File size: 863 Bytes
99a3901 7c8cf1a 99a3901 7c8cf1a 99a3901 26d106d 99a3901 26d106d 8cb5e5a 26d106d 8cb5e5a 26d106d 99a3901 26d106d 7c8cf1a 7c04404 7c8cf1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import torch
import benchmark
import opensr_test
import matplotlib.pyplot as plt
from satlas.utils import load_satlas_sr, run_satlas
# Load the model
model = load_satlas_sr(device="cuda")
# Load the dataset
dataset = opensr_test.load("naip")
lr_dataset, hr_dataset = dataset["L1C"], dataset["HRharm"]
# Predict a image
results = run_satlas(
model=model,
lr=lr_dataset[4],
hr=hr_dataset[4],
cropsize=32,
overlap=0
)
# Display the results
fig, ax = plt.subplots(1, 3, figsize=(10, 5))
ax[0].imshow(results["lr"].transpose(1, 2, 0)/3000)
ax[0].set_title("LR")
ax[0].axis("off")
ax[1].imshow(results["sr"].transpose(1, 2, 0)/3000)
ax[1].set_title("SR")
ax[1].axis("off")
ax[2].imshow(results["hr"].transpose(1, 2, 0) / 3000)
ax[2].set_title("HR")
plt.show()
# Run the experiment
benchmark.create_geotiff(model, run_satlas, "all", "satlas/")
|