x54-729
commited on
Commit
·
06cf688
1
Parent(s):
bfd1f94
fix img url
Browse files
README.md
CHANGED
@@ -27,7 +27,7 @@ tags:
|
|
27 |
State-of-the-art bilingual open-sourced Math reasoning LLMs.
|
28 |
A **solver**, **prover**, **verifier**, **augmentor**.
|
29 |
|
30 |
-
[💻 Github](https://github.com/InternLM/InternLM-Math) [🤗 Demo](https://huggingface.co/spaces/internlm/internlm2-math-7b) [🤗 Checkpoints](https://huggingface.co/internlm/internlm2-math-7b) [![OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-7B) [<img src="https://raw.githubusercontent.com/InternLM/InternLM/main/assets/modelscope_logo.png" width="20px" /> ModelScope](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-7b/summary)
|
31 |
</div>
|
32 |
|
33 |
# News
|
@@ -41,16 +41,16 @@ A **solver**, **prover**, **verifier**, **augmentor**.
|
|
41 |
- **Also can be viewed as a reward model, which supports the Outcome/Process/Lean Reward Model.** We supervise InternLM2-Math with various types of reward modeling data, to make InternLM2-Math can also verify chain-of-thought processes. We also add the ability to convert a chain-of-thought process into Lean 3 code.
|
42 |
- **A Math LM Augment Helper** and **Code Interpreter**. InternLM2-Math can help augment math reasoning problems and solve them using the code interpreter which makes you generate synthesis data quicker!
|
43 |
|
44 |
-
![hungarian](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/hungary.jpeg)
|
45 |
|
46 |
# Models
|
47 |
**InternLM2-Math-Base-7B** and **InternLM2-Math-Base-20B** are pretrained checkpoints. **InternLM2-Math-7B** and **InternLM2-Math-20B** are SFT checkpoints.
|
48 |
| Model |Model Type | Transformers(HF) |OpenXLab| ModelScope | Release Date |
|
49 |
|---|---|---|---|---|---|
|
50 |
-
| **InternLM2-Math-Base-7B** | Base| [🤗internlm/internlm2-math-base-7b](https://huggingface.co/internlm/internlm2-math-base-7b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-Base-7B)| [<img src="https://raw.githubusercontent.com/InternLM/InternLM/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-base-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-base-7b/summary)| 2024-01-23|
|
51 |
-
| **InternLM2-Math-Base-20B** | Base| [🤗internlm/internlm2-math-base-20b](https://huggingface.co/internlm/internlm2-math-base-20b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-Base-20B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-base-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-base-20b/summary)| 2024-01-23|
|
52 |
-
| **InternLM2-Math-7B** | Chat| [🤗internlm/internlm2-math-7b](https://huggingface.co/internlm/internlm2-math-7b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-7B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-7b/summary)| 2024-01-23|
|
53 |
-
| **InternLM2-Math-20B** | Chat| [🤗internlm/internlm2-math-20b](https://huggingface.co/internlm/internlm2-math-20b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-20B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-20b/summary)| 2024-01-23|
|
54 |
|
55 |
|
56 |
# Performance
|
@@ -121,19 +121,19 @@ print(response)
|
|
121 |
We list some instructions used in our SFT. You can use them to help you. You can use the other ways to prompt the model, but the following are recommended. InternLM2-Math may combine the following abilities but it is not guaranteed.
|
122 |
|
123 |
Translate proof problem to Lean:
|
124 |
-
![nl2lean3](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/nl2lean.jpeg)
|
125 |
|
126 |
Using Lean 3 to solve GSM8K problem:
|
127 |
-
![gsm8k_lean](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/gsm8k_lean.jpeg)
|
128 |
|
129 |
Generate problem based on Lean 3 code:
|
130 |
-
![lean_problem](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/lean_problem.jpeg)
|
131 |
|
132 |
Play 24 point game:
|
133 |
-
![24](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/24.jpeg)
|
134 |
|
135 |
Augment a harder math problem:
|
136 |
-
![augment_hard](https://raw.githubusercontent.com/InternLM/InternLM/main/assets/augment_hard.jpeg)
|
137 |
|
138 |
| Description | Query |
|
139 |
| --- | --- |
|
|
|
27 |
State-of-the-art bilingual open-sourced Math reasoning LLMs.
|
28 |
A **solver**, **prover**, **verifier**, **augmentor**.
|
29 |
|
30 |
+
[💻 Github](https://github.com/InternLM/InternLM-Math) [🤗 Demo](https://huggingface.co/spaces/internlm/internlm2-math-7b) [🤗 Checkpoints](https://huggingface.co/internlm/internlm2-math-7b) [![OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-7B) [<img src="https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/modelscope_logo.png" width="20px" /> ModelScope](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-7b/summary)
|
31 |
</div>
|
32 |
|
33 |
# News
|
|
|
41 |
- **Also can be viewed as a reward model, which supports the Outcome/Process/Lean Reward Model.** We supervise InternLM2-Math with various types of reward modeling data, to make InternLM2-Math can also verify chain-of-thought processes. We also add the ability to convert a chain-of-thought process into Lean 3 code.
|
42 |
- **A Math LM Augment Helper** and **Code Interpreter**. InternLM2-Math can help augment math reasoning problems and solve them using the code interpreter which makes you generate synthesis data quicker!
|
43 |
|
44 |
+
![hungarian](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/hungary.jpeg)
|
45 |
|
46 |
# Models
|
47 |
**InternLM2-Math-Base-7B** and **InternLM2-Math-Base-20B** are pretrained checkpoints. **InternLM2-Math-7B** and **InternLM2-Math-20B** are SFT checkpoints.
|
48 |
| Model |Model Type | Transformers(HF) |OpenXLab| ModelScope | Release Date |
|
49 |
|---|---|---|---|---|---|
|
50 |
+
| **InternLM2-Math-Base-7B** | Base| [🤗internlm/internlm2-math-base-7b](https://huggingface.co/internlm/internlm2-math-base-7b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-Base-7B)| [<img src="https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-base-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-base-7b/summary)| 2024-01-23|
|
51 |
+
| **InternLM2-Math-Base-20B** | Base| [🤗internlm/internlm2-math-base-20b](https://huggingface.co/internlm/internlm2-math-base-20b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-Base-20B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-base-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-base-20b/summary)| 2024-01-23|
|
52 |
+
| **InternLM2-Math-7B** | Chat| [🤗internlm/internlm2-math-7b](https://huggingface.co/internlm/internlm2-math-7b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-7B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-7b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-7b/summary)| 2024-01-23|
|
53 |
+
| **InternLM2-Math-20B** | Chat| [🤗internlm/internlm2-math-20b](https://huggingface.co/internlm/internlm2-math-20b) |[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/header/openxlab_models.svg)](https://openxlab.org.cn/models/detail/OpenLMLab/InternLM2-Math-20B)|[<img src="https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/modelscope_logo.png" width="20px" /> internlm2-math-20b](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-math-20b/summary)| 2024-01-23|
|
54 |
|
55 |
|
56 |
# Performance
|
|
|
121 |
We list some instructions used in our SFT. You can use them to help you. You can use the other ways to prompt the model, but the following are recommended. InternLM2-Math may combine the following abilities but it is not guaranteed.
|
122 |
|
123 |
Translate proof problem to Lean:
|
124 |
+
![nl2lean3](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/nl2lean.jpeg)
|
125 |
|
126 |
Using Lean 3 to solve GSM8K problem:
|
127 |
+
![gsm8k_lean](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/gsm8k_lean.jpeg)
|
128 |
|
129 |
Generate problem based on Lean 3 code:
|
130 |
+
![lean_problem](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/lean_problem.jpeg)
|
131 |
|
132 |
Play 24 point game:
|
133 |
+
![24](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/24.jpeg)
|
134 |
|
135 |
Augment a harder math problem:
|
136 |
+
![augment_hard](https://raw.githubusercontent.com/InternLM/InternLM-Math/main/assets/augment_hard.jpeg)
|
137 |
|
138 |
| Description | Query |
|
139 |
| --- | --- |
|