# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod import numpy as np import torch import torch.nn as nn from builder_encoder import build_vision_tower from builder_projector import build_vision_projector from constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN class LlavaMetaModel: def __init__(self, config): super(LlavaMetaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=False) self.mm_projector = build_vision_projector(config) def get_vision_tower(self): vision_tower = getattr(self, 'vision_tower', None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_vision_modules(self, model_args, fsdp=None): vision_tower = model_args.vision_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_vision_tower = vision_tower if self.get_vision_tower() is None: vision_tower = build_vision_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.vision_tower = [vision_tower] else: self.vision_tower = vision_tower else: if fsdp is not None and len(fsdp) > 0: vision_tower = self.vision_tower[0] else: vision_tower = self.vision_tower vision_tower.load_model() self.config.use_mm_proj = True self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') self.config.mm_hidden_size = vision_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature if getattr(self, 'mm_projector', None) is None: self.mm_projector = build_vision_projector(self.config) else: # In case it is frozen by LoRA for p in self.mm_projector.parameters(): p.requires_grad = True if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') def get_w(weights, keyword): return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} self.mm_projector = build_vision_projector(self.config) self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=False) class LlavaMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_images(self, images, base_mode=False): clip_features = self.get_model().get_vision_tower()(images) if not base_mode: clip_features = self.mix_spatial_tokens(clip_features) else: clip_features = self.mix_spatial_tokens(clip_features) image_features = self.get_model().mm_projector(clip_features) return clip_features, image_features def extract_images(self, images): image_features_list = [] block_size = 16 for i in range(0, images.shape[0], block_size): image_features = self.get_model().get_vision_tower()(images[i: i+block_size]) image_features_list.append(image_features) image_features = torch.cat(image_features_list, dim=0) assert image_features.shape[0] == images.shape[0] return image_features def project_features(self, features): proj_features = self.get_model().mm_projector(features) return proj_features def mix_spatial_tokens(self, features): # features b n c # output b n//4 4c b, n, c = features.shape h = int(np.sqrt(n)) features = features.view(b, h//2, 2, h//2, 2, c).permute(0, 1, 3, 2, 4, 5).contiguous() features = features.view(b, n//4, 4*c).contiguous() return features def prepare_inputs_labels_for_multimodal( self, input_ids, position_ids, attention_mask, qs_ids, qs_mask, past_key_values, labels, images, projector ): vision_tower = self.get_vision_tower() if hasattr(self.get_model().mm_projector, 'num_slot'): base_mode = False num_slot = self.get_model().mm_projector.num_slot elif hasattr(self.get_model().mm_projector, 'resolution'): base_mode = False pool_num = self.get_model().mm_projector.pool_num resolution = self.get_model().mm_projector.resolution + pool_num else: base_mode = True if vision_tower is None or images is None or input_ids.shape[1] == 1: if isinstance(past_key_values, tuple) and vision_tower is not None and images is not None and input_ids.shape[1] == 1: target_shape = past_key_values[-1][-1].shape[-2] + 1 attention_mask = torch.cat((attention_mask, torch.ones( (attention_mask.shape[0], target_shape - attention_mask.shape[1]), dtype=attention_mask.dtype, device=attention_mask.device )), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 elif past_key_values is not None and past_key_values.seqlen_offset>0: target_shape = past_key_values.seqlen_offset + 1 attention_mask = torch.cat((attention_mask, torch.ones( (attention_mask.shape[0], target_shape - attention_mask.shape[1]), dtype=attention_mask.dtype, device=attention_mask.device )), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 return input_ids, position_ids, attention_mask, past_key_values, None, None, None, None, labels ''' using pre-extraced video features if type(images) is list: concat_images = [] concat_features = [] modality_indicators = [] for image, projector_type in zip(images, projector): if image.ndim == 2: # pre-extracted feature concat_features.append(image) modality_indicators.append(2) elif image.ndim == 3: # single image concat_images.append(image.unsqueeze(0)) modality_indicators.append(1) elif image.ndim == 4: # multiple frames concat_images.append(image) modality_indicators.append(2) concat_images = torch.cat(concat_images, dim=0) concat_features = torch.stack(concat_features, dim=0) concat_images = self.extract_images(concat_images) concat_images, concat_features = self.project_features([concat_images, concat_features]) # concat_combine = torch.cat([concat_images.reshape(-1, concat_images.shape[-1]), concat_features.reshape(-1, concat_features.shape[-1])], dim=0) # concat_combine = self.project_features(concat_combine) # concat_images = concat_combine[:concat_images.shape[0]*concat_images.shape[1]].contiguous().view(*concat_images.shape[:2], -1) # concat_features = concat_combine[concat_images.shape[0]*concat_images.shape[1]:].contiguous().view(*concat_features.shape[:2], -1) image_features = [] image_index = 0 feature_index = 0 for image in images: if image.ndim == 2: image_features.append(concat_features[feature_index]) feature_index += 1 elif image.ndim == 3: image_features.append(concat_images[image_index]) image_index += 1 elif image.ndim == 4: image_features.append(concat_images[image_index: image_index+image.shape[0]].flatten(0, 1)) image_index += image.shape[0] image_features = [x.to(self.device) for x in image_features] ''' if qs_ids is not None: qs_embeds = self.get_model().embed_tokens(qs_ids) else: qs_embeds = None assert len(images) == len(input_ids) if type(images) is list: concat_images = [] concat_videos = [] modality_indicators = [] for image in images: if image.ndim == 3: # single image concat_images.append(image.unsqueeze(0)) modality_indicators.append(1) elif image.ndim == 4: # multiple frames concat_videos.append(image) modality_indicators.append(2) concat_images = torch.cat(concat_images, dim=0) # n c h w concat_videos = torch.stack(concat_videos, dim=0) # n t c h w mix_image_video = torch.cat([concat_images, concat_videos.view(-1, *concat_videos.shape[2:])], dim=0) # m c h w mix_image_video = self.extract_images(mix_image_video) # m k c if not base_mode: mix_image_video = self.mix_spatial_tokens(mix_image_video) concat_images = mix_image_video[:concat_images.shape[0]].contiguous() # n k c concat_videos = mix_image_video[concat_images.shape[0]:].contiguous().view( concat_videos.shape[0], concat_videos.shape[1]*mix_image_video.shape[1], mix_image_video.shape[2]) # n, tk, c else: mix_image_video = self.mix_spatial_tokens(mix_image_video) concat_images = mix_image_video[:concat_images.shape[0]].contiguous() # n k c concat_videos = mix_image_video[concat_images.shape[0]:].contiguous().view( concat_videos.shape[0], concat_videos.shape[1], mix_image_video.shape[1], mix_image_video.shape[2]) # n, t, k, c clip_features = [] image_index = 0 video_index = 0 for image in images: if image.ndim == 3: clip_features.append(concat_images[image_index]) image_index += 1 elif image.ndim == 4: clip_features.append(concat_videos[video_index]) video_index += 1 clip_features = [x.to(self.device) for x in clip_features] concat_images, concat_videos = self.project_features([concat_images, concat_videos]) image_features = [] image_index = 0 video_index = 0 for image in images: if image.ndim == 3: image_features.append(concat_images[image_index]) image_index += 1 elif image.ndim == 4: image_features.append(concat_videos[video_index]) video_index += 1 image_features = [x.to(self.device) for x in image_features] elif images.ndim == 5: modality_indicators = [2 for _ in range(images.shape[0])] concat_images = images.view(-1, *images.shape[2:]) # nt c h w image_features = self.extract_images(concat_images) # image_features = image_features.view(images.shape[0], images.shape[1], image_features.shape[1], image_features.shape[2]) # n t k c # time_token = torch.mean(image_features, dim=2) # n t c # spatial_token = torch.mean(image_features, dim=1) # n k c # token = torch.cat([time_token, spatial_token], dim=1) # output = self.project_features(token) # n t+k c # image_features = [x.to(self.device) for x in output] if not base_mode: image_features = self.mix_spatial_tokens(image_features) # nt k c image_features = image_features.view(images.shape[0], images.shape[1]*image_features.shape[1], image_features.shape[2]) # n tk c else: image_features = self.mix_spatial_tokens(image_features) # nt k c image_features = image_features.view(images.shape[0], images.shape[1], image_features.shape[1], image_features.shape[2]) # n t k c clip_features = [x.to(self.device) for x in image_features] image_features = self.project_features(image_features) image_features = [x.to(self.device) for x in image_features] elif images.ndim == 3: modality_indicators = [2 for _ in range(images.shape[0])] image_features = self.project_features(images).to(self.device) else: modality_indicators = [1 for _ in range(images.shape[0])] clip_features, image_features = self.encode_images(images, base_mode) clip_features = [x.to(self.device) for x in clip_features] image_features = [x.to(self.device) for x in image_features] # TODO: image start / end is not implemented here to support pretraining. if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): raise NotImplementedError # Let's just add dummy tensors if they do not exist, # it is a headache to deal with None all the time. # But it is not ideal, and if you have a better idea, # please open an issue / submit a PR, thanks. _labels = labels _position_ids = position_ids _attention_mask = attention_mask if attention_mask is None: attention_mask = torch.ones_like(input_ids, dtype=torch.bool) else: attention_mask = attention_mask.bool() if position_ids is None: position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) if labels is None: labels = torch.full_like(input_ids, IGNORE_INDEX) indicators = torch.zeros_like(input_ids) # remove the padding using attention_mask -- TODO: double check input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] indicators = [cur_indicators[cur_attention_mask] for cur_indicators, cur_attention_mask in zip(indicators, attention_mask)] new_input_embeds = [] new_labels = [] new_indicators = [] cur_image_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() if num_images == 0: cur_image_features = image_features[cur_image_idx] cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) new_input_embeds.append(cur_input_embeds) new_labels.append(labels[batch_idx]) new_indicators.append(indicators[batch_idx]) cur_image_idx += 1 continue image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] cur_input_ids_noim = [] cur_labels = labels[batch_idx] cur_labels_noim = [] cur_indicators = indicators[batch_idx] cur_indicators_noim = [] for i in range(len(image_token_indices) - 1): cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]]) cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]]) cur_indicators_noim.append(cur_indicators[image_token_indices[i]+1:image_token_indices[i+1]]) split_sizes = [x.shape[0] for x in cur_labels_noim] cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) cur_new_input_embeds = [] cur_new_labels = [] cur_new_indicators = [] if True: # stage 2 for i in range(num_images + 1): cur_new_input_embeds.append(cur_input_embeds_no_im[i]) cur_new_labels.append(cur_labels_noim[i]) cur_new_indicators.append(cur_indicators_noim[i]) if i < num_images: cur_image_features = image_features[cur_image_idx] if hasattr(self.get_model().mm_projector, 'resolution'): assert (cur_image_features.shape[0]-1) % resolution == 0 num_slot = (cur_image_features.shape[0]-1) // resolution * pool_num cur_image_idx += 1 cur_new_input_embeds.append(cur_image_features) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) tmp = modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype) try: tmp[-num_slot-1: -1] = 100 tmp[-1] = 200 except: pass cur_new_indicators.append(tmp) # cur_new_indicators.append(modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype)) # cur_new_indicators.append(torch.ones((self.config.n_slot,), device=cur_indicators.device, dtype=cur_indicators.dtype)+1) if False: # stage 1 for i in range(num_images + 1): cur_new_input_embeds.append(cur_input_embeds_no_im[i]) cur_new_labels.append(cur_labels_noim[i]) cur_new_indicators.append(cur_indicators_noim[i]) if i < num_images: cur_image_features = image_features[cur_image_idx] if hasattr(self.get_model().mm_projector, 'resolution'): assert cur_image_features.shape[0] % resolution == 0 num_slot = cur_image_features.shape[0] // resolution * pool_num cur_image_idx += 1 cur_new_input_embeds.append(cur_image_features) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) tmp = modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype) tmp[-num_slot:] = 100 cur_new_indicators.append(tmp) # cur_new_indicators.append(modality_indicators[batch_idx]*torch.ones((cur_image_features.shape[0],), device=cur_indicators.device, dtype=cur_indicators.dtype)) # cur_new_indicators.append(torch.ones((self.config.n_slot,), device=cur_indicators.device, dtype=cur_indicators.dtype)+1) cur_new_input_embeds = torch.cat(cur_new_input_embeds) cur_new_labels = torch.cat(cur_new_labels) cur_new_indicators = torch.cat(cur_new_indicators) new_input_embeds.append(cur_new_input_embeds) new_labels.append(cur_new_labels) new_indicators.append(cur_new_indicators) # Truncate sequences to max length as image embeddings can make the sequence longer tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None) if tokenizer_model_max_length is not None: new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] new_labels = [x[:tokenizer_model_max_length] for x in new_labels] new_indicators = [x[:tokenizer_model_max_length] for x in new_indicators] # Combine them max_len = max(x.shape[0] for x in new_input_embeds) batch_size = len(new_input_embeds) new_input_embeds_padded = [] new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) new_indicators_padded = torch.zeros((batch_size, max_len), dtype=new_indicators[0].dtype, device=new_indicators[0].device) attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) for i, (cur_new_embed, cur_new_labels, cur_new_indicators) in enumerate(zip(new_input_embeds, new_labels, new_indicators)): cur_len = cur_new_embed.shape[0] if getattr(self.config, 'tokenizer_padding_side', 'right') == "left": new_input_embeds_padded.append(torch.cat(( torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed ), dim=0)) if cur_len > 0: new_labels_padded[i, -cur_len:] = cur_new_labels new_indicators_padded[i, -cur_len:] = cur_new_indicators attention_mask[i, -cur_len:] = True position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) else: new_input_embeds_padded.append(torch.cat(( cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device) ), dim=0)) if cur_len > 0: new_labels_padded[i, :cur_len] = cur_new_labels new_indicators_padded[i, :cur_len] = cur_new_indicators attention_mask[i, :cur_len] = True position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) new_indicators = new_indicators_padded # print('finish preparing labels multimodal') if _labels is None: new_labels = None else: new_labels = new_labels_padded if _attention_mask is None: attention_mask = None else: attention_mask = attention_mask.to(dtype=_attention_mask.dtype) if _position_ids is None: position_ids = None if base_mode: return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels else: return None, position_ids, attention_mask, past_key_values, new_input_embeds, clip_features, qs_embeds, qs_mask, (new_labels, new_indicators) def initialize_vision_tokenizer(self, model_args, tokenizer): if model_args.mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if model_args.mm_use_im_start_end: num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if model_args.pretrain_mm_mlp_adapter: mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") elif model_args.mm_use_im_patch_token: if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = False for p in self.get_output_embeddings().parameters(): p.requires_grad = False