|
from typing import Dict, List, Any |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
import torch |
|
from peft import PeftModel |
|
import json |
|
import os |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
base_model_path = json.load(open(os.path.join(path, "training_params.json")))["model"] |
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model_path, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
model = PeftModel.from_pretrained(model, path) |
|
model = model.merge_and_unload() |
|
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
if parameters is not None: |
|
prediction = self.pipeline(inputs, **parameters) |
|
else: |
|
prediction = self.pipeline(inputs) |
|
return prediction |