palomapiot
commited on
Commit
•
5acf45a
1
Parent(s):
5023ee4
Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
-
base_model: mistralai/Mistral-7B-Instruct-v0.
|
4 |
license: mit
|
5 |
datasets:
|
6 |
- irlab-udc/metahate
|
@@ -14,7 +14,7 @@ tags:
|
|
14 |
# Mistral Fine-Tuned on not Engaging with Hate Speech
|
15 |
|
16 |
## Model Description
|
17 |
-
This model is a fine-tuned version of `mistralai/Mistral-7B-Instruct-v0.
|
18 |
|
19 |
## Intended Uses & Limitations
|
20 |
This model is intended for research purposes in conversational applications to stop hate speech generation.
|
@@ -25,17 +25,26 @@ This model is intended for research purposes in conversational applications to s
|
|
25 |
- **False Positives/Negatives**: It's not perfect and may continue some hate speech conversations.
|
26 |
- **Domain Specificity**: Performance may vary across different domains.
|
27 |
|
28 |
-
### Recommendations
|
29 |
-
|
30 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
31 |
-
|
32 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
33 |
-
|
34 |
## How to Get Started with the Model
|
35 |
|
36 |
Use the code below to get started with the model.
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
## Training Details
|
41 |
|
@@ -46,39 +55,33 @@ Use the code below to get started with the model.
|
|
46 |
[More Information Needed]
|
47 |
|
48 |
## Training Procedure
|
49 |
-
- **Base Model:** mistralai/Mistral-7B-Instruct-v0.
|
50 |
- **Fine-Tuning:** Using PEFT approach
|
51 |
-
- **Hardware:**
|
52 |
-
|
53 |
-
####
|
54 |
-
|
55 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
56 |
-
|
57 |
-
|
58 |
-
## Environmental Impact
|
59 |
-
|
60 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
61 |
-
|
62 |
-
- **Hardware Type:** RTX A6000
|
63 |
-
- **Hours used:** 9
|
64 |
-
- **Cloud Provider:** Private Infrastructure
|
65 |
-
- **Carbon Efficiency (kg/kWh):** 0,432
|
66 |
-
- **Carbon Emitted (kg eq. CO2):** 1,17
|
67 |
|
|
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
The following `bitsandbytes` quantization config was used during training:
|
|
|
82 |
- quant_method: bitsandbytes
|
83 |
- _load_in_8bit: False
|
84 |
- _load_in_4bit: True
|
@@ -96,6 +99,31 @@ The following `bitsandbytes` quantization config was used during training:
|
|
96 |
### Framework versions
|
97 |
|
98 |
- PEFT 0.6.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
## Acknowledgements
|
101 |
The authors thank the funding from the Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101073351. The authors also thank the financial support supplied by the Consellería de Cultura, Educación, Formación Profesional e Universidades (accreditation 2019-2022 ED431G/01, ED431B 2022/33) and the European Regional Development Fund, which acknowledges the CITIC Research Center in ICT of the University of A Coruña as a Research Center of the Galician University System and the project PID2022-137061OB-C21 (Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación, Proyectos de Generación de Conocimiento; supported by the European Regional Development Fund). The authors also thank the funding of project PLEC2021-007662 (MCIN/AEI/10.13039/501100011033, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación, Plan de Recuperación, Transformación y Resiliencia, Unión Europea-Next Generation EU).
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.2
|
4 |
license: mit
|
5 |
datasets:
|
6 |
- irlab-udc/metahate
|
|
|
14 |
# Mistral Fine-Tuned on not Engaging with Hate Speech
|
15 |
|
16 |
## Model Description
|
17 |
+
This model is a fine-tuned version of `mistralai/Mistral-7B-Instruct-v0.2` on a hate speech dataset using the PEFT approach, to prevent the model from exacerbating hate discourse.
|
18 |
|
19 |
## Intended Uses & Limitations
|
20 |
This model is intended for research purposes in conversational applications to stop hate speech generation.
|
|
|
25 |
- **False Positives/Negatives**: It's not perfect and may continue some hate speech conversations.
|
26 |
- **Domain Specificity**: Performance may vary across different domains.
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
## How to Get Started with the Model
|
29 |
|
30 |
Use the code below to get started with the model.
|
31 |
|
32 |
+
```python
|
33 |
+
from peft import PeftModel, PeftConfig
|
34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Conversation, pipeline
|
35 |
+
|
36 |
+
# Load the model
|
37 |
+
config = PeftConfig.from_pretrained("irlab-udc/Mistral-7b-Stop-Hate")
|
38 |
+
base_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
|
39 |
+
model = PeftModel.from_pretrained(base_model, "irlab-udc/Mistral-7b-Stop-Hate")
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("irlab-udc/Mistral-7b-Stop-Hate")
|
41 |
+
chatbot = pipeline(task="conversational", model=model, tokenizer=tokenizer)
|
42 |
+
|
43 |
+
# Test the model
|
44 |
+
conversation = Conversation("Your input text here")
|
45 |
+
conversation = chatbot(conversation)
|
46 |
+
result = conversation.messages[-1]["content"]
|
47 |
+
```
|
48 |
|
49 |
## Training Details
|
50 |
|
|
|
55 |
[More Information Needed]
|
56 |
|
57 |
## Training Procedure
|
58 |
+
- **Base Model:** mistralai/Mistral-7B-Instruct-v0.2
|
59 |
- **Fine-Tuning:** Using PEFT approach
|
60 |
+
- **Hardware:** NVIDIA RTX A6000
|
61 |
+
-
|
62 |
+
#### Configurations and Hyperparameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
The following LoraConfig config was used during training:
|
65 |
|
66 |
+
- r: 32
|
67 |
+
- lora_alpha: 64
|
68 |
+
- target_modules: ["q_proj", "v_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "lm_head"]
|
69 |
+
- lora_dropout: 0.05
|
70 |
+
- bias: "lora_only"
|
71 |
+
- task_type: "CAUSAL_LM"
|
72 |
|
73 |
+
The following TrainingArguments config was used during training:
|
74 |
|
75 |
+
- per_device_train_batch_size: 16
|
76 |
+
- gradient_accumulation_steps: 1
|
77 |
+
- warmup_steps: 5
|
78 |
+
- max_steps: 1000
|
79 |
+
- learning_rate: 2.5e-5
|
80 |
+
- fp16=True
|
81 |
+
- optim= paged_adamw_8bit
|
82 |
|
83 |
The following `bitsandbytes` quantization config was used during training:
|
84 |
+
|
85 |
- quant_method: bitsandbytes
|
86 |
- _load_in_8bit: False
|
87 |
- _load_in_4bit: True
|
|
|
99 |
### Framework versions
|
100 |
|
101 |
- PEFT 0.6.2
|
102 |
+
- PyTorch 2.1.0
|
103 |
+
- 🤗 Transformers 4.35.0
|
104 |
+
- 🤗 Datasets 2.14.6
|
105 |
+
|
106 |
+
|
107 |
+
## Environmental Impact
|
108 |
+
|
109 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
110 |
+
|
111 |
+
- **Hardware Type:** NVIDIA RTX A6000
|
112 |
+
- **Hours used:** 9
|
113 |
+
- **Cloud Provider:** Private Infrastructure
|
114 |
+
- **Carbon Efficiency (kg/kWh):** 0,432
|
115 |
+
- **Carbon Emitted (kg eq. CO2):** 1,17
|
116 |
+
|
117 |
+
|
118 |
+
## Citation
|
119 |
+
|
120 |
+
If you use this model, please cite the following reference:
|
121 |
+
|
122 |
+
```bibtex
|
123 |
+
@article{
|
124 |
+
SOON!
|
125 |
+
}
|
126 |
+
```
|
127 |
|
128 |
## Acknowledgements
|
129 |
The authors thank the funding from the Horizon Europe research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101073351. The authors also thank the financial support supplied by the Consellería de Cultura, Educación, Formación Profesional e Universidades (accreditation 2019-2022 ED431G/01, ED431B 2022/33) and the European Regional Development Fund, which acknowledges the CITIC Research Center in ICT of the University of A Coruña as a Research Center of the Galician University System and the project PID2022-137061OB-C21 (Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación, Proyectos de Generación de Conocimiento; supported by the European Regional Development Fund). The authors also thank the funding of project PLEC2021-007662 (MCIN/AEI/10.13039/501100011033, Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación, Plan de Recuperación, Transformación y Resiliencia, Unión Europea-Next Generation EU).
|