# coding=utf-8 # Copyright 2024 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os from typing import Optional, Tuple import torch import torch.nn.functional as F from transformers.utils import is_flash_attn_2_available if is_flash_attn_2_available(): from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa from flash_attn import flash_attn_func, flash_attn_varlen_func _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]: """ Retrieves indexing data required to repad unpadded (ragged) tensors. Arguments: attention_mask (`torch.Tensor`): Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. Return: indices (`torch.Tensor): The indices of non-masked tokens from the flattened input sequence. cu_seqlens (`torch.Tensor`): The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). max_seqlen_in_batch (`int`): Maximum sequence length in batch. """ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) def _upad_input( query_layer: torch.Tensor, key_layer: torch.Tensor, value_layer: torch.Tensor, attention_mask: torch.Tensor, query_length: int, ): """ Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches. This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary tensors for query, key, value tensors. Arguments: query_layer (`torch.Tensor`): Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim). key_layer (`torch.Tensor`): Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). value_layer (`torch.Tensor`): Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). attention_mask (`torch.Tensor`): Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. query_length (`int`): Target length. Return: query_layer (`torch.Tensor): Query state without padding. Shape: (total_target_length, num_heads, head_dim). key_layer (`torch.Tensor`): Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). value_layer (`torch.Tensor`): Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). indices_q (`torch.Tensor`): The indices of non-masked tokens from the flattened input target sequence. (cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`): The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`): Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value). """ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) def prepare_fa2_from_position_ids(query, key, value, position_ids): """ This function returns necessary arguments to call `flash_attn_varlen_func`. All three query, key, value states will be flattened. Cummulative lengths of each examples in the batch will be extracted from position_ids. NOTE: ideally cummulative lengths should be prepared at the data collator stage Arguments: query (`torch.Tensor`): Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim). key (`torch.Tensor`): Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). value (`torch.Tensor`): Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). position_ids (`torch.Tensor`): Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. Return: query (`torch.Tensor): Query state without padding. Shape: (total_target_length, num_heads, head_dim). key (`torch.Tensor`): Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). value (`torch.Tensor`): Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). indices_q (`torch.Tensor`): The indices of non-masked tokens from the flattened input target sequence. (cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`): The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`): Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value). """ query = query.view(-1, query.size(-2), query.size(-1)) key = key.view(-1, key.size(-2), key.size(-1)) value = value.view(-1, value.size(-2), value.size(-1)) position_ids = position_ids.flatten() indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32) cu_seq_lens = torch.cat( ( indices_q[position_ids == 0], torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32), ) ) max_length = position_ids.max() + 1 return (query, key, value, indices_q, (cu_seq_lens, cu_seq_lens), (max_length, max_length)) def _flash_attention_forward( query_states: torch.Tensor, key_states: torch.Tensor, value_states: torch.Tensor, attention_mask: torch.Tensor, query_length: int, is_causal: bool, dropout: float = 0.0, position_ids: Optional[torch.Tensor] = None, softmax_scale: Optional[float] = None, sliding_window: Optional[int] = None, use_top_left_mask: bool = False, softcap: Optional[float] = None, deterministic: bool = None, ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) use_top_left_mask (`bool`, defaults to `False`): flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. softcap (`float`, *optional*): Softcap for the attention logits, used e.g. in gemma2. deterministic (`bool`, *optional*): Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled. """ if not use_top_left_mask: causal = is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__. causal = is_causal and query_length != 1 # Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length). use_sliding_windows = ( _flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window ) flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {} if deterministic is None: deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1" flash_kwargs["deterministic"] = deterministic if softcap is not None: flash_kwargs["softcap"] = softcap # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) # if position_ids is provided and check not all examples (row) contain only 1 sequence, and is in pre-fill/training stage # then use `flash_attn_varlen_func` to prevent cross-example attention and also allow padding free approach elif ( position_ids is not None and not (position_ids[:, -1] == position_ids.size(1) - 1).all() and query_length != 1 ): batch_size = query_states.size(0) query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = prepare_fa2_from_position_ids( query_states, key_states, value_states, position_ids ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs, ) attn_output = attn_output.view(batch_size, -1, attn_output.size(-2), attn_output.size(-1)) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs ) return attn_output