trying to upload my first model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 247.96 +/- 22.46
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fa9d2fd40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fa9d2fdd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fa9d2fe60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fa9d2fef0>", "_build": "<function ActorCriticPolicy._build at 0x7f3fa9d2ff80>", "forward": "<function ActorCriticPolicy.forward at 0x7f3fa9d38050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fa9d380e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3fa9d38170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fa9d38200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fa9d38290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fa9d38320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3fa9d8c180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651904653.5359175, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADpWVT5BGNm8EfiJO490DLq9tUK+HbbYugAAgD8AAIA/0x5lvlvYnj71Kd49QZ1fvv7EK7uaEUm9AAAAAAAAAAA61hW+iOerP1K9h75kxbW+bcVuvn6Okb0AAAAAAAAAACO8tb4P+VU/wIJtPfmei74dtRK+tphzPQAAAAAAAAAAs5Qfveziu7vF7447r8moPLBPEr1W2409AACAPwAAgD/Nn5W9roGJuvnQgDu+YU01BQZAu2hCQTQAAIA/AACAPwYUIb7Zg34/Ks4rPYTIrb7BN0W9497kPQAAAAAAAAAAAOATPTaNsz8m5ns+41ZBvniloj3SYWU+AAAAAAAAAABabEi+D1LdPsOlOz5P4Gm+ZCnzO6sU/DwAAAAAAAAAAEZhFT5S6ua7CPPWPJPAELu+Gz29yOPzuwAAAAAAAIA/Mws3vD76sD8rNfy8kiOlvhaprDzjrvA8AAAAAAAAAADzgws+cNF/P+An5T0kcqO+NWcrPpSorL0AAAAAAAAAAM2AaT2fPQw/RscnvjsNjb4H4LW9pI+svQAAAAAAAAAAIE8jPqS3ST63T8y94raDvhDqlL095ua8AAAAAAAAAACaKwE+I/+IPuMMeb2WDZG+4uwzvMJmVT0AAAAAAAAAAAC/4TxCB1s/h1GZvQTFib7OTa28KkmkvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0JuKVNh+cUCUhpRSlIwBbJRNggGMAXSUR0CgN9Lqt5lfdX2UKGgGaAloD0MIsdtnlZm3bkCUhpRSlGgVTWQBaBZHQKA4iGGEf1Z1fZQoaAZoCWgPQwilEwmmmtNvQJSGlFKUaBVNLAJoFkdAoDjQcPvrnnV9lChoBmgJaA9DCMXkDTDziXBAlIaUUpRoFU3sAWgWR0CgOe6PCEYgdX2UKGgGaAloD0MICydp/hgOcECUhpRSlGgVTWABaBZHQKA6CDuBtk51fZQoaAZoCWgPQwgS290D9HFtQJSGlFKUaBVNPgJoFkdAoDor0QK8c3V9lChoBmgJaA9DCHiXi/hOR3JAlIaUUpRoFU0pAWgWR0CgOjqnWJ7+dX2UKGgGaAloD0MIzVZe8j94bUCUhpRSlGgVTbYBaBZHQKBE0vugHu91fZQoaAZoCWgPQwhosRTJV61tQJSGlFKUaBVNYQJoFkdAoEUYf0VafXV9lChoBmgJaA9DCPTfg9eu4W9AlIaUUpRoFU05AWgWR0CgRVqjafz0dX2UKGgGaAloD0MI3SIw1rc+cUCUhpRSlGgVTSIBaBZHQKBFtqSHM2Z1fZQoaAZoCWgPQwj0NctlY19wQJSGlFKUaBVN2wFoFkdAoEX5p+MIeHV9lChoBmgJaA9DCGba/pWVvG9AlIaUUpRoFU1rAWgWR0CgRf5QxesxdX2UKGgGaAloD0MIJ2n+mFaGb0CUhpRSlGgVTYgBaBZHQKBIy/k/8l51fZQoaAZoCWgPQwjTTPc6qWhyQJSGlFKUaBVNqwFoFkdAoEkryDqW1XV9lChoBmgJaA9DCJpd91YkbG5AlIaUUpRoFU1yAWgWR0CgSTKAz544dX2UKGgGaAloD0MI8tB3t7KocECUhpRSlGgVTVwBaBZHQKBJnrTpgTh1fZQoaAZoCWgPQwgaa39ne7ZwQJSGlFKUaBVNSAJoFkdAoEnkRe1KG3V9lChoBmgJaA9DCE5iEFj5jHBAlIaUUpRoFU2IAWgWR0CgSlui35N5dX2UKGgGaAloD0MIDTfg88OkcECUhpRSlGgVTV0BaBZHQKBK7UNrj5t1fZQoaAZoCWgPQwjeIFor2lRwQJSGlFKUaBVNaAFoFkdAoEsIAdXDFnV9lChoBmgJaA9DCGHgufewZXBAlIaUUpRoFU01AWgWR0CgSzQe/5+IdX2UKGgGaAloD0MI4BPrVPnsa0CUhpRSlGgVTTkBaBZHQKBLjygf2bp1fZQoaAZoCWgPQwjdJtwrc9NqQJSGlFKUaBVNhwFoFkdAoEuVG/etS3V9lChoBmgJaA9DCO0MU1tq+29AlIaUUpRoFU07AWgWR0CgTCpz90ihdX2UKGgGaAloD0MI860P640Ba0CUhpRSlGgVTbMBaBZHQKBMi7NB4Ux1fZQoaAZoCWgPQwiaC1we65FwQJSGlFKUaBVNYwFoFkdAoE0c/Y8MeHV9lChoBmgJaA9DCOHP8GYN1XFAlIaUUpRoFU3TAWgWR0CgTquXVsk6dX2UKGgGaAloD0MI4zjwajlFcECUhpRSlGgVTdABaBZHQKBPZJeVs1t1fZQoaAZoCWgPQwiB7WDEPntsQJSGlFKUaBVNUgFoFkdAoE+zzqbBoHV9lChoBmgJaA9DCG/whclUgm1AlIaUUpRoFU1bAWgWR0CgUDNJWeYldX2UKGgGaAloD0MIkpbK25FhcUCUhpRSlGgVTVQBaBZHQKBQvSVGCqZ1fZQoaAZoCWgPQwjPZtXn6vJxQJSGlFKUaBVNdAFoFkdAoFExL5AQhHV9lChoBmgJaA9DCOXTY1uG9nBAlIaUUpRoFU1CAWgWR0CgUYIK2KEWdX2UKGgGaAloD0MI6GfqdUtOcUCUhpRSlGgVTTABaBZHQKBRtCx/ust1fZQoaAZoCWgPQwg6QDBHD1tuQJSGlFKUaBVNrgFoFkdAoFIPFefI0nV9lChoBmgJaA9DCPG9v0F7425AlIaUUpRoFU1iAWgWR0CgUhX974SIdX2UKGgGaAloD0MI95MxPswBckCUhpRSlGgVTVUBaBZHQKBSZ8iOeat1fZQoaAZoCWgPQwiafR6jPOZsQJSGlFKUaBVNaAFoFkdAoFJtHYpUgnV9lChoBmgJaA9DCPhT46UbVGxAlIaUUpRoFU1aAWgWR0CgUxbg88s+dX2UKGgGaAloD0MIE7U0t0LubECUhpRSlGgVTXcBaBZHQKBT/7Hhjvx1fZQoaAZoCWgPQwgTDOcaZiBwQJSGlFKUaBVN7QFoFkdAoFQNZFG5MHV9lChoBmgJaA9DCCFYVS+/WHBAlIaUUpRoFU1nAWgWR0CgVEc8TzundX2UKGgGaAloD0MILJ0Pz5KqcECUhpRSlGgVTUEBaBZHQKBU8jM3ZPF1fZQoaAZoCWgPQwiZKhiVFDdwQJSGlFKUaBVNUwFoFkdAoFZAMpgCwXV9lChoBmgJaA9DCEQUkzeAAXJAlIaUUpRoFU0lAWgWR0CgVkUl7dBTdX2UKGgGaAloD0MIyEW1iKipbkCUhpRSlGgVTXMBaBZHQKBWnnTRYzV1fZQoaAZoCWgPQwiCVmDIan9tQJSGlFKUaBVNYwFoFkdAoFcLL+xW1nV9lChoBmgJaA9DCJeuYBvxym1AlIaUUpRoFU1VAWgWR0CgV7FfzBhydX2UKGgGaAloD0MIv2TjwRZ/NECUhpRSlGgVTS4BaBZHQKBXtjm0VrR1fZQoaAZoCWgPQwhtb7ckR6twQJSGlFKUaBVNMgFoFkdAoFfPKuB+WnV9lChoBmgJaA9DCLHbZ5VZKHJAlIaUUpRoFU1PAWgWR0CgV9bdJrckdX2UKGgGaAloD0MI86s5QPC9cUCUhpRSlGgVTSsBaBZHQKBX+W69TP11fZQoaAZoCWgPQwjnNXaJarFuQJSGlFKUaBVNXQFoFkdAoFgtX5nDi3V9lChoBmgJaA9DCLjKEwg7InFAlIaUUpRoFU1NAWgWR0CgYgq//NqydX2UKGgGaAloD0MIUkMbgM0fckCUhpRSlGgVTT8BaBZHQKBiYnssxwh1fZQoaAZoCWgPQwit+lxtxbtyQJSGlFKUaBVNOAFoFkdAoGNJRbbDdnV9lChoBmgJaA9DCLTmx1/a+m9AlIaUUpRoFU1KAWgWR0CgY1qCYkVvdX2UKGgGaAloD0MIYK+w4L4ncECUhpRSlGgVTU8BaBZHQKBjY/B3zMB1fZQoaAZoCWgPQwh9kjtsIvM/QJSGlFKUaBVNGQFoFkdAoGR+HJtBOnV9lChoBmgJaA9DCC+i7Zj6CnJAlIaUUpRoFU1aAWgWR0CgZH3T/hl2dX2UKGgGaAloD0MIJctJKH0zRUCUhpRSlGgVS+poFkdAoGT8lolD4XV9lChoBmgJaA9DCFq4rMLmRm9AlIaUUpRoFU02AWgWR0CgZVP0RODbdX2UKGgGaAloD0MIjxt+N90Pb0CUhpRSlGgVTSMBaBZHQKBlXnyup0h1fZQoaAZoCWgPQwh8tDhjWNZwQJSGlFKUaBVNTAFoFkdAoGVsDQqqfnV9lChoBmgJaA9DCM6N6QnL1m5AlIaUUpRoFU0sAWgWR0CgZhqx9oexdX2UKGgGaAloD0MIbQN3oI4NcUCUhpRSlGgVTSkBaBZHQKBmXBl+Vkd1fZQoaAZoCWgPQwiKIM7DiftwQJSGlFKUaBVNPwFoFkdAoGaWgL7XQXV9lChoBmgJaA9DCF392CS/I3BAlIaUUpRoFU1UAWgWR0CgZs94u9OAdX2UKGgGaAloD0MI28NeKGDCbkCUhpRSlGgVTUkBaBZHQKBnInQY1pF1fZQoaAZoCWgPQwh7TQ8KCjRxQJSGlFKUaBVNHQFoFkdAoGcttfoicHV9lChoBmgJaA9DCNLgtrZwV25AlIaUUpRoFU1RAWgWR0CgZ4+nhsIndX2UKGgGaAloD0MIIm+5+rE7S0CUhpRSlGgVTRQBaBZHQKBoDJtix3V1fZQoaAZoCWgPQwjpuYWuRKFsQJSGlFKUaBVNMAFoFkdAoGhvmq5sj3V9lChoBmgJaA9DCOHRxhFrI21AlIaUUpRoFU10AWgWR0CgaYG0/nnudX2UKGgGaAloD0MIxY1bzE9jckCUhpRSlGgVTQUBaBZHQKBpxO2y9mJ1fZQoaAZoCWgPQwg3/686cutwQJSGlFKUaBVNTAFoFkdAoGsmiQDFInV9lChoBmgJaA9DCGo0uRiD7m1AlIaUUpRoFU2FAWgWR0Cga1WSt/4JdX2UKGgGaAloD0MIr1sExrqlcUCUhpRSlGgVTYsBaBZHQKBrdmjCYTl1fZQoaAZoCWgPQwjLTGn9LeltQJSGlFKUaBVNLQFoFkdAoGumz8gp0HV9lChoBmgJaA9DCJs3Tgpzjm9AlIaUUpRoFU05AWgWR0CgbCIGQjlgdX2UKGgGaAloD0MIsDpypLPlbkCUhpRSlGgVTVUBaBZHQKBsLBN21Ul1fZQoaAZoCWgPQwi1cFmFjdRwQJSGlFKUaBVNOQFoFkdAoGxeo3rD63V9lChoBmgJaA9DCMhgxalW/nFAlIaUUpRoFU1IAWgWR0CgbP7d8Aq/dX2UKGgGaAloD0MIvK302qzbcUCUhpRSlGgVTa0BaBZHQKBs/psXSBt1fZQoaAZoCWgPQwj3yycrhqBtQJSGlFKUaBVNWgFoFkdAoG3ejXWe6XV9lChoBmgJaA9DCLggW5Yvl2xAlIaUUpRoFU2PAWgWR0CgblysbNr1dX2UKGgGaAloD0MIMGe2K7RwcECUhpRSlGgVTV0BaBZHQKBu+KJEYwZ1fZQoaAZoCWgPQwgiGXJsvbFwQJSGlFKUaBVNeAFoFkdAoG7/bEgnt3V9lChoBmgJaA9DCOdxGMxf029AlIaUUpRoFU1PAWgWR0CgcDqXF98adX2UKGgGaAloD0MINV1PdJ2kcUCUhpRSlGgVTXkBaBZHQKBw0bobGWF1fZQoaAZoCWgPQwi/nq9Zrh9wQJSGlFKUaBVNLAFoFkdAoHEUKXv6THV9lChoBmgJaA9DCCEf9GzWVXBAlIaUUpRoFU0hAWgWR0CgcZ2pIczZdX2UKGgGaAloD0MIWvYksLnebkCUhpRSlGgVTWkBaBZHQKByIM/hVEN1fZQoaAZoCWgPQwgce/Zcpi1tQJSGlFKUaBVNOQFoFkdAoHJcr9VFQXV9lChoBmgJaA9DCC7kEdzIFmtAlIaUUpRoFU15AWgWR0CgcrSO7xusdX2UKGgGaAloD0MIyOpWzwnEcUCUhpRSlGgVTXIBaBZHQKBzOwdsBQx1fZQoaAZoCWgPQwgIOe//411xQJSGlFKUaBVNTwFoFkdAoHNvkvK2a3V9lChoBmgJaA9DCCOERxvHw29AlIaUUpRoFU1QAWgWR0Cgc3VivxH5dX2UKGgGaAloD0MIdej0vBvmbkCUhpRSlGgVTUIBaBZHQKB0AxagVXV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c089d5e74ff6c584cb3e4d068396243df4cde55ef15cff1f734605b913364c04
|
3 |
+
size 144048
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3fa9d2fd40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3fa9d2fdd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3fa9d2fe60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3fa9d2fef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3fa9d2ff80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3fa9d38050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3fa9d380e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3fa9d38170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3fa9d38200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3fa9d38290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3fa9d38320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3fa9d8c180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651904653.5359175,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADpWVT5BGNm8EfiJO490DLq9tUK+HbbYugAAgD8AAIA/0x5lvlvYnj71Kd49QZ1fvv7EK7uaEUm9AAAAAAAAAAA61hW+iOerP1K9h75kxbW+bcVuvn6Okb0AAAAAAAAAACO8tb4P+VU/wIJtPfmei74dtRK+tphzPQAAAAAAAAAAs5Qfveziu7vF7447r8moPLBPEr1W2409AACAPwAAgD/Nn5W9roGJuvnQgDu+YU01BQZAu2hCQTQAAIA/AACAPwYUIb7Zg34/Ks4rPYTIrb7BN0W9497kPQAAAAAAAAAAAOATPTaNsz8m5ns+41ZBvniloj3SYWU+AAAAAAAAAABabEi+D1LdPsOlOz5P4Gm+ZCnzO6sU/DwAAAAAAAAAAEZhFT5S6ua7CPPWPJPAELu+Gz29yOPzuwAAAAAAAIA/Mws3vD76sD8rNfy8kiOlvhaprDzjrvA8AAAAAAAAAADzgws+cNF/P+An5T0kcqO+NWcrPpSorL0AAAAAAAAAAM2AaT2fPQw/RscnvjsNjb4H4LW9pI+svQAAAAAAAAAAIE8jPqS3ST63T8y94raDvhDqlL095ua8AAAAAAAAAACaKwE+I/+IPuMMeb2WDZG+4uwzvMJmVT0AAAAAAAAAAAC/4TxCB1s/h1GZvQTFib7OTa28KkmkvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0JuKVNh+cUCUhpRSlIwBbJRNggGMAXSUR0CgN9Lqt5lfdX2UKGgGaAloD0MIsdtnlZm3bkCUhpRSlGgVTWQBaBZHQKA4iGGEf1Z1fZQoaAZoCWgPQwilEwmmmtNvQJSGlFKUaBVNLAJoFkdAoDjQcPvrnnV9lChoBmgJaA9DCMXkDTDziXBAlIaUUpRoFU3sAWgWR0CgOe6PCEYgdX2UKGgGaAloD0MICydp/hgOcECUhpRSlGgVTWABaBZHQKA6CDuBtk51fZQoaAZoCWgPQwgS290D9HFtQJSGlFKUaBVNPgJoFkdAoDor0QK8c3V9lChoBmgJaA9DCHiXi/hOR3JAlIaUUpRoFU0pAWgWR0CgOjqnWJ7+dX2UKGgGaAloD0MIzVZe8j94bUCUhpRSlGgVTbYBaBZHQKBE0vugHu91fZQoaAZoCWgPQwhosRTJV61tQJSGlFKUaBVNYQJoFkdAoEUYf0VafXV9lChoBmgJaA9DCPTfg9eu4W9AlIaUUpRoFU05AWgWR0CgRVqjafz0dX2UKGgGaAloD0MI3SIw1rc+cUCUhpRSlGgVTSIBaBZHQKBFtqSHM2Z1fZQoaAZoCWgPQwj0NctlY19wQJSGlFKUaBVN2wFoFkdAoEX5p+MIeHV9lChoBmgJaA9DCGba/pWVvG9AlIaUUpRoFU1rAWgWR0CgRf5QxesxdX2UKGgGaAloD0MIJ2n+mFaGb0CUhpRSlGgVTYgBaBZHQKBIy/k/8l51fZQoaAZoCWgPQwjTTPc6qWhyQJSGlFKUaBVNqwFoFkdAoEkryDqW1XV9lChoBmgJaA9DCJpd91YkbG5AlIaUUpRoFU1yAWgWR0CgSTKAz544dX2UKGgGaAloD0MI8tB3t7KocECUhpRSlGgVTVwBaBZHQKBJnrTpgTh1fZQoaAZoCWgPQwgaa39ne7ZwQJSGlFKUaBVNSAJoFkdAoEnkRe1KG3V9lChoBmgJaA9DCE5iEFj5jHBAlIaUUpRoFU2IAWgWR0CgSlui35N5dX2UKGgGaAloD0MIDTfg88OkcECUhpRSlGgVTV0BaBZHQKBK7UNrj5t1fZQoaAZoCWgPQwjeIFor2lRwQJSGlFKUaBVNaAFoFkdAoEsIAdXDFnV9lChoBmgJaA9DCGHgufewZXBAlIaUUpRoFU01AWgWR0CgSzQe/5+IdX2UKGgGaAloD0MI4BPrVPnsa0CUhpRSlGgVTTkBaBZHQKBLjygf2bp1fZQoaAZoCWgPQwjdJtwrc9NqQJSGlFKUaBVNhwFoFkdAoEuVG/etS3V9lChoBmgJaA9DCO0MU1tq+29AlIaUUpRoFU07AWgWR0CgTCpz90ihdX2UKGgGaAloD0MI860P640Ba0CUhpRSlGgVTbMBaBZHQKBMi7NB4Ux1fZQoaAZoCWgPQwiaC1we65FwQJSGlFKUaBVNYwFoFkdAoE0c/Y8MeHV9lChoBmgJaA9DCOHP8GYN1XFAlIaUUpRoFU3TAWgWR0CgTquXVsk6dX2UKGgGaAloD0MI4zjwajlFcECUhpRSlGgVTdABaBZHQKBPZJeVs1t1fZQoaAZoCWgPQwiB7WDEPntsQJSGlFKUaBVNUgFoFkdAoE+zzqbBoHV9lChoBmgJaA9DCG/whclUgm1AlIaUUpRoFU1bAWgWR0CgUDNJWeYldX2UKGgGaAloD0MIkpbK25FhcUCUhpRSlGgVTVQBaBZHQKBQvSVGCqZ1fZQoaAZoCWgPQwjPZtXn6vJxQJSGlFKUaBVNdAFoFkdAoFExL5AQhHV9lChoBmgJaA9DCOXTY1uG9nBAlIaUUpRoFU1CAWgWR0CgUYIK2KEWdX2UKGgGaAloD0MI6GfqdUtOcUCUhpRSlGgVTTABaBZHQKBRtCx/ust1fZQoaAZoCWgPQwg6QDBHD1tuQJSGlFKUaBVNrgFoFkdAoFIPFefI0nV9lChoBmgJaA9DCPG9v0F7425AlIaUUpRoFU1iAWgWR0CgUhX974SIdX2UKGgGaAloD0MI95MxPswBckCUhpRSlGgVTVUBaBZHQKBSZ8iOeat1fZQoaAZoCWgPQwiafR6jPOZsQJSGlFKUaBVNaAFoFkdAoFJtHYpUgnV9lChoBmgJaA9DCPhT46UbVGxAlIaUUpRoFU1aAWgWR0CgUxbg88s+dX2UKGgGaAloD0MIE7U0t0LubECUhpRSlGgVTXcBaBZHQKBT/7Hhjvx1fZQoaAZoCWgPQwgTDOcaZiBwQJSGlFKUaBVN7QFoFkdAoFQNZFG5MHV9lChoBmgJaA9DCCFYVS+/WHBAlIaUUpRoFU1nAWgWR0CgVEc8TzundX2UKGgGaAloD0MILJ0Pz5KqcECUhpRSlGgVTUEBaBZHQKBU8jM3ZPF1fZQoaAZoCWgPQwiZKhiVFDdwQJSGlFKUaBVNUwFoFkdAoFZAMpgCwXV9lChoBmgJaA9DCEQUkzeAAXJAlIaUUpRoFU0lAWgWR0CgVkUl7dBTdX2UKGgGaAloD0MIyEW1iKipbkCUhpRSlGgVTXMBaBZHQKBWnnTRYzV1fZQoaAZoCWgPQwiCVmDIan9tQJSGlFKUaBVNYwFoFkdAoFcLL+xW1nV9lChoBmgJaA9DCJeuYBvxym1AlIaUUpRoFU1VAWgWR0CgV7FfzBhydX2UKGgGaAloD0MIv2TjwRZ/NECUhpRSlGgVTS4BaBZHQKBXtjm0VrR1fZQoaAZoCWgPQwhtb7ckR6twQJSGlFKUaBVNMgFoFkdAoFfPKuB+WnV9lChoBmgJaA9DCLHbZ5VZKHJAlIaUUpRoFU1PAWgWR0CgV9bdJrckdX2UKGgGaAloD0MI86s5QPC9cUCUhpRSlGgVTSsBaBZHQKBX+W69TP11fZQoaAZoCWgPQwjnNXaJarFuQJSGlFKUaBVNXQFoFkdAoFgtX5nDi3V9lChoBmgJaA9DCLjKEwg7InFAlIaUUpRoFU1NAWgWR0CgYgq//NqydX2UKGgGaAloD0MIUkMbgM0fckCUhpRSlGgVTT8BaBZHQKBiYnssxwh1fZQoaAZoCWgPQwit+lxtxbtyQJSGlFKUaBVNOAFoFkdAoGNJRbbDdnV9lChoBmgJaA9DCLTmx1/a+m9AlIaUUpRoFU1KAWgWR0CgY1qCYkVvdX2UKGgGaAloD0MIYK+w4L4ncECUhpRSlGgVTU8BaBZHQKBjY/B3zMB1fZQoaAZoCWgPQwh9kjtsIvM/QJSGlFKUaBVNGQFoFkdAoGR+HJtBOnV9lChoBmgJaA9DCC+i7Zj6CnJAlIaUUpRoFU1aAWgWR0CgZH3T/hl2dX2UKGgGaAloD0MIJctJKH0zRUCUhpRSlGgVS+poFkdAoGT8lolD4XV9lChoBmgJaA9DCFq4rMLmRm9AlIaUUpRoFU02AWgWR0CgZVP0RODbdX2UKGgGaAloD0MIjxt+N90Pb0CUhpRSlGgVTSMBaBZHQKBlXnyup0h1fZQoaAZoCWgPQwh8tDhjWNZwQJSGlFKUaBVNTAFoFkdAoGVsDQqqfnV9lChoBmgJaA9DCM6N6QnL1m5AlIaUUpRoFU0sAWgWR0CgZhqx9oexdX2UKGgGaAloD0MIbQN3oI4NcUCUhpRSlGgVTSkBaBZHQKBmXBl+Vkd1fZQoaAZoCWgPQwiKIM7DiftwQJSGlFKUaBVNPwFoFkdAoGaWgL7XQXV9lChoBmgJaA9DCF392CS/I3BAlIaUUpRoFU1UAWgWR0CgZs94u9OAdX2UKGgGaAloD0MI28NeKGDCbkCUhpRSlGgVTUkBaBZHQKBnInQY1pF1fZQoaAZoCWgPQwh7TQ8KCjRxQJSGlFKUaBVNHQFoFkdAoGcttfoicHV9lChoBmgJaA9DCNLgtrZwV25AlIaUUpRoFU1RAWgWR0CgZ4+nhsIndX2UKGgGaAloD0MIIm+5+rE7S0CUhpRSlGgVTRQBaBZHQKBoDJtix3V1fZQoaAZoCWgPQwjpuYWuRKFsQJSGlFKUaBVNMAFoFkdAoGhvmq5sj3V9lChoBmgJaA9DCOHRxhFrI21AlIaUUpRoFU10AWgWR0CgaYG0/nnudX2UKGgGaAloD0MIxY1bzE9jckCUhpRSlGgVTQUBaBZHQKBpxO2y9mJ1fZQoaAZoCWgPQwg3/686cutwQJSGlFKUaBVNTAFoFkdAoGsmiQDFInV9lChoBmgJaA9DCGo0uRiD7m1AlIaUUpRoFU2FAWgWR0Cga1WSt/4JdX2UKGgGaAloD0MIr1sExrqlcUCUhpRSlGgVTYsBaBZHQKBrdmjCYTl1fZQoaAZoCWgPQwjLTGn9LeltQJSGlFKUaBVNLQFoFkdAoGumz8gp0HV9lChoBmgJaA9DCJs3Tgpzjm9AlIaUUpRoFU05AWgWR0CgbCIGQjlgdX2UKGgGaAloD0MIsDpypLPlbkCUhpRSlGgVTVUBaBZHQKBsLBN21Ul1fZQoaAZoCWgPQwi1cFmFjdRwQJSGlFKUaBVNOQFoFkdAoGxeo3rD63V9lChoBmgJaA9DCMhgxalW/nFAlIaUUpRoFU1IAWgWR0CgbP7d8Aq/dX2UKGgGaAloD0MIvK302qzbcUCUhpRSlGgVTa0BaBZHQKBs/psXSBt1fZQoaAZoCWgPQwj3yycrhqBtQJSGlFKUaBVNWgFoFkdAoG3ejXWe6XV9lChoBmgJaA9DCLggW5Yvl2xAlIaUUpRoFU2PAWgWR0CgblysbNr1dX2UKGgGaAloD0MIMGe2K7RwcECUhpRSlGgVTV0BaBZHQKBu+KJEYwZ1fZQoaAZoCWgPQwgiGXJsvbFwQJSGlFKUaBVNeAFoFkdAoG7/bEgnt3V9lChoBmgJaA9DCOdxGMxf029AlIaUUpRoFU1PAWgWR0CgcDqXF98adX2UKGgGaAloD0MINV1PdJ2kcUCUhpRSlGgVTXkBaBZHQKBw0bobGWF1fZQoaAZoCWgPQwi/nq9Zrh9wQJSGlFKUaBVNLAFoFkdAoHEUKXv6THV9lChoBmgJaA9DCCEf9GzWVXBAlIaUUpRoFU0hAWgWR0CgcZ2pIczZdX2UKGgGaAloD0MIWvYksLnebkCUhpRSlGgVTWkBaBZHQKByIM/hVEN1fZQoaAZoCWgPQwgce/Zcpi1tQJSGlFKUaBVNOQFoFkdAoHJcr9VFQXV9lChoBmgJaA9DCC7kEdzIFmtAlIaUUpRoFU15AWgWR0CgcrSO7xusdX2UKGgGaAloD0MIyOpWzwnEcUCUhpRSlGgVTXIBaBZHQKBzOwdsBQx1fZQoaAZoCWgPQwgIOe//411xQJSGlFKUaBVNTwFoFkdAoHNvkvK2a3V9lChoBmgJaA9DCCOERxvHw29AlIaUUpRoFU1QAWgWR0Cgc3VivxH5dX2UKGgGaAloD0MIdej0vBvmbkCUhpRSlGgVTUIBaBZHQKB0AxagVXV1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38120e6f5f8aab3190a087ad7f640e167f41f0504eb0b2efb1a217c5263d1d38
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1af93fb63517cafcf6def3e8bed3c2619ffedd7921a57c32c99c897558bdbc0
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e4f0a3d0437935f4e86097f3c279e9a718e23b8e990e77a351681e0f114b4e1
|
3 |
+
size 223434
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 247.96297253858125, "std_reward": 22.4637946315777, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T06:38:53.370784"}
|