Upload 4 files
Browse files
models/hyperstarcop_mag1c_only/config.yaml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
experiment_name: f5b_hyper_unetsempos1all_all_15ep_JustMag1c_R1
|
2 |
+
seed: None
|
3 |
+
resume_from_checkpoint: false
|
4 |
+
wandb:
|
5 |
+
wandb_project: starcop-aviris-seg-vitek
|
6 |
+
wandb_entity: dtacs
|
7 |
+
images_logging: wandb
|
8 |
+
dataloader:
|
9 |
+
batch_size: 32
|
10 |
+
num_workers: 4
|
11 |
+
products_plot:
|
12 |
+
- mag1c
|
13 |
+
- label
|
14 |
+
- pred
|
15 |
+
- differences
|
16 |
+
plot_samples: 8
|
17 |
+
dataset:
|
18 |
+
input_products:
|
19 |
+
- mag1c
|
20 |
+
output_products:
|
21 |
+
- labelbinary
|
22 |
+
use_weight_loss: true
|
23 |
+
weight_loss: weight_mag1c
|
24 |
+
training_size:
|
25 |
+
- 128
|
26 |
+
- 128
|
27 |
+
training_size_overlap:
|
28 |
+
- 64
|
29 |
+
- 64
|
30 |
+
weight_sampling: true
|
31 |
+
root_folder: /home/previtus/Permian/dataset
|
32 |
+
train_csv: train.csv
|
33 |
+
model:
|
34 |
+
train: true
|
35 |
+
test: true
|
36 |
+
model_mode: segmentation_output
|
37 |
+
model_type: unet_semseg
|
38 |
+
semseg_backbone: mobilenet_v2
|
39 |
+
num_classes: 1
|
40 |
+
optimizer: adam
|
41 |
+
lr: 0.0001
|
42 |
+
lr_decay: 0.5
|
43 |
+
lr_patience: 4
|
44 |
+
loss: BCEWithLogitsLoss
|
45 |
+
pos_weight: 1
|
46 |
+
early_stopping_patience: 8
|
47 |
+
training:
|
48 |
+
accelerator: gpu
|
49 |
+
devices: 1
|
50 |
+
max_epochs: 15
|
51 |
+
val_check_interval: 0.5
|
52 |
+
train_log_every_n_steps: 10
|
models/hyperstarcop_mag1c_only/final_checkpoint_model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d4391d5b05f90c411fd459db5bbe4e88650e5ff30ec2eb10d36c66ed0a43137
|
3 |
+
size 79987359
|
models/hyperstarcop_mag1c_rgb/config.yaml
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_content:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
dataloader: '{''batch_size'': 32, ''num_workers'': 4}'
|
7 |
+
dataset: '{''input_products'': [''mag1c'', ''TOA_AVIRIS_640nm'', ''TOA_AVIRIS_550nm'',
|
8 |
+
''TOA_AVIRIS_460nm''], ''output_products'': [''labelbinary''], ''use_weight_loss'':
|
9 |
+
True, ''weight_loss'': ''weight_mag1c'', ''training_size'': [128, 128], ''training_size_overlap'':
|
10 |
+
[64, 64], ''weight_sampling'': True, ''root_folder'': ''/Permian/dataset'',
|
11 |
+
''train_csv'': ''train.csv''}'
|
12 |
+
experiment_name: f4_hyper_unetsempos1all_all_15ep_R3
|
13 |
+
experiment_path: gs://starcop/experiments/f4_hyper_unetsempos1all_all_15ep_R3/2022-11-10_19-03/
|
14 |
+
model: '{''train'': True, ''test'': True, ''model_mode'': ''segmentation_output'',
|
15 |
+
''model_type'': ''unet_semseg'', ''semseg_backbone'': ''mobilenet_v2'', ''num_classes'':
|
16 |
+
1, ''optimizer'': ''adam'', ''lr'': 0.0001, ''lr_decay'': 0.5, ''lr_patience'':
|
17 |
+
4, ''loss'': ''BCEWithLogitsLoss'', ''pos_weight'': 1, ''early_stopping_patience'':
|
18 |
+
8}'
|
19 |
+
plot_samples: '8'
|
20 |
+
products_plot:
|
21 |
+
- rgb_aviris
|
22 |
+
- mag1c
|
23 |
+
- label
|
24 |
+
- pred
|
25 |
+
- differences
|
26 |
+
resume_from_checkpoint: 'False'
|
27 |
+
seed: None
|
28 |
+
training: '{''accelerator'': ''gpu'', ''devices'': 1, ''max_epochs'': 15, ''val_check_interval'':
|
29 |
+
0.5, ''train_log_every_n_steps'': 10}'
|
30 |
+
wandb: '{''wandb_project'': ''starcop-aviris-seg-vitek'', ''wandb_entity'': ''dtacs'',
|
31 |
+
''images_logging'': ''wandb''}'
|
32 |
+
_flags_cache:
|
33 |
+
desc: null
|
34 |
+
value:
|
35 |
+
allow_objects: null
|
36 |
+
convert: null
|
37 |
+
readonly: null
|
38 |
+
struct: false
|
39 |
+
_metadata:
|
40 |
+
desc: null
|
41 |
+
value: 'ContainerMetadata(ref_type=typing.Any, object_type=<class ''dict''>, optional=True,
|
42 |
+
key=None, flags={''struct'': False}, flags_root=False, resolver_cache=defaultdict(<class
|
43 |
+
''dict''>, {''now'': {(''%Y-%m-%d'',): ''2022-11-10'', (''%H-%M-%S'',): ''19-03-19'',
|
44 |
+
(''%Y-%m-%d_%H-%M'',): ''2022-11-10_19-03''}}), key_type=typing.Any, element_type=typing.Any)'
|
45 |
+
_parent:
|
46 |
+
desc: null
|
47 |
+
value: null
|
48 |
+
_wandb:
|
49 |
+
desc: null
|
50 |
+
value:
|
51 |
+
cli_version: 0.13.3
|
52 |
+
framework: lightning
|
53 |
+
is_jupyter_run: false
|
54 |
+
is_kaggle_kernel: false
|
55 |
+
m:
|
56 |
+
- 1: trainer/global_step
|
57 |
+
6:
|
58 |
+
- 3
|
59 |
+
- 1: val_batch._type
|
60 |
+
5: 1
|
61 |
+
6:
|
62 |
+
- 1
|
63 |
+
- 1: val_batch.sha256
|
64 |
+
5: 1
|
65 |
+
6:
|
66 |
+
- 1
|
67 |
+
- 1: val_batch.size
|
68 |
+
5: 1
|
69 |
+
6:
|
70 |
+
- 1
|
71 |
+
- 1: val_batch.path
|
72 |
+
5: 1
|
73 |
+
6:
|
74 |
+
- 1
|
75 |
+
- 1: val_batch.format
|
76 |
+
5: 1
|
77 |
+
6:
|
78 |
+
- 1
|
79 |
+
- 1: val_batch.width
|
80 |
+
5: 1
|
81 |
+
6:
|
82 |
+
- 1
|
83 |
+
- 1: val_batch.height
|
84 |
+
5: 1
|
85 |
+
6:
|
86 |
+
- 1
|
87 |
+
- 1: train_BCEWithLogitsLoss
|
88 |
+
5: 1
|
89 |
+
6:
|
90 |
+
- 1
|
91 |
+
- 1: epoch
|
92 |
+
5: 1
|
93 |
+
6:
|
94 |
+
- 1
|
95 |
+
- 1: val_loss
|
96 |
+
5: 1
|
97 |
+
6:
|
98 |
+
- 1
|
99 |
+
- 1: val_precision
|
100 |
+
5: 1
|
101 |
+
6:
|
102 |
+
- 1
|
103 |
+
- 1: val_recall
|
104 |
+
5: 1
|
105 |
+
6:
|
106 |
+
- 1
|
107 |
+
- 1: val_f1score
|
108 |
+
5: 1
|
109 |
+
6:
|
110 |
+
- 1
|
111 |
+
- 1: val_iou
|
112 |
+
5: 1
|
113 |
+
6:
|
114 |
+
- 1
|
115 |
+
- 1: val_accuracy
|
116 |
+
5: 1
|
117 |
+
6:
|
118 |
+
- 1
|
119 |
+
- 1: val_cohen_kappa
|
120 |
+
5: 1
|
121 |
+
6:
|
122 |
+
- 1
|
123 |
+
- 1: val_balanced_accuracy
|
124 |
+
5: 1
|
125 |
+
6:
|
126 |
+
- 1
|
127 |
+
- 1: val_classification_precision
|
128 |
+
5: 1
|
129 |
+
6:
|
130 |
+
- 1
|
131 |
+
- 1: val_classification_recall
|
132 |
+
5: 1
|
133 |
+
6:
|
134 |
+
- 1
|
135 |
+
- 1: val_classification_f1score
|
136 |
+
5: 1
|
137 |
+
6:
|
138 |
+
- 1
|
139 |
+
- 1: val_classification_iou
|
140 |
+
5: 1
|
141 |
+
6:
|
142 |
+
- 1
|
143 |
+
- 1: val_classification_accuracy
|
144 |
+
5: 1
|
145 |
+
6:
|
146 |
+
- 1
|
147 |
+
- 1: val_classification_cohen_kappa
|
148 |
+
5: 1
|
149 |
+
6:
|
150 |
+
- 1
|
151 |
+
- 1: val_classification_balanced_accuracy
|
152 |
+
5: 1
|
153 |
+
6:
|
154 |
+
- 1
|
155 |
+
- 1: train_batch._type
|
156 |
+
5: 1
|
157 |
+
6:
|
158 |
+
- 1
|
159 |
+
- 1: train_batch.sha256
|
160 |
+
5: 1
|
161 |
+
6:
|
162 |
+
- 1
|
163 |
+
- 1: train_batch.size
|
164 |
+
5: 1
|
165 |
+
6:
|
166 |
+
- 1
|
167 |
+
- 1: train_batch.path
|
168 |
+
5: 1
|
169 |
+
6:
|
170 |
+
- 1
|
171 |
+
- 1: train_batch.format
|
172 |
+
5: 1
|
173 |
+
6:
|
174 |
+
- 1
|
175 |
+
- 1: train_batch.width
|
176 |
+
5: 1
|
177 |
+
6:
|
178 |
+
- 1
|
179 |
+
- 1: train_batch.height
|
180 |
+
5: 1
|
181 |
+
6:
|
182 |
+
- 1
|
183 |
+
python_version: 3.10.6
|
184 |
+
start_time: 1668107000.728245
|
185 |
+
t:
|
186 |
+
1:
|
187 |
+
- 1
|
188 |
+
- 5
|
189 |
+
- 9
|
190 |
+
- 41
|
191 |
+
- 50
|
192 |
+
- 53
|
193 |
+
- 55
|
194 |
+
- 79
|
195 |
+
2:
|
196 |
+
- 1
|
197 |
+
- 5
|
198 |
+
- 9
|
199 |
+
- 41
|
200 |
+
- 50
|
201 |
+
- 53
|
202 |
+
- 55
|
203 |
+
- 63
|
204 |
+
- 74
|
205 |
+
- 79
|
206 |
+
3:
|
207 |
+
- 7
|
208 |
+
- 13
|
209 |
+
- 23
|
210 |
+
4: 3.10.6
|
211 |
+
5: 0.13.3
|
212 |
+
8:
|
213 |
+
- 5
|
214 |
+
settings/dataloader/batch_size:
|
215 |
+
desc: null
|
216 |
+
value: 32
|
217 |
+
settings/dataloader/num_workers:
|
218 |
+
desc: null
|
219 |
+
value: 4
|
220 |
+
settings/dataset/input_products:
|
221 |
+
desc: null
|
222 |
+
value:
|
223 |
+
- mag1c
|
224 |
+
- TOA_AVIRIS_640nm
|
225 |
+
- TOA_AVIRIS_550nm
|
226 |
+
- TOA_AVIRIS_460nm
|
227 |
+
settings/dataset/output_products:
|
228 |
+
desc: null
|
229 |
+
value:
|
230 |
+
- labelbinary
|
231 |
+
settings/dataset/root_folder:
|
232 |
+
desc: null
|
233 |
+
value: /Permian/dataset
|
234 |
+
settings/dataset/train_csv:
|
235 |
+
desc: null
|
236 |
+
value: train.csv
|
237 |
+
settings/dataset/training_size:
|
238 |
+
desc: null
|
239 |
+
value:
|
240 |
+
- 128
|
241 |
+
- 128
|
242 |
+
settings/dataset/training_size_overlap:
|
243 |
+
desc: null
|
244 |
+
value:
|
245 |
+
- 64
|
246 |
+
- 64
|
247 |
+
settings/dataset/use_weight_loss:
|
248 |
+
desc: null
|
249 |
+
value: true
|
250 |
+
settings/dataset/weight_loss:
|
251 |
+
desc: null
|
252 |
+
value: weight_mag1c
|
253 |
+
settings/dataset/weight_sampling:
|
254 |
+
desc: null
|
255 |
+
value: true
|
256 |
+
settings/experiment_name:
|
257 |
+
desc: null
|
258 |
+
value: f4_hyper_unetsempos1all_all_15ep_R3
|
259 |
+
settings/experiment_path:
|
260 |
+
desc: null
|
261 |
+
value: gs://starcop/experiments/f4_hyper_unetsempos1all_all_15ep_R3/2022-11-10_19-03/
|
262 |
+
settings/model/early_stopping_patience:
|
263 |
+
desc: null
|
264 |
+
value: 8
|
265 |
+
settings/model/loss:
|
266 |
+
desc: null
|
267 |
+
value: BCEWithLogitsLoss
|
268 |
+
settings/model/lr:
|
269 |
+
desc: null
|
270 |
+
value: 0.0001
|
271 |
+
settings/model/lr_decay:
|
272 |
+
desc: null
|
273 |
+
value: 0.5
|
274 |
+
settings/model/lr_patience:
|
275 |
+
desc: null
|
276 |
+
value: 4
|
277 |
+
settings/model/model_mode:
|
278 |
+
desc: null
|
279 |
+
value: segmentation_output
|
280 |
+
settings/model/model_type:
|
281 |
+
desc: null
|
282 |
+
value: unet_semseg
|
283 |
+
settings/model/num_classes:
|
284 |
+
desc: null
|
285 |
+
value: 1
|
286 |
+
settings/model/optimizer:
|
287 |
+
desc: null
|
288 |
+
value: adam
|
289 |
+
settings/model/pos_weight:
|
290 |
+
desc: null
|
291 |
+
value: 1
|
292 |
+
settings/model/semseg_backbone:
|
293 |
+
desc: null
|
294 |
+
value: mobilenet_v2
|
295 |
+
settings/model/test:
|
296 |
+
desc: null
|
297 |
+
value: false
|
298 |
+
settings/model/train:
|
299 |
+
desc: null
|
300 |
+
value: true
|
301 |
+
settings/plot_samples:
|
302 |
+
desc: null
|
303 |
+
value: 8
|
304 |
+
settings/products_plot:
|
305 |
+
desc: null
|
306 |
+
value:
|
307 |
+
- rgb_aviris
|
308 |
+
- mag1c
|
309 |
+
- label
|
310 |
+
- pred
|
311 |
+
- differences
|
312 |
+
settings/resume_from_checkpoint:
|
313 |
+
desc: null
|
314 |
+
value: false
|
315 |
+
settings/seed:
|
316 |
+
desc: null
|
317 |
+
value: None
|
318 |
+
settings/training/accelerator:
|
319 |
+
desc: null
|
320 |
+
value: gpu
|
321 |
+
settings/training/devices:
|
322 |
+
desc: null
|
323 |
+
value: 1
|
324 |
+
settings/training/max_epochs:
|
325 |
+
desc: null
|
326 |
+
value: 15
|
327 |
+
settings/training/train_log_every_n_steps:
|
328 |
+
desc: null
|
329 |
+
value: 10
|
330 |
+
settings/training/val_check_interval:
|
331 |
+
desc: null
|
332 |
+
value: 0.5
|
333 |
+
settings/wandb/images_logging:
|
334 |
+
desc: null
|
335 |
+
value: wandb
|
336 |
+
settings/wandb/wandb_entity:
|
337 |
+
desc: null
|
338 |
+
value: dtacs
|
339 |
+
settings/wandb/wandb_project:
|
340 |
+
desc: null
|
341 |
+
value: starcop-aviris-seg-vitek
|
342 |
+
settings/wandb_logger_version:
|
343 |
+
desc: null
|
344 |
+
value: 1envh3p6
|
models/hyperstarcop_mag1c_rgb/final_checkpoint_model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96e274be943f64e028faded3bac3d1ee325ee7a79d6de2ee7f5deeaea1ef188d
|
3 |
+
size 79998303
|