Add 'Sentence Transformers' Tag to generate sentence embedding
Browse filesHugging Face uses tags to formulate interface API, with 'Sentence Transformers' tag now the Interface API will generate a single embedding for the entire sentence.
README.md
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
- mteb
|
|
|
4 |
model-index:
|
5 |
- name: multilingual-e5-large
|
6 |
results:
|
@@ -577,7 +578,7 @@ model-index:
|
|
577 |
- type: precision_at_1000
|
578 |
value: 1.978
|
579 |
- type: precision_at_3
|
580 |
-
value: 50
|
581 |
- type: precision_at_5
|
582 |
value: 41.349999999999994
|
583 |
- type: recall_at_1
|
@@ -3597,7 +3598,7 @@ model-index:
|
|
3597 |
- type: manhattan_precision
|
3598 |
value: 87.66564729867483
|
3599 |
- type: manhattan_recall
|
3600 |
-
value: 86
|
3601 |
- type: max_accuracy
|
3602 |
value: 99.74356435643564
|
3603 |
- type: max_ap
|
@@ -3678,7 +3679,7 @@ model-index:
|
|
3678 |
- type: map_at_5
|
3679 |
value: 0.885
|
3680 |
- type: mrr_at_1
|
3681 |
-
value: 78
|
3682 |
- type: mrr_at_10
|
3683 |
value: 86.56700000000001
|
3684 |
- type: mrr_at_100
|
@@ -3690,7 +3691,7 @@ model-index:
|
|
3690 |
- type: mrr_at_5
|
3691 |
value: 86.56700000000001
|
3692 |
- type: ndcg_at_1
|
3693 |
-
value: 76
|
3694 |
- type: ndcg_at_10
|
3695 |
value: 71.326
|
3696 |
- type: ndcg_at_100
|
@@ -3702,7 +3703,7 @@ model-index:
|
|
3702 |
- type: ndcg_at_5
|
3703 |
value: 73.833
|
3704 |
- type: precision_at_1
|
3705 |
-
value: 78
|
3706 |
- type: precision_at_10
|
3707 |
value: 74.8
|
3708 |
- type: precision_at_100
|
@@ -3710,9 +3711,9 @@ model-index:
|
|
3710 |
- type: precision_at_1000
|
3711 |
value: 21.836
|
3712 |
- type: precision_at_3
|
3713 |
-
value: 78
|
3714 |
- type: precision_at_5
|
3715 |
-
value: 78
|
3716 |
- type: recall_at_1
|
3717 |
value: 0.20400000000000001
|
3718 |
- type: recall_at_10
|
@@ -3837,13 +3838,13 @@ model-index:
|
|
3837 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3838 |
metrics:
|
3839 |
- type: accuracy
|
3840 |
-
value: 96
|
3841 |
- type: f1
|
3842 |
value: 94.86666666666666
|
3843 |
- type: precision
|
3844 |
value: 94.31666666666668
|
3845 |
- type: recall
|
3846 |
-
value: 96
|
3847 |
- task:
|
3848 |
type: BitextMining
|
3849 |
dataset:
|
@@ -4330,13 +4331,13 @@ model-index:
|
|
4330 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4331 |
metrics:
|
4332 |
- type: accuracy
|
4333 |
-
value: 97
|
4334 |
- type: f1
|
4335 |
value: 96.15
|
4336 |
- type: precision
|
4337 |
value: 95.76666666666668
|
4338 |
- type: recall
|
4339 |
-
value: 97
|
4340 |
- task:
|
4341 |
type: BitextMining
|
4342 |
dataset:
|
@@ -4449,13 +4450,13 @@ model-index:
|
|
4449 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4450 |
metrics:
|
4451 |
- type: accuracy
|
4452 |
-
value: 95
|
4453 |
- type: f1
|
4454 |
value: 93.60666666666667
|
4455 |
- type: precision
|
4456 |
value: 92.975
|
4457 |
- type: recall
|
4458 |
-
value: 95
|
4459 |
- task:
|
4460 |
type: BitextMining
|
4461 |
dataset:
|
@@ -4487,7 +4488,7 @@ model-index:
|
|
4487 |
- type: f1
|
4488 |
value: 94.52999999999999
|
4489 |
- type: precision
|
4490 |
-
value: 94
|
4491 |
- type: recall
|
4492 |
value: 95.7
|
4493 |
- task:
|
@@ -4791,7 +4792,7 @@ model-index:
|
|
4791 |
- type: accuracy
|
4792 |
value: 97.7
|
4793 |
- type: f1
|
4794 |
-
value: 97
|
4795 |
- type: precision
|
4796 |
value: 96.65
|
4797 |
- type: recall
|
@@ -5112,13 +5113,13 @@ model-index:
|
|
5112 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
5113 |
metrics:
|
5114 |
- type: accuracy
|
5115 |
-
value: 81
|
5116 |
- type: f1
|
5117 |
value: 77.8232380952381
|
5118 |
- type: precision
|
5119 |
value: 76.60194444444444
|
5120 |
- type: recall
|
5121 |
-
value: 81
|
5122 |
- task:
|
5123 |
type: BitextMining
|
5124 |
dataset:
|
@@ -5129,13 +5130,13 @@ model-index:
|
|
5129 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
5130 |
metrics:
|
5131 |
- type: accuracy
|
5132 |
-
value: 91
|
5133 |
- type: f1
|
5134 |
value: 88.70857142857142
|
5135 |
- type: precision
|
5136 |
value: 87.7
|
5137 |
- type: recall
|
5138 |
-
value: 91
|
5139 |
- task:
|
5140 |
type: BitextMining
|
5141 |
dataset:
|
@@ -5486,13 +5487,13 @@ model-index:
|
|
5486 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
5487 |
metrics:
|
5488 |
- type: accuracy
|
5489 |
-
value: 96
|
5490 |
- type: f1
|
5491 |
value: 94.89
|
5492 |
- type: precision
|
5493 |
value: 94.39166666666667
|
5494 |
- type: recall
|
5495 |
-
value: 96
|
5496 |
- task:
|
5497 |
type: BitextMining
|
5498 |
dataset:
|
@@ -5537,13 +5538,13 @@ model-index:
|
|
5537 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
5538 |
metrics:
|
5539 |
- type: accuracy
|
5540 |
-
value: 88
|
5541 |
- type: f1
|
5542 |
value: 85.47
|
5543 |
- type: precision
|
5544 |
value: 84.43266233766234
|
5545 |
- type: recall
|
5546 |
-
value: 88
|
5547 |
- task:
|
5548 |
type: BitextMining
|
5549 |
dataset:
|
@@ -5622,13 +5623,13 @@ model-index:
|
|
5622 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
5623 |
metrics:
|
5624 |
- type: accuracy
|
5625 |
-
value: 89
|
5626 |
- type: f1
|
5627 |
value: 86.23190476190476
|
5628 |
- type: precision
|
5629 |
value: 85.035
|
5630 |
- type: recall
|
5631 |
-
value: 89
|
5632 |
- task:
|
5633 |
type: Retrieval
|
5634 |
dataset:
|
@@ -6107,5 +6108,4 @@ If you find our paper or models helpful, please consider cite as follows:
|
|
6107 |
|
6108 |
## Limitations
|
6109 |
|
6110 |
-
Long texts will be truncated to at most 512 tokens.
|
6111 |
-
|
|
|
1 |
---
|
2 |
tags:
|
3 |
- mteb
|
4 |
+
- Sentence Transformers
|
5 |
model-index:
|
6 |
- name: multilingual-e5-large
|
7 |
results:
|
|
|
578 |
- type: precision_at_1000
|
579 |
value: 1.978
|
580 |
- type: precision_at_3
|
581 |
+
value: 50
|
582 |
- type: precision_at_5
|
583 |
value: 41.349999999999994
|
584 |
- type: recall_at_1
|
|
|
3598 |
- type: manhattan_precision
|
3599 |
value: 87.66564729867483
|
3600 |
- type: manhattan_recall
|
3601 |
+
value: 86
|
3602 |
- type: max_accuracy
|
3603 |
value: 99.74356435643564
|
3604 |
- type: max_ap
|
|
|
3679 |
- type: map_at_5
|
3680 |
value: 0.885
|
3681 |
- type: mrr_at_1
|
3682 |
+
value: 78
|
3683 |
- type: mrr_at_10
|
3684 |
value: 86.56700000000001
|
3685 |
- type: mrr_at_100
|
|
|
3691 |
- type: mrr_at_5
|
3692 |
value: 86.56700000000001
|
3693 |
- type: ndcg_at_1
|
3694 |
+
value: 76
|
3695 |
- type: ndcg_at_10
|
3696 |
value: 71.326
|
3697 |
- type: ndcg_at_100
|
|
|
3703 |
- type: ndcg_at_5
|
3704 |
value: 73.833
|
3705 |
- type: precision_at_1
|
3706 |
+
value: 78
|
3707 |
- type: precision_at_10
|
3708 |
value: 74.8
|
3709 |
- type: precision_at_100
|
|
|
3711 |
- type: precision_at_1000
|
3712 |
value: 21.836
|
3713 |
- type: precision_at_3
|
3714 |
+
value: 78
|
3715 |
- type: precision_at_5
|
3716 |
+
value: 78
|
3717 |
- type: recall_at_1
|
3718 |
value: 0.20400000000000001
|
3719 |
- type: recall_at_10
|
|
|
3838 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
3839 |
metrics:
|
3840 |
- type: accuracy
|
3841 |
+
value: 96
|
3842 |
- type: f1
|
3843 |
value: 94.86666666666666
|
3844 |
- type: precision
|
3845 |
value: 94.31666666666668
|
3846 |
- type: recall
|
3847 |
+
value: 96
|
3848 |
- task:
|
3849 |
type: BitextMining
|
3850 |
dataset:
|
|
|
4331 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4332 |
metrics:
|
4333 |
- type: accuracy
|
4334 |
+
value: 97
|
4335 |
- type: f1
|
4336 |
value: 96.15
|
4337 |
- type: precision
|
4338 |
value: 95.76666666666668
|
4339 |
- type: recall
|
4340 |
+
value: 97
|
4341 |
- task:
|
4342 |
type: BitextMining
|
4343 |
dataset:
|
|
|
4450 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
4451 |
metrics:
|
4452 |
- type: accuracy
|
4453 |
+
value: 95
|
4454 |
- type: f1
|
4455 |
value: 93.60666666666667
|
4456 |
- type: precision
|
4457 |
value: 92.975
|
4458 |
- type: recall
|
4459 |
+
value: 95
|
4460 |
- task:
|
4461 |
type: BitextMining
|
4462 |
dataset:
|
|
|
4488 |
- type: f1
|
4489 |
value: 94.52999999999999
|
4490 |
- type: precision
|
4491 |
+
value: 94
|
4492 |
- type: recall
|
4493 |
value: 95.7
|
4494 |
- task:
|
|
|
4792 |
- type: accuracy
|
4793 |
value: 97.7
|
4794 |
- type: f1
|
4795 |
+
value: 97
|
4796 |
- type: precision
|
4797 |
value: 96.65
|
4798 |
- type: recall
|
|
|
5113 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
5114 |
metrics:
|
5115 |
- type: accuracy
|
5116 |
+
value: 81
|
5117 |
- type: f1
|
5118 |
value: 77.8232380952381
|
5119 |
- type: precision
|
5120 |
value: 76.60194444444444
|
5121 |
- type: recall
|
5122 |
+
value: 81
|
5123 |
- task:
|
5124 |
type: BitextMining
|
5125 |
dataset:
|
|
|
5130 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
5131 |
metrics:
|
5132 |
- type: accuracy
|
5133 |
+
value: 91
|
5134 |
- type: f1
|
5135 |
value: 88.70857142857142
|
5136 |
- type: precision
|
5137 |
value: 87.7
|
5138 |
- type: recall
|
5139 |
+
value: 91
|
5140 |
- task:
|
5141 |
type: BitextMining
|
5142 |
dataset:
|
|
|
5487 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
5488 |
metrics:
|
5489 |
- type: accuracy
|
5490 |
+
value: 96
|
5491 |
- type: f1
|
5492 |
value: 94.89
|
5493 |
- type: precision
|
5494 |
value: 94.39166666666667
|
5495 |
- type: recall
|
5496 |
+
value: 96
|
5497 |
- task:
|
5498 |
type: BitextMining
|
5499 |
dataset:
|
|
|
5538 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
5539 |
metrics:
|
5540 |
- type: accuracy
|
5541 |
+
value: 88
|
5542 |
- type: f1
|
5543 |
value: 85.47
|
5544 |
- type: precision
|
5545 |
value: 84.43266233766234
|
5546 |
- type: recall
|
5547 |
+
value: 88
|
5548 |
- task:
|
5549 |
type: BitextMining
|
5550 |
dataset:
|
|
|
5623 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
5624 |
metrics:
|
5625 |
- type: accuracy
|
5626 |
+
value: 89
|
5627 |
- type: f1
|
5628 |
value: 86.23190476190476
|
5629 |
- type: precision
|
5630 |
value: 85.035
|
5631 |
- type: recall
|
5632 |
+
value: 89
|
5633 |
- task:
|
5634 |
type: Retrieval
|
5635 |
dataset:
|
|
|
6108 |
|
6109 |
## Limitations
|
6110 |
|
6111 |
+
Long texts will be truncated to at most 512 tokens.
|
|