+ glb_img = image_features[:1] ### 1, N, C
116
+ glb_img = glb_img.reshape(1, H, H, C).reshape(1, H // 2, 2, H // 2, 2, C).contiguous().permute(0, 1, 3, 2,
117
+ 4,
118
+ 5).reshape(1,
119
+ H // 2,
120
+ H // 2,
121
+ 4 * C).contiguous()
122
+ temp_glb_GN = sub_GN.repeat(1, H // 2, 1, 1)
123
+ glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1, -1, 4 * C)
124
+
125
+ sub_img = image_features[1:1 + B_] ### ?, N, C
126
+ sub_img = sub_img.reshape(B_, H, H, C).reshape(B_, H // 2, 2, H // 2, 2, C).contiguous().permute(0, 1, 3, 2,
127
+ 4,
128
+ 5).reshape(
129
+ B_, -1, 4 * C).contiguous()
130
+ sub_img = sub_img.reshape(1, h, w, 20, 20, -1).permute(0, 1, 3, 2, 4, 5).reshape(1, h * 20, w * 20, 4 * C)
131
+ temp_sub_GN = sub_GN.repeat(1, h * 20, 1, 1)
132
+ sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1, -1, 4 * C)
133
+
134
+ output_imgs.append(torch.cat([glb_img, glb_GN, sub_img], dim=1))
135
+ temp_len = int((h * w + 1) * 400 + 1 + (h + 1) * 20)
136
+ assert temp_len == output_imgs[-1].shape[1]
137
+ output_len.append(temp_len)
138
+
139
+ image_features = image_features[1 + h * w:]
140
+
141
+ output_imgs = torch.cat(output_imgs, dim=1)
142
+
143
+ return output_imgs, output_len
144
+
145
+ @property
146
+ def dummy_feature(self):
147
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
148
+
149
+ @property
150
+ def dtype(self):
151
+ return self.vision_tower.dtype
152
+
153
+ @property
154
+ def device(self):
155
+ return self.vision_tower.device
156
+
157
+ @property
158
+ def config(self):
159
+ if self.is_loaded:
160
+ return self.vision_tower.config
161
+ else:
162
+ return self.cfg_only
163
+
164
+ @property
165
+ def hidden_size(self):
166
+ return self.config.hidden_size
167
+
168
+ @property
169
+ def num_patches(self):
170
+ return (self.config.image_size // self.config.patch_size) ** 2
171
+
172
+
173
+ class PLoRA(nn.Linear):
174
+ def __init__(self,
175
+ in_features: int,
176
+ out_features: int,
177
+ bias: bool = True,
178
+ device=None,
179
+ dtype=None,
180
+ lora_r=8,
181
+ lora_alpha=16,
182
+ lora_dropout=0.05,
183
+ lora_len=0,
184
+ **kwargs) -> None:
185
+ super().__init__(in_features, out_features, bias, device, dtype)
186
+ self.lora_r = lora_r
187
+ self.lora_alpha = lora_alpha
188
+ self.lora_len = lora_len
189
+ if lora_dropout > 0.:
190
+ self.lora_dropout = nn.Dropout(p=lora_dropout)
191
+ else:
192
+ self.lora_dropout = lambda x: x
193
+ self.lora_scaling = self.lora_alpha / self.lora_r
194
+
195
+ self.Plora_A = nn.Linear(in_features,
196
+ self.lora_r,
197
+ bias=False,
198
+ device=device,
199
+ dtype=dtype)
200
+ self.Plora_B = nn.Linear(self.lora_r,
201
+ out_features,
202
+ bias=False,
203
+ device=device,
204
+ dtype=dtype)
205
+
206
+ self.reset_parameters()
207
+
208
+ def reset_parameters(self):
209
+ if hasattr(self, 'lora_A'):
210
+ # initialize A the same way as the default for nn.Linear and B to zero
211
+ nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
212
+ nn.init.zeros_(self.lora_B.weight)
213
+ # print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
214
+
215
+ def forward(self, x, im_mask=None):
216
+ B, N, C = x.shape
217
+ im_mask = im_mask.view(-1)
218
+ x = x.reshape(-1, C)
219
+ res = super().forward(x)
220
+ if im_mask is not None:
221
+ if torch.sum(im_mask) > 0:
222
+ part_x = x[im_mask]
223
+ res[im_mask] += self.Plora_B(self.Plora_A(
224
+ self.lora_dropout(part_x))) * self.lora_scaling
225
+ else:
226
+ part_x = x[:1]
227
+ res[:1] += self.Plora_B(self.Plora_A(
228
+ self.lora_dropout(part_x))) * 0
229
+
230
+ return res.reshape(B, N, -1)
base/config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternLMXComposer2ForCausalLM"
4
+ ],
5
+ "attn_implementation": "flash_attention_2",
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internlm_xcomposer2.InternLMXcomposer2Config",
8
+ "AutoModel": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM",
9
+ "AutoModelForCausalLM": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM"
10
+ },
11
+ "bias": false,
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 4096,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 14336,
18
+ "max_length": 16384,
19
+ "max_position_embeddings": 24576,
20
+ "model_type": "internlm2",
21
+ "num_attention_heads": 32,
22
+ "num_hidden_layers": 32,
23
+ "num_key_value_heads": 8,
24
+ "pad_token_id": 2,
25
+ "rms_norm_eps": 1e-05,
26
+ "rope_scaling": {
27
+ "type": "dynamic",
28
+ "factor": 2.0
29
+ },
30
+ "rope_theta": 1000000,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.33.1",
34
+ "use_cache": false,
35
+ "vocab_size": 92544
36
+ }
base/configuration_internlm_xcomposer2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ """ InternLM2 model configuration"""
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
25
+
26
+
27
+ class InternLMXcomposer2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = "internlm2"
75
+ _auto_class = "AutoConfig"
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act="silu",
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation="flash_attention_2",
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = "flash_attention_2"
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
141
+ f"got {self.rope_scaling}"
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get("type", None)
144
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
base/examples/cars1.jpg ADDED
base/examples/cars2.jpg ADDED
base/examples/cars3.jpg ADDED
base/examples/cars4.jpg ADDED
base/examples/dubai.png ADDED

Git LFS Details

  • SHA256: d1791fdc7767a6e868da0e35d0158f02eae0c78229a0f4505580d756b4ea3929
  • Pointer size: 132 Bytes
  • Size of remote file: 2.8 MB
base/examples/liuxiang.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29e1448fe188d8cca2e85fd81c236c53fd61784063d93bc09e2301d33798937a
3
+ size 26855609
base/examples/resume.md ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Qidong Huang
2
+
3
+ Building No.7, USTC West CampusHefei, Anhui, China
4
+
5
+ Ph.D, University of Science and Technology of China
6
+
7
+ H (+86) 13085060686
8
+
9
+ B hqd0037@mail.ustc.edu.cn
10
+
11
+ # Short Biography
12
+
13
+ Qidong Huang is a PhD student at University of Science and Technology of China. He has published more than 7 papers at top1-tier conferences and journals, such as CVPR/ICCV/AAAI/TIP/TCSVT. His research interests focus on vision transfer learning (e.g., prompt learning for vision pretrained models) and artificial intelligence security (e.g., adversarial examples and anti-DeepFake). He is the reviewer of many top conferences (including CVPR, ICCV, ECCV) and top journals (TNNLS, PR).
14
+
15
+ # Education
16
+
17
+ |09/2020–present|PhD of Cyberspace Security, University of Science and Technology of China, Hefei, China, CAS Key Laboratory of Electromagnetic Space Information. Supervised by Prof. Weiming Zhang.|
18
+ |---|---|
19
+ |09/2016–06/2020|Bachelor of Information Security, School of Information Science and Technology, University of Science and Technology of China, Hefei, China.|
20
+
21
+ # Skills
22
+
23
+ - Expertise in vision prompt learning: I have been researching the prompt learning for large-scale vision pretrained models and published one paper on top-tier computer vision conferences, in which I propose DAM-VP, a data diversity-aware method for efficient and adaptive vision prompt learning. This work alleviates the mismatch between vision prompts and downstream data diversity.
24
+ - Expertise in artificial intelligence security: I have been studying artificial intelligence security since 2020, including adversarial attack&defense and anti-DeepFake. For adversarial attack, I propose SI-Adv, a shape-invariant attack for 3D point cloud recognition which great boosts the imperceptibility of adversarial examples. For adversarial defense, I propose a contrastive adversarial training framework for robust point cloud recognition named PointCAT. Besides, our work for improving adversarial robustness of masked autoencoders has been recently accepted by ICCV 2023. For anti-DeepFake, we are the first to propose the concept of “initiative defense” against DeepFakes by proactively protecting users’ facial privacy before the manipulation, unlike previous ex-post countermeasures like DeepFake detection.
25
+
26
+ # Publications (First Author)
27
+
28
+ Qidong Huang, Xiaoyi Dong, Dongdong Chen, Yinpeng Chen, Lu Yuan, Gang Hua, Weiming Zhang, Nenghai Yu. Improving Adversarial Robustness of Masked Autoencoders via Test-time Frequency-domain Prompting. International Conference on Computer Vision (ICCV), 2023.
29
+ Qidong Huang, Xiaoyi Dong, Dongdong Chen, Weiming Zhang, Feifei Wang, Gang Hua, Nenghai Yu. Diversity-Aware Meta Visual Prompting. Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
30
+ Qidong Huang, Xiaoyi Dong, Dongdong Chen, Hang Zhou, Weiming Zhang, Nenghai Yu. Shape-invariant 3D Adversarial Point Clouds. Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
31
+ ---
32
+ # Publications
33
+
34
+ Qidong Huang*, Jie Zhang*, Wenbo Zhou, Weiming Zhang, Nenghai Yu. Initiative Defense against Facial Manipulation. AAAI Conference on Artificial Intelligence (AAAI), 2021. (*Qidong Huang and Jie Zhang contribute equally.)
35
+ Qidong Huang, Xiaoyi Dong, Dongdong Chen, Hang Zhou, Weiming Zhang, Kui Zhang, Gang Hua, Nenghai Yu. PointCAT : Contrastive Adversarial Training for Robust Point Cloud Recognition. IEEE Transactions on Image Processing (TIP), Major Revision.
36
+ Kui Zhang, Hang Zhou, Jie Zhang, Qidong Huang, Weiming Zhang, Nenghai Yu. Ada3Diff : Defending against 3D Adversarial Point Clouds via Adaptive Diffusion. Under Review
37
+ Han Fang, Dongdong Chen, Qidong Huang, Jie Zhang, Zehua Ma, Weiming Zhang* and Nenghai Yu. Deep Template-based Watermarking. IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2020.
38
+ Jie Zhang, Dongdong Chen, Qidong Huang, Jing Liao, Weiming Zhang, Huamin Feng, Gang Hua, Nenghai Yu. Poison ink : Robust and invisible backdoor attack. IEEE Transactions on Image Processing (TIP), 2022.
39
+
40
+ # Services
41
+
42
+ - Reviewer for CVPR 2022, 2023
43
+ - Reviewer for ICCV 2023
44
+ - Reviewer for ECCV 2022
45
+ - Reviewer for ICPR 2022
46
+ - Reviewer for IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
47
+ - Reviewer for Pattern Recognition (PR)
48
+
49
+ # Awards & Honors
50
+
51
+ 2021 China National Scholarship
base/examples/screenshot.jpg ADDED
base/examples/test.py ADDED
File without changes
base/generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "max_length": 16384,
6
+ "pad_token_id": 2,
7
+ "transformers_version": "4.33.1",
8
+ "use_cache": false
9
+ }
base/ixc_utils.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import numpy as np
4
+ import torchvision
5
+ from urllib.request import urlopen
6
+ from PIL import Image, ImageDraw, ImageFont
7
+ from torchvision.transforms.functional import InterpolationMode
8
+ import torchvision.transforms as transforms
9
+ from decord import VideoReader
10
+
11
+ def get_font():
12
+ truetype_url = 'https://huggingface.co/internlm/internlm-xcomposer2d5-7b/resolve/main/SimHei.ttf?download=true'
13
+ ff = urlopen(truetype_url)
14
+ font = ImageFont.truetype(ff, size=40)
15
+ return font
16
+
17
+ def padding_336(b, pad=336):
18
+ width, height = b.size
19
+ tar = int(np.ceil(height / pad) * pad)
20
+ top_padding = 0 # int((tar - height)/2)
21
+ bottom_padding = tar - height - top_padding
22
+ left_padding = 0
23
+ right_padding = 0
24
+ b = transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
25
+
26
+ return b
27
+
28
+ def Image_transform(img, hd_num=25):
29
+ width, height = img.size
30
+ trans = False
31
+ if width < height:
32
+ img = img.transpose(Image.TRANSPOSE)
33
+ trans = True
34
+ width, height = img.size
35
+ ratio = (width / height)
36
+ scale = 1
37
+ while scale * np.ceil(scale / ratio) <= hd_num:
38
+ scale += 1
39
+ scale -= 1
40
+ scale = min(np.ceil(width / 560), scale)
41
+ new_w = int(scale * 560)
42
+ new_h = int(new_w / ratio)
43
+ #print (scale, f'{height}/{new_h}, {width}/{new_w}')
44
+
45
+ img = transforms.functional.resize(img, [new_h, new_w], )
46
+ img = padding_336(img, 560)
47
+ width, height = img.size
48
+ if trans:
49
+ img = img.transpose(Image.TRANSPOSE)
50
+
51
+ return img
52
+
53
+
54
+ def Video_transform(img, hd_num=25):
55
+ width, height = img.size
56
+ trans = False
57
+ if width < height:
58
+ img = img.transpose(Image.TRANSPOSE)
59
+ trans = True
60
+ width, height = img.size
61
+ ratio = (width/ height)
62
+ scale = 1
63
+ new_h = int(scale * 560)
64
+ new_w = int(new_h * ratio)
65
+ #print (new_h, new_w)
66
+
67
+ img = transforms.functional.resize(img, [new_h, new_w],)
68
+ img = img.transpose(Image.TRANSPOSE)
69
+ img = padding_336(img, 560)
70
+ width, height = img.size
71
+ if not trans:
72
+ img = img.transpose(Image.TRANSPOSE)
73
+
74
+ return img
75
+
76
+ def frame2img(imgs, font):
77
+ new_imgs = []
78
+ for img in imgs:
79
+ w, h = img.size
80
+ scale = w/h
81
+ if w > h:
82
+ new_w = 560 * 2
83
+ new_h = int(560 * 2 / scale)
84
+ else:
85
+ new_w = int(560 * 2 * scale)
86
+ new_h = 560 * 2
87
+ img = transforms.functional.resize(img, [new_h, new_w],)
88
+ new_imgs.append(img)
89
+ imgs = new_imgs
90
+ new_w = 0
91
+ new_h = 0
92
+ pad = 40
93
+ if w > h:
94
+ for im in imgs:
95
+ w,h = im.size
96
+ new_w = max(new_w, w)
97
+ new_h += h + 10 + pad
98
+ new_img = Image.new('RGB', (new_w, new_h), 'white')
99
+ draw = ImageDraw.Draw(new_img)
100
+ curr_h = 0
101
+ for idx, im in enumerate(imgs):
102
+ w,h = im.size
103
+ new_img.paste(im, (0, pad + curr_h))
104
+ draw.text((0, curr_h ), f'<IMAGE {idx}>', font=font, fill='black')
105
+ if idx + 1 < len(imgs):
106
+ draw.line([(0, pad +curr_h + h +5), (new_w, pad +curr_h + h +5)], fill = 'black', width=2)
107
+ curr_h += h + 10 + pad
108
+ #print (new_w, new_h)
109
+ else:
110
+ for im in imgs:
111
+ w,h = im.size
112
+ new_w += w + 10
113
+ new_h = max(new_h, h)
114
+ new_h += pad
115
+ new_img = Image.new('RGB', (new_w, new_h), 'white')
116
+ draw = ImageDraw.Draw(new_img)
117
+ curr_w = 0
118
+ for idx, im in enumerate(imgs):
119
+ w,h = im.size
120
+ new_img.paste(im, (curr_w, pad))
121
+ draw.text((curr_w, 0), f'<IMAGE {idx}>', font=font, fill='black')
122
+ if idx + 1 < len(imgs):
123
+ draw.line([(curr_w + w + 5, 0), (curr_w + w + 5, new_h)], fill = 'black', width=2)
124
+ curr_w += w + 10
125
+ return new_img
126
+
127
+ def load_video(video_path, num_frm=32, start=None, end=None):
128
+ vid = VideoReader(video_path, num_threads=1)
129
+ fps = vid.get_avg_fps()
130
+ t_stride = int(round(float(fps) / int(1)))
131
+ start_idx = 0 if start is None else start
132
+ end_idx = len(vid) if end is None else end
133
+ all_pos = list(range(start_idx, end_idx, t_stride))
134
+ try:
135
+ images = [vid[i].numpy() for i in all_pos]
136
+ except:
137
+ images = [vid[i].asnumpy() for i in all_pos]
138
+ if len(images) > num_frm:
139
+ num_frm = min(num_frm, len(images))
140
+ step_size = len(images) / (num_frm + 1)
141
+ indices = [int(i*step_size) for i in range(num_frm)]
142
+ images = [images[i] for i in indices]
143
+ images = [Image.fromarray(arr) for arr in images]
144
+ return images
145
+
base/logo_en.png ADDED
base/modeling_internlm2.py ADDED
@@ -0,0 +1,991 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ import copy
22
+ import numpy as np
23
+ from typing import List, Optional, Tuple, Union
24
+ from torchvision import transforms
25
+ from torchvision.transforms.functional import InterpolationMode
26
+ from PIL import Image
27
+
28
+ import torch
29
+ import torch.nn.functional as F
30
+ import torch.utils.checkpoint
31
+ from einops import rearrange
32
+ from torch import nn
33
+ from transformers.activations import ACT2FN
34
+ from transformers.modeling_outputs import (
35
+ BaseModelOutputWithPast,
36
+ CausalLMOutputWithPast,
37
+ SequenceClassifierOutputWithPast,
38
+ )
39
+ from transformers.modeling_utils import PreTrainedModel
40
+ from transformers.utils import (
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ logging,
44
+ replace_return_docstrings,
45
+ )
46
+
47
+ try:
48
+ from transformers.generation.streamers import BaseStreamer
49
+ except: # noqa # pylint: disable=bare-except
50
+ BaseStreamer = None
51
+
52
+ from .build_mlp import PLoRA
53
+ from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config as InternLM2Config
54
+
55
+ logger = logging.get_logger(__name__)
56
+
57
+ _CONFIG_FOR_DOC = "InternLM2Config"
58
+
59
+ flash_attn_func, flash_attn_varlen_func = None, None
60
+ pad_input, index_first_axis, unpad_input = None, None, None
61
+ def _import_flash_attn():
62
+ global flash_attn_func, flash_attn_varlen_func
63
+ global pad_input, index_first_axis, unpad_input
64
+ try:
65
+ from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
66
+ from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
67
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
68
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
69
+ except ImportError:
70
+ raise ImportError("flash_attn is not installed.")
71
+
72
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
73
+ def _get_unpad_data(attention_mask):
74
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
75
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
76
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
77
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
78
+ return (
79
+ indices,
80
+ cu_seqlens,
81
+ max_seqlen_in_batch,
82
+ )
83
+
84
+
85
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
86
+ def _make_causal_mask(
87
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
88
+ ):
89
+ """
90
+ Make causal mask used for bi-directional self-attention.
91
+ """
92
+ bsz, tgt_len = input_ids_shape
93
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
94
+ mask_cond = torch.arange(mask.size(-1), device=device)
95
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
96
+ mask = mask.to(dtype)
97
+
98
+ if past_key_values_length > 0:
99
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
100
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
101
+
102
+
103
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
104
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
105
+ """
106
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
107
+ """
108
+ bsz, src_len = mask.size()
109
+ tgt_len = tgt_len if tgt_len is not None else src_len
110
+
111
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
112
+
113
+ inverted_mask = 1.0 - expanded_mask
114
+
115
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
116
+
117
+
118
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
119
+ class InternLM2RMSNorm(nn.Module):
120
+ def __init__(self, hidden_size, eps=1e-6):
121
+ """
122
+ InternLM2RMSNorm is equivalent to T5LayerNorm
123
+ """
124
+ super().__init__()
125
+ self.weight = nn.Parameter(torch.ones(hidden_size))
126
+ self.variance_epsilon = eps
127
+
128
+ def forward(self, hidden_states):
129
+ input_dtype = hidden_states.dtype
130
+ hidden_states = hidden_states.to(torch.float32)
131
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
132
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
133
+ return self.weight * hidden_states.to(input_dtype)
134
+
135
+
136
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
137
+ class InternLM2RotaryEmbedding(nn.Module):
138
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
139
+ super().__init__()
140
+
141
+ self.dim = dim
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.base = base
144
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
145
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
146
+
147
+ # Build here to make `torch.jit.trace` work.
148
+ self._set_cos_sin_cache(
149
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
150
+ )
151
+
152
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
153
+ self.max_seq_len_cached = seq_len
154
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
155
+
156
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
157
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
158
+ emb = torch.cat((freqs, freqs), dim=-1)
159
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
160
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
161
+
162
+ def forward(self, x, seq_len=None):
163
+ # x: [bs, num_attention_heads, seq_len, head_size]
164
+ if seq_len > self.max_seq_len_cached:
165
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
166
+
167
+ return (
168
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
169
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
170
+ )
171
+
172
+
173
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
174
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
175
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
176
+
177
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
178
+ self.scaling_factor = scaling_factor
179
+ super().__init__(dim, max_position_embeddings, base, device)
180
+
181
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
182
+ self.max_seq_len_cached = seq_len
183
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
184
+ t = t / self.scaling_factor
185
+
186
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
187
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
188
+ emb = torch.cat((freqs, freqs), dim=-1)
189
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
190
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
191
+
192
+
193
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
194
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
195
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
196
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
197
+ """
198
+
199
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
200
+ self.scaling_factor = scaling_factor
201
+ super().__init__(dim, max_position_embeddings, base, device)
202
+
203
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
204
+ self.max_seq_len_cached = seq_len
205
+
206
+ if seq_len > self.max_position_embeddings:
207
+ base = self.base * (
208
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
209
+ ) ** (self.dim / (self.dim - 2))
210
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
211
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
212
+
213
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
214
+
215
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
216
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
217
+ emb = torch.cat((freqs, freqs), dim=-1)
218
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
219
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
220
+
221
+
222
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
223
+ def rotate_half(x):
224
+ """Rotates half the hidden dims of the input."""
225
+ x1 = x[..., : x.shape[-1] // 2]
226
+ x2 = x[..., x.shape[-1] // 2 :]
227
+ return torch.cat((-x2, x1), dim=-1)
228
+
229
+
230
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
231
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
232
+ """Applies Rotary Position Embedding to the query and key tensors."""
233
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
234
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
235
+ q_embed = (q * cos) + (rotate_half(q) * sin)
236
+ k_embed = (k * cos) + (rotate_half(k) * sin)
237
+ return q_embed, k_embed
238
+
239
+
240
+ class InternLM2MLP(nn.Module):
241
+ def __init__(self, config):
242
+ super().__init__()
243
+ self.config = config
244
+ self.hidden_size = config.hidden_size
245
+ self.intermediate_size = config.intermediate_size
246
+ #self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
247
+ #self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
248
+ #self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
249
+
250
+ self.w1 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
251
+ lora_r=256, lora_alpha=256, lora_len=1225)
252
+ self.w3 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
253
+ lora_r=256, lora_alpha=256, lora_len=1225)
254
+ self.w2 = PLoRA(self.intermediate_size, self.hidden_size, bias=False,
255
+ lora_r=256, lora_alpha=256, lora_len=1225)
256
+
257
+ self.act_fn = ACT2FN[config.hidden_act]
258
+
259
+ def forward(self, x, im_mask):
260
+ down_proj = self.w2(self.act_fn(self.w1(x, im_mask)) * self.w3(x, im_mask), im_mask)
261
+
262
+ return down_proj
263
+
264
+
265
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
266
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
267
+ """
268
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
269
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
270
+ """
271
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
272
+ if n_rep == 1:
273
+ return hidden_states
274
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
275
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
276
+
277
+
278
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
279
+ class InternLM2Attention(nn.Module):
280
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
281
+
282
+ def __init__(self, config: InternLM2Config):
283
+ super().__init__()
284
+ self.config = config
285
+ self.hidden_size = config.hidden_size
286
+ self.num_heads = config.num_attention_heads
287
+ self.head_dim = self.hidden_size // self.num_heads
288
+ self.num_key_value_heads = config.num_key_value_heads
289
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
290
+ self.max_position_embeddings = config.max_position_embeddings
291
+ self.is_causal = True
292
+
293
+ if (self.head_dim * self.num_heads) != self.hidden_size:
294
+ raise ValueError(
295
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
296
+ f" and `num_heads`: {self.num_heads})."
297
+ )
298
+
299
+ #self.wqkv = nn.Linear(
300
+ self.wqkv = PLoRA(
301
+ self.hidden_size,
302
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
303
+ bias=config.bias,
304
+ lora_r=256, lora_alpha=256, lora_len=1225
305
+ )
306
+
307
+ #self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self.wo = PLoRA(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias,
309
+ lora_r=256, lora_alpha=256, lora_len=1225)
310
+ self._init_rope()
311
+
312
+ def _init_rope(self):
313
+ if self.config.rope_scaling is None:
314
+ self.rotary_emb = InternLM2RotaryEmbedding(
315
+ self.head_dim,
316
+ max_position_embeddings=self.max_position_embeddings,
317
+ base=self.config.rope_theta,
318
+ )
319
+ else:
320
+ scaling_type = self.config.rope_scaling["type"]
321
+ scaling_factor = self.config.rope_scaling["factor"]
322
+ if scaling_type == "dynamic":
323
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
324
+ self.head_dim,
325
+ max_position_embeddings=self.max_position_embeddings,
326
+ base=self.config.rope_theta,
327
+ scaling_factor=scaling_factor,
328
+ )
329
+ elif scaling_type == "linear":
330
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
331
+ self.head_dim,
332
+ max_position_embeddings=self.max_position_embeddings,
333
+ base=self.config.rope_theta,
334
+ scaling_factor=scaling_factor,
335
+ )
336
+ else:
337
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
338
+ return self.rotary_emb
339
+
340
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
341
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
342
+
343
+ def forward(
344
+ self,
345
+ hidden_states: torch.Tensor,
346
+ attention_mask: Optional[torch.Tensor] = None,
347
+ position_ids: Optional[torch.LongTensor] = None,
348
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
349
+ output_attentions: bool = False,
350
+ use_cache: bool = False,
351
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
352
+ **kwargs,
353
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
354
+ if "padding_mask" in kwargs:
355
+ warnings.warn(
356
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
357
+ "Please make sure use `attention_mask` instead.`"
358
+ )
359
+
360
+ bsz, q_len, _ = hidden_states.size()
361
+
362
+ qkv_states = self.wqkv(hidden_states, im_mask)
363
+
364
+ qkv_states = rearrange(
365
+ qkv_states,
366
+ "b q (h gs d) -> b q h gs d",
367
+ gs=2 + self.num_key_value_groups,
368
+ d=self.head_dim,
369
+ )
370
+
371
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
372
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
373
+ key_states = qkv_states[..., -2, :]
374
+ value_states = qkv_states[..., -1, :]
375
+
376
+ query_states = query_states.transpose(1, 2)
377
+ key_states = key_states.transpose(1, 2)
378
+ value_states = value_states.transpose(1, 2)
379
+
380
+ kv_seq_len = key_states.shape[-2]
381
+ if past_key_value is not None:
382
+ kv_seq_len += past_key_value[0].shape[-2]
383
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
384
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
385
+
386
+ if past_key_value is not None:
387
+ # reuse k, v, self_attention
388
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
389
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
390
+
391
+ past_key_value = (key_states, value_states) if use_cache else None
392
+
393
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
394
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
395
+
396
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
397
+
398
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
399
+ raise ValueError(
400
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
401
+ f" {attn_weights.size()}"
402
+ )
403
+
404
+ if attention_mask is not None:
405
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
406
+ raise ValueError(
407
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
408
+ )
409
+ attn_weights = attn_weights + attention_mask
410
+
411
+ # upcast attention to fp32
412
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
413
+ attn_output = torch.matmul(attn_weights, value_states)
414
+
415
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
416
+ raise ValueError(
417
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
418
+ f" {attn_output.size()}"
419
+ )
420
+
421
+ attn_output = attn_output.transpose(1, 2).contiguous()
422
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
423
+
424
+ attn_output = self.wo(attn_output, im_mask)
425
+
426
+ if not output_attentions:
427
+ attn_weights = None
428
+
429
+ return attn_output, attn_weights, past_key_value
430
+
431
+
432
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
433
+ class InternLM2FlashAttention2(InternLM2Attention):
434
+ """
435
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
436
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
437
+ flash attention and deal with padding tokens in case the input contains any of them.
438
+ """
439
+
440
+ def forward(
441
+ self,
442
+ hidden_states: torch.Tensor,
443
+ attention_mask: Optional[torch.LongTensor] = None,
444
+ position_ids: Optional[torch.LongTensor] = None,
445
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
446
+ output_attentions: bool = False,
447
+ use_cache: bool = False,
448
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
449
+ **kwargs,
450
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
451
+ # InternLM2FlashAttention2 attention does not support output_attentions
452
+ if "padding_mask" in kwargs:
453
+ warnings.warn(
454
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
455
+ "Please make sure use `attention_mask` instead.`"
456
+ )
457
+
458
+ # overwrite attention_mask with padding_mask
459
+ attention_mask = kwargs.pop("padding_mask")
460
+
461
+ output_attentions = False
462
+
463
+ bsz, q_len, _ = hidden_states.size()
464
+
465
+ qkv_states = self.wqkv(hidden_states, im_mask)
466
+
467
+ qkv_states = rearrange(
468
+ qkv_states,
469
+ "b q (h gs d) -> b q h gs d",
470
+ gs=2 + self.num_key_value_groups,
471
+ d=self.head_dim,
472
+ )
473
+
474
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
475
+ query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
476
+ key_states = qkv_states[..., -2, :]
477
+ value_states = qkv_states[..., -1, :]
478
+
479
+ query_states = query_states.transpose(1, 2)
480
+ key_states = key_states.transpose(1, 2)
481
+ value_states = value_states.transpose(1, 2)
482
+
483
+ kv_seq_len = key_states.shape[-2]
484
+ if past_key_value is not None:
485
+ kv_seq_len += past_key_value[0].shape[-2]
486
+
487
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
488
+
489
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
490
+
491
+ if past_key_value is not None:
492
+ # reuse k, v, self_attention
493
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
494
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
495
+
496
+ past_key_value = (key_states, value_states) if use_cache else None
497
+
498
+ query_states = query_states.transpose(1, 2)
499
+ key_states = key_states.transpose(1, 2)
500
+ value_states = value_states.transpose(1, 2)
501
+
502
+ attn_output = self._flash_attention_forward(
503
+ query_states, key_states, value_states, attention_mask, q_len
504
+ )
505
+
506
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
507
+ attn_output = self.wo(attn_output, im_mask)
508
+
509
+ if not output_attentions:
510
+ attn_weights = None
511
+
512
+ return attn_output, attn_weights, past_key_value
513
+
514
+ def _flash_attention_forward(
515
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
516
+ ):
517
+ """
518
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
519
+ first unpad the input, then computes the attention scores and pad the final attention scores.
520
+
521
+ Args:
522
+ query_states (`torch.Tensor`):
523
+ Input query states to be passed to Flash Attention API
524
+ key_states (`torch.Tensor`):
525
+ Input key states to be passed to Flash Attention API
526
+ value_states (`torch.Tensor`):
527
+ Input value states to be passed to Flash Attention API
528
+ attention_mask (`torch.Tensor`):
529
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
530
+ position of padding tokens and 1 for the position of non-padding tokens.
531
+ dropout (`int`, *optional*):
532
+ Attention dropout
533
+ softmax_scale (`float`, *optional*):
534
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
535
+ """
536
+ # Contains at least one padding token in the sequence
537
+ causal = self.is_causal and query_length != 1
538
+ if attention_mask is not None:
539
+ batch_size = query_states.shape[0]
540
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
541
+ query_states, key_states, value_states, attention_mask, query_length
542
+ )
543
+
544
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
545
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
546
+
547
+ attn_output_unpad = flash_attn_varlen_func(
548
+ query_states,
549
+ key_states,
550
+ value_states,
551
+ cu_seqlens_q=cu_seqlens_q,
552
+ cu_seqlens_k=cu_seqlens_k,
553
+ max_seqlen_q=max_seqlen_in_batch_q,
554
+ max_seqlen_k=max_seqlen_in_batch_k,
555
+ dropout_p=dropout,
556
+ softmax_scale=softmax_scale,
557
+ causal=causal,
558
+ )
559
+
560
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
561
+ else:
562
+ attn_output = flash_attn_func(
563
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
564
+ )
565
+
566
+ return attn_output
567
+
568
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
569
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
570
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
571
+
572
+ key_layer = index_first_axis(
573
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
574
+ )
575
+ value_layer = index_first_axis(
576
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
577
+ )
578
+
579
+ if query_length == kv_seq_len:
580
+ query_layer = index_first_axis(
581
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
582
+ )
583
+ cu_seqlens_q = cu_seqlens_k
584
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
585
+ indices_q = indices_k
586
+ elif query_length == 1:
587
+ max_seqlen_in_batch_q = 1
588
+ cu_seqlens_q = torch.arange(
589
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
590
+ ) # There is a memcpy here, that is very bad.
591
+ indices_q = cu_seqlens_q[:-1]
592
+ query_layer = query_layer.squeeze(1)
593
+ else:
594
+ # The -q_len: slice assumes left padding.
595
+ attention_mask = attention_mask[:, -query_length:]
596
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
597
+
598
+ return (
599
+ query_layer,
600
+ key_layer,
601
+ value_layer,
602
+ indices_q.to(torch.int64),
603
+ (cu_seqlens_q, cu_seqlens_k),
604
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
605
+ )
606
+
607
+ INTERNLM2_ATTENTION_CLASSES = {
608
+ "eager": InternLM2Attention,
609
+ "flash_attention_2": InternLM2FlashAttention2,
610
+ }
611
+
612
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
613
+ class InternLM2DecoderLayer(nn.Module):
614
+ def __init__(self, config: InternLM2Config):
615
+ super().__init__()
616
+ self.hidden_size = config.hidden_size
617
+
618
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
619
+
620
+ self.feed_forward = InternLM2MLP(config)
621
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
622
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
623
+
624
+ def forward(
625
+ self,
626
+ hidden_states: torch.Tensor,
627
+ attention_mask: Optional[torch.Tensor] = None,
628
+ position_ids: Optional[torch.LongTensor] = None,
629
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
630
+ output_attentions: Optional[bool] = False,
631
+ use_cache: Optional[bool] = False,
632
+ im_mask: Optional[Tuple[torch.Tensor]] = None,
633
+ **kwargs,
634
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
635
+ """
636
+ Args:
637
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
638
+ attention_mask (`torch.FloatTensor`, *optional*):
639
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
640
+ query_sequence_length, key_sequence_length)` if default attention is used.
641
+ output_attentions (`bool`, *optional*):
642
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
643
+ returned tensors for more detail.
644
+ use_cache (`bool`, *optional*):
645
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
646
+ (see `past_key_values`).
647
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
648
+ """
649
+ if "padding_mask" in kwargs:
650
+ warnings.warn(
651
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. "
652
+ "Please make sure use `attention_mask` instead.`"
653
+ )
654
+
655
+ residual = hidden_states
656
+
657
+ hidden_states = self.attention_norm(hidden_states)
658
+
659
+ # Self Attention
660
+ hidden_states, self_attn_weights, present_key_value = self.attention(
661
+ hidden_states=hidden_states,
662
+ attention_mask=attention_mask,
663
+ position_ids=position_ids,
664
+ past_key_value=past_key_value,
665
+ output_attentions=output_attentions,
666
+ use_cache=use_cache,
667
+ im_mask=im_mask,
668
+ **kwargs,
669
+ )
670
+ hidden_states = residual + hidden_states
671
+
672
+ # Fully Connected
673
+ residual = hidden_states
674
+ hidden_states = self.ffn_norm(hidden_states)
675
+ hidden_states = self.feed_forward(hidden_states, im_mask)
676
+ hidden_states = residual + hidden_states
677
+
678
+ outputs = (hidden_states,)
679
+
680
+ if output_attentions:
681
+ outputs += (self_attn_weights,)
682
+
683
+ if use_cache:
684
+ outputs += (present_key_value,)
685
+
686
+ return outputs
687
+
688
+
689
+ InternLM2_START_DOCSTRING = r"""
690
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
691
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
692
+ etc.)
693
+
694
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
695
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
696
+ and behavior.
697
+
698
+ Parameters:
699
+ config ([`InternLM2Config`]):
700
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
701
+ load the weights associated with the model, only the configuration. Check out the
702
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
703
+ """
704
+
705
+
706
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
707
+ @add_start_docstrings(
708
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
709
+ InternLM2_START_DOCSTRING,
710
+ )
711
+ class InternLM2PreTrainedModel(PreTrainedModel):
712
+ config_class = InternLM2Config
713
+ base_model_prefix = "model"
714
+ supports_gradient_checkpointing = True
715
+ _no_split_modules = ["InternLM2DecoderLayer"]
716
+ _skip_keys_device_placement = "past_key_values"
717
+
718
+ def _init_weights(self, module):
719
+ std = self.config.initializer_range
720
+ if isinstance(module, nn.Linear):
721
+ module.weight.data.normal_(mean=0.0, std=std)
722
+ if module.bias is not None:
723
+ module.bias.data.zero_()
724
+ elif isinstance(module, nn.Embedding):
725
+ module.weight.data.normal_(mean=0.0, std=std)
726
+ if module.padding_idx is not None:
727
+ module.weight.data[module.padding_idx].zero_()
728
+
729
+
730
+ InternLM2_INPUTS_DOCSTRING = r"""
731
+ Args:
732
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
733
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
734
+ it.
735
+
736
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
737
+ [`PreTrainedTokenizer.__call__`] for details.
738
+
739
+ [What are input IDs?](../glossary#input-ids)
740
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
741
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
742
+
743
+ - 1 for tokens that are **not masked**,
744
+ - 0 for tokens that are **masked**.
745
+
746
+ [What are attention masks?](../glossary#attention-mask)
747
+
748
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
749
+ [`PreTrainedTokenizer.__call__`] for details.
750
+
751
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
752
+ `past_key_values`).
753
+
754
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
755
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
756
+ information on the default strategy.
757
+
758
+ - 1 indicates the head is **not masked**,
759
+ - 0 indicates the head is **masked**.
760
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
761
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
762
+ config.n_positions - 1]`.
763
+
764
+ [What are position IDs?](../glossary#position-ids)
765
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
766
+ when `config.use_cache=True`):
767
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
768
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
769
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
770
+
771
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
772
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
773
+
774
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
775
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
776
+ of shape `(batch_size, sequence_length)`.
777
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
778
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
779
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
780
+ model's internal embedding lookup matrix.
781
+ use_cache (`bool`, *optional*):
782
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
783
+ `past_key_values`).
784
+ output_attentions (`bool`, *optional*):
785
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
786
+ tensors for more detail.
787
+ output_hidden_states (`bool`, *optional*):
788
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
789
+ more detail.
790
+ return_dict (`bool`, *optional*):
791
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
792
+ """
793
+
794
+
795
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
796
+ @add_start_docstrings(
797
+ "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
798
+ InternLM2_START_DOCSTRING,
799
+ )
800
+ class InternLM2Model(InternLM2PreTrainedModel):
801
+ """
802
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
803
+
804
+ Args:
805
+ config: InternLM2Config
806
+ """
807
+
808
+ _auto_class = "AutoModel"
809
+
810
+ def __init__(self, config: InternLM2Config):
811
+ super().__init__(config)
812
+ self.padding_idx = config.pad_token_id
813
+ self.vocab_size = config.vocab_size
814
+ self.config = config
815
+
816
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
817
+
818
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
819
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
820
+
821
+ self.gradient_checkpointing = False
822
+ # Initialize weights and apply final processing
823
+ self.post_init()
824
+
825
+ def get_input_embeddings(self):
826
+ return self.tok_embeddings
827
+
828
+ def set_input_embeddings(self, value):
829
+ self.tok_embeddings = value
830
+
831
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
832
+ # create causal mask
833
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
834
+ combined_attention_mask = None
835
+ if input_shape[-1] > 1:
836
+ combined_attention_mask = _make_causal_mask(
837
+ input_shape,
838
+ inputs_embeds.dtype,
839
+ device=inputs_embeds.device,
840
+ past_key_values_length=past_key_values_length,
841
+ )
842
+
843
+ if attention_mask is not None:
844
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
845
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
846
+ inputs_embeds.device
847
+ )
848
+ combined_attention_mask = (
849
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
850
+ )
851
+
852
+ return combined_attention_mask
853
+
854
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
855
+ def forward(
856
+ self,
857
+ input_ids: torch.LongTensor = None,
858
+ attention_mask: Optional[torch.Tensor] = None,
859
+ position_ids: Optional[torch.LongTensor] = None,
860
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
861
+ inputs_embeds: Optional[torch.FloatTensor] = None,
862
+ use_cache: Optional[bool] = None,
863
+ output_attentions: Optional[bool] = None,
864
+ output_hidden_states: Optional[bool] = None,
865
+ return_dict: Optional[bool] = None,
866
+ **kwargs
867
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
868
+
869
+ im_mask = kwargs.get('im_mask', None)
870
+
871
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
872
+ output_hidden_states = (
873
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
874
+ )
875
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
876
+
877
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
878
+
879
+ if self.config.attn_implementation == "flash_attention_2":
880
+ _import_flash_attn()
881
+
882
+ # retrieve input_ids and inputs_embeds
883
+ if input_ids is not None and inputs_embeds is not None:
884
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
885
+ elif input_ids is not None:
886
+ batch_size, seq_length = input_ids.shape[:2]
887
+ elif inputs_embeds is not None:
888
+ batch_size, seq_length = inputs_embeds.shape[:2]
889
+ else:
890
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
891
+
892
+ seq_length_with_past = seq_length
893
+ past_key_values_length = 0
894
+ if past_key_values is not None:
895
+ past_key_values_length = past_key_values[0][0].shape[2]
896
+ seq_length_with_past = seq_length_with_past + past_key_values_length
897
+
898
+ if position_ids is None:
899
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
900
+ position_ids = torch.arange(
901
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
902
+ )
903
+ position_ids = position_ids.unsqueeze(0)
904
+
905
+ if inputs_embeds is None:
906
+ inputs_embeds = self.tok_embeddings(input_ids)
907
+ im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device).bool()
908
+
909
+ if self.config.attn_implementation == "flash_attention_2":
910
+ # 2d mask is passed through the layers
911
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
912
+ else:
913
+ if attention_mask is None:
914
+ attention_mask = torch.ones(
915
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
916
+ )
917
+ attention_mask = self._prepare_decoder_attention_mask(
918
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
919
+ )
920
+
921
+ # embed positions
922
+ hidden_states = inputs_embeds
923
+
924
+ if self.gradient_checkpointing and self.training:
925
+ if use_cache:
926
+ logger.warning_once(
927
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
928
+ )
929
+ use_cache = False
930
+
931
+ # decoder layers
932
+ all_hidden_states = () if output_hidden_states else None
933
+ all_self_attns = () if output_attentions else None
934
+ next_decoder_cache = () if use_cache else None
935
+
936
+ for idx, decoder_layer in enumerate(self.layers):
937
+ if output_hidden_states:
938
+ all_hidden_states += (hidden_states,)
939
+
940
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
941
+
942
+ if self.gradient_checkpointing and self.training:
943
+
944
+ def create_custom_forward(module):
945
+ def custom_forward(*inputs):
946
+ # None for past_key_value
947
+ return module(*inputs, output_attentions, None, im_mask)
948
+
949
+ return custom_forward
950
+
951
+ layer_outputs = torch.utils.checkpoint.checkpoint(
952
+ create_custom_forward(decoder_layer),
953
+ hidden_states,
954
+ attention_mask,
955
+ position_ids,
956
+ None,
957
+ )
958
+ else:
959
+ layer_outputs = decoder_layer(
960
+ hidden_states,
961
+ attention_mask=attention_mask,
962
+ position_ids=position_ids,
963
+ past_key_value=past_key_value,
964
+ output_attentions=output_attentions,
965
+ use_cache=use_cache,
966
+ im_mask=im_mask,
967
+ )
968
+
969
+ hidden_states = layer_outputs[0]
970
+
971
+ if use_cache:
972
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
973
+
974
+ if output_attentions:
975
+ all_self_attns += (layer_outputs[1],)
976
+
977
+ hidden_states = self.norm(hidden_states)
978
+
979
+ # add hidden states from the last decoder layer
980
+ if output_hidden_states:
981
+ all_hidden_states += (hidden_states,)
982
+
983
+ next_cache = next_decoder_cache if use_cache else None
984
+ if not return_dict:
985
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
986
+ return BaseModelOutputWithPast(
987
+ last_hidden_state=hidden_states,
988
+ past_key_values=next_cache,
989
+ hidden_states=all_hidden_states,
990
+ attentions=all_self_attns,
991
+ )