--- pipeline_tag: sentence-similarity language: - pl tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - ipipan/polqa - ipipan/maupqa license: cc-by-sa-4.0 --- # Silver Retriever Base (v1) Silver Retriever model encodes the Polish sentences or paragraphs into a 768-dimensional dense vector space and can be used for tasks like document retrieval or semantic search. It was initialized from the [HerBERT-base](https://huggingface.co/allegro/herbert-base-cased) model and fine-tuned on the [PolQA](https://huggingface.co/ipipan/polqa) and [MAUPQA](https://huggingface.co/ipipan/maupqa) datasets for 15,000 steps with a batch size of 1,024. ## Preparing inputs The model was trained on question-passage pairs and works best when the input is the same format as that used during training: - We added the phrase `Pytanie:' to the beginning of the question. - The training passages consisted of `title` and `text` concatenated with the special token ``. Even if your passages don't have a `title`, it is still beneficial to prefix a passage with the `` token. - Although we used the dot product during training, the model usually works better with the cosine distance. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = [ "Pytanie: W jakim mieście urodził się Zbigniew Herbert?", "Zbigniew HerbertZbigniew Bolesław Ryszard Herbert (ur. 29 października 1924 we Lwowie, zm. 28 lipca 1998 w Warszawie) – polski poeta, eseista i dramaturg.", ] model = SentenceTransformer('ipipan/silver-retriever-base-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = [ "Pytanie: W jakim mieście urodził się Zbigniew Herbert?", "Zbigniew HerbertZbigniew Bolesław Ryszard Herbert (ur. 29 października 1924 we Lwowie, zm. 28 lipca 1998 w Warszawie) – polski poeta, eseista i dramaturg.", ] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('ipipan/silver-retriever-base-v1') model = AutoModel.from_pretrained('ipipan/silver-retriever-base-v1') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Additional Information ### Model Creators The model was created by Piotr Rybak from the [Institute of Computer Science, Polish Academy of Sciences](http://zil.ipipan.waw.pl/). This work was supported by the European Regional Development Fund as a part of 2014–2020 Smart Growth Operational Programme, CLARIN — Common Language Resources and Technology Infrastructure, project no. POIR.04.02.00-00C002/19. ### Licensing Information CC BY-SA 4.0 ### Citation Information [More Information Needed]