# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from transformers import AutoConfig, AutoModelForCausalLM from modeling_qwen import * from configuration_qwen import Qwen2Config from transformers.modeling_outputs import CausalLMOutputWithPast from llava_arch import LlavaMetaModel, LlavaMetaForCausalLM class GroundQwenConfig(Qwen2Config): model_type = "ground_qwen" class LlavaQwenModel(LlavaMetaModel, Qwen2Model): config_class = GroundQwenConfig def __init__(self, config: Qwen2Config): super(LlavaQwenModel, self).__init__(config) class GroundQwenForCausalLM(Qwen2ForCausalLM, LlavaMetaForCausalLM): config_class = GroundQwenConfig supports_gradient_checkpointing = True def __init__(self, config): super(Qwen2ForCausalLM, self).__init__(config) self.model = LlavaQwenModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.vocab_size = config.vocab_size # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, LlavaQwenModel): module.gradient_checkpointing = value def forward_grounding( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, qs_ids: Optional[torch.LongTensor] = None, qs_mask: Optional[torch.Tensor] = None, time_labels: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, projector: Optional[torch.LongTensor] = None, select_layer: Optional[int] = None, return_simi: Optional[bool] = False, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, clip_embeds, qs_embeds, qs_mask, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, qs_ids, qs_mask, past_key_values, labels, images, projector ) if isinstance(labels, tuple): labels, indicators = labels else: indicators = None loss, similarity, global_memory, clip_memory = super().forward_grounding_hm( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, clip_embeds=torch.stack(clip_embeds, dim=0), qs_embeds=qs_embeds, qs_mask=qs_mask, labels=labels, time_labels=time_labels, indicators=indicators, return_simi=return_simi, select_layer=100, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) return similarity, global_memory, clip_memory def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, qs_ids: Optional[torch.LongTensor] = None, qs_mask: Optional[torch.Tensor] = None, time_labels: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, projector: Optional[torch.LongTensor] = None, select_layer: Optional[int] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, clip_embeds, qs_embeds, qs_mask, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, qs_ids, qs_mask, past_key_values, labels, images, projector ) if isinstance(labels, tuple): labels, indicators = labels else: indicators = None loss, similarity = super().forward_grounding_hm( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, clip_embeds=torch.stack(clip_embeds, dim=0), qs_embeds=qs_embeds, qs_mask=qs_mask, labels=labels, time_labels=time_labels, indicators=indicators, select_layer=100, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) return CausalLMOutputWithPast(loss=loss, past_key_values=past_key_values) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, indicators=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, indicators=indicators, **kwargs ) if images is not None: _inputs['images'] = images return _inputs AutoConfig.register("ground_qwen", GroundQwenConfig) AutoModelForCausalLM.register(GroundQwenConfig, GroundQwenForCausalLM)