Sidaartha commited on
Commit
700762d
1 Parent(s): 598f236

Add 'Sentence Transformers' Tag to generate sentence embedding

Browse files

Hugging Face uses tags to formulate interface API, with 'Sentence Transformers' tag now the Interface API will generate a single embedding for the entire sentence.

Files changed (1) hide show
  1. README.md +27 -27
README.md CHANGED
@@ -1,6 +1,7 @@
1
  ---
2
  tags:
3
  - mteb
 
4
  model-index:
5
  - name: multilingual-e5-large
6
  results:
@@ -577,7 +578,7 @@ model-index:
577
  - type: precision_at_1000
578
  value: 1.978
579
  - type: precision_at_3
580
- value: 50.0
581
  - type: precision_at_5
582
  value: 41.349999999999994
583
  - type: recall_at_1
@@ -3597,7 +3598,7 @@ model-index:
3597
  - type: manhattan_precision
3598
  value: 87.66564729867483
3599
  - type: manhattan_recall
3600
- value: 86.0
3601
  - type: max_accuracy
3602
  value: 99.74356435643564
3603
  - type: max_ap
@@ -3678,7 +3679,7 @@ model-index:
3678
  - type: map_at_5
3679
  value: 0.885
3680
  - type: mrr_at_1
3681
- value: 78.0
3682
  - type: mrr_at_10
3683
  value: 86.56700000000001
3684
  - type: mrr_at_100
@@ -3690,7 +3691,7 @@ model-index:
3690
  - type: mrr_at_5
3691
  value: 86.56700000000001
3692
  - type: ndcg_at_1
3693
- value: 76.0
3694
  - type: ndcg_at_10
3695
  value: 71.326
3696
  - type: ndcg_at_100
@@ -3702,7 +3703,7 @@ model-index:
3702
  - type: ndcg_at_5
3703
  value: 73.833
3704
  - type: precision_at_1
3705
- value: 78.0
3706
  - type: precision_at_10
3707
  value: 74.8
3708
  - type: precision_at_100
@@ -3710,9 +3711,9 @@ model-index:
3710
  - type: precision_at_1000
3711
  value: 21.836
3712
  - type: precision_at_3
3713
- value: 78.0
3714
  - type: precision_at_5
3715
- value: 78.0
3716
  - type: recall_at_1
3717
  value: 0.20400000000000001
3718
  - type: recall_at_10
@@ -3837,13 +3838,13 @@ model-index:
3837
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
3838
  metrics:
3839
  - type: accuracy
3840
- value: 96.0
3841
  - type: f1
3842
  value: 94.86666666666666
3843
  - type: precision
3844
  value: 94.31666666666668
3845
  - type: recall
3846
- value: 96.0
3847
  - task:
3848
  type: BitextMining
3849
  dataset:
@@ -4330,13 +4331,13 @@ model-index:
4330
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
4331
  metrics:
4332
  - type: accuracy
4333
- value: 97.0
4334
  - type: f1
4335
  value: 96.15
4336
  - type: precision
4337
  value: 95.76666666666668
4338
  - type: recall
4339
- value: 97.0
4340
  - task:
4341
  type: BitextMining
4342
  dataset:
@@ -4449,13 +4450,13 @@ model-index:
4449
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
4450
  metrics:
4451
  - type: accuracy
4452
- value: 95.0
4453
  - type: f1
4454
  value: 93.60666666666667
4455
  - type: precision
4456
  value: 92.975
4457
  - type: recall
4458
- value: 95.0
4459
  - task:
4460
  type: BitextMining
4461
  dataset:
@@ -4487,7 +4488,7 @@ model-index:
4487
  - type: f1
4488
  value: 94.52999999999999
4489
  - type: precision
4490
- value: 94.0
4491
  - type: recall
4492
  value: 95.7
4493
  - task:
@@ -4791,7 +4792,7 @@ model-index:
4791
  - type: accuracy
4792
  value: 97.7
4793
  - type: f1
4794
- value: 97.0
4795
  - type: precision
4796
  value: 96.65
4797
  - type: recall
@@ -5112,13 +5113,13 @@ model-index:
5112
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
5113
  metrics:
5114
  - type: accuracy
5115
- value: 81.0
5116
  - type: f1
5117
  value: 77.8232380952381
5118
  - type: precision
5119
  value: 76.60194444444444
5120
  - type: recall
5121
- value: 81.0
5122
  - task:
5123
  type: BitextMining
5124
  dataset:
@@ -5129,13 +5130,13 @@ model-index:
5129
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
5130
  metrics:
5131
  - type: accuracy
5132
- value: 91.0
5133
  - type: f1
5134
  value: 88.70857142857142
5135
  - type: precision
5136
  value: 87.7
5137
  - type: recall
5138
- value: 91.0
5139
  - task:
5140
  type: BitextMining
5141
  dataset:
@@ -5486,13 +5487,13 @@ model-index:
5486
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
5487
  metrics:
5488
  - type: accuracy
5489
- value: 96.0
5490
  - type: f1
5491
  value: 94.89
5492
  - type: precision
5493
  value: 94.39166666666667
5494
  - type: recall
5495
- value: 96.0
5496
  - task:
5497
  type: BitextMining
5498
  dataset:
@@ -5537,13 +5538,13 @@ model-index:
5537
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
5538
  metrics:
5539
  - type: accuracy
5540
- value: 88.0
5541
  - type: f1
5542
  value: 85.47
5543
  - type: precision
5544
  value: 84.43266233766234
5545
  - type: recall
5546
- value: 88.0
5547
  - task:
5548
  type: BitextMining
5549
  dataset:
@@ -5622,13 +5623,13 @@ model-index:
5622
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
5623
  metrics:
5624
  - type: accuracy
5625
- value: 89.0
5626
  - type: f1
5627
  value: 86.23190476190476
5628
  - type: precision
5629
  value: 85.035
5630
  - type: recall
5631
- value: 89.0
5632
  - task:
5633
  type: Retrieval
5634
  dataset:
@@ -6107,5 +6108,4 @@ If you find our paper or models helpful, please consider cite as follows:
6107
 
6108
  ## Limitations
6109
 
6110
- Long texts will be truncated to at most 512 tokens.
6111
-
 
1
  ---
2
  tags:
3
  - mteb
4
+ - Sentence Transformers
5
  model-index:
6
  - name: multilingual-e5-large
7
  results:
 
578
  - type: precision_at_1000
579
  value: 1.978
580
  - type: precision_at_3
581
+ value: 50
582
  - type: precision_at_5
583
  value: 41.349999999999994
584
  - type: recall_at_1
 
3598
  - type: manhattan_precision
3599
  value: 87.66564729867483
3600
  - type: manhattan_recall
3601
+ value: 86
3602
  - type: max_accuracy
3603
  value: 99.74356435643564
3604
  - type: max_ap
 
3679
  - type: map_at_5
3680
  value: 0.885
3681
  - type: mrr_at_1
3682
+ value: 78
3683
  - type: mrr_at_10
3684
  value: 86.56700000000001
3685
  - type: mrr_at_100
 
3691
  - type: mrr_at_5
3692
  value: 86.56700000000001
3693
  - type: ndcg_at_1
3694
+ value: 76
3695
  - type: ndcg_at_10
3696
  value: 71.326
3697
  - type: ndcg_at_100
 
3703
  - type: ndcg_at_5
3704
  value: 73.833
3705
  - type: precision_at_1
3706
+ value: 78
3707
  - type: precision_at_10
3708
  value: 74.8
3709
  - type: precision_at_100
 
3711
  - type: precision_at_1000
3712
  value: 21.836
3713
  - type: precision_at_3
3714
+ value: 78
3715
  - type: precision_at_5
3716
+ value: 78
3717
  - type: recall_at_1
3718
  value: 0.20400000000000001
3719
  - type: recall_at_10
 
3838
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
3839
  metrics:
3840
  - type: accuracy
3841
+ value: 96
3842
  - type: f1
3843
  value: 94.86666666666666
3844
  - type: precision
3845
  value: 94.31666666666668
3846
  - type: recall
3847
+ value: 96
3848
  - task:
3849
  type: BitextMining
3850
  dataset:
 
4331
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
4332
  metrics:
4333
  - type: accuracy
4334
+ value: 97
4335
  - type: f1
4336
  value: 96.15
4337
  - type: precision
4338
  value: 95.76666666666668
4339
  - type: recall
4340
+ value: 97
4341
  - task:
4342
  type: BitextMining
4343
  dataset:
 
4450
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
4451
  metrics:
4452
  - type: accuracy
4453
+ value: 95
4454
  - type: f1
4455
  value: 93.60666666666667
4456
  - type: precision
4457
  value: 92.975
4458
  - type: recall
4459
+ value: 95
4460
  - task:
4461
  type: BitextMining
4462
  dataset:
 
4488
  - type: f1
4489
  value: 94.52999999999999
4490
  - type: precision
4491
+ value: 94
4492
  - type: recall
4493
  value: 95.7
4494
  - task:
 
4792
  - type: accuracy
4793
  value: 97.7
4794
  - type: f1
4795
+ value: 97
4796
  - type: precision
4797
  value: 96.65
4798
  - type: recall
 
5113
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
5114
  metrics:
5115
  - type: accuracy
5116
+ value: 81
5117
  - type: f1
5118
  value: 77.8232380952381
5119
  - type: precision
5120
  value: 76.60194444444444
5121
  - type: recall
5122
+ value: 81
5123
  - task:
5124
  type: BitextMining
5125
  dataset:
 
5130
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
5131
  metrics:
5132
  - type: accuracy
5133
+ value: 91
5134
  - type: f1
5135
  value: 88.70857142857142
5136
  - type: precision
5137
  value: 87.7
5138
  - type: recall
5139
+ value: 91
5140
  - task:
5141
  type: BitextMining
5142
  dataset:
 
5487
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
5488
  metrics:
5489
  - type: accuracy
5490
+ value: 96
5491
  - type: f1
5492
  value: 94.89
5493
  - type: precision
5494
  value: 94.39166666666667
5495
  - type: recall
5496
+ value: 96
5497
  - task:
5498
  type: BitextMining
5499
  dataset:
 
5538
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
5539
  metrics:
5540
  - type: accuracy
5541
+ value: 88
5542
  - type: f1
5543
  value: 85.47
5544
  - type: precision
5545
  value: 84.43266233766234
5546
  - type: recall
5547
+ value: 88
5548
  - task:
5549
  type: BitextMining
5550
  dataset:
 
5623
  revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
5624
  metrics:
5625
  - type: accuracy
5626
+ value: 89
5627
  - type: f1
5628
  value: 86.23190476190476
5629
  - type: precision
5630
  value: 85.035
5631
  - type: recall
5632
+ value: 89
5633
  - task:
5634
  type: Retrieval
5635
  dataset:
 
6108
 
6109
  ## Limitations
6110
 
6111
+ Long texts will be truncated to at most 512 tokens.