|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
from swin2_mose.libs import window_reverse, Mlp, window_partition |
|
from swin2_mose.moe import MoE |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
pretrained_window_size (tuple[int]): The height and width of the window in pre-training. |
|
""" |
|
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., |
|
pretrained_window_size=[0, 0], |
|
use_lepe=False, |
|
use_cpb_bias=True, |
|
use_rpe_bias=False): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.pretrained_window_size = pretrained_window_size |
|
self.num_heads = num_heads |
|
|
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) |
|
|
|
self.use_cpb_bias = use_cpb_bias |
|
|
|
if self.use_cpb_bias: |
|
print('positional encoder: CPB') |
|
|
|
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(512, num_heads, bias=False)) |
|
|
|
|
|
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) |
|
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) |
|
relative_coords_table = torch.stack( |
|
torch.meshgrid([relative_coords_h, |
|
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) |
|
if pretrained_window_size[0] > 0: |
|
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) |
|
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) |
|
else: |
|
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) |
|
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) |
|
relative_coords_table *= 8 |
|
relative_coords_table = torch.sign(relative_coords_table) * torch.log2( |
|
torch.abs(relative_coords_table) + 1.0) / np.log2(8) |
|
|
|
self.register_buffer("relative_coords_table", relative_coords_table) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.use_rpe_bias = use_rpe_bias |
|
if self.use_rpe_bias: |
|
print('positional encoder: RPE') |
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
rpe_relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("rpe_relative_position_index", rpe_relative_position_index) |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
self.use_lepe = use_lepe |
|
if self.use_lepe: |
|
print('positional encoder: LEPE') |
|
self.get_v = nn.Conv2d( |
|
dim, dim, kernel_size=3, stride=1, padding=1, groups=dim) |
|
|
|
def forward(self, x, mask=None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
if self.use_lepe: |
|
lepe = self.lepe_pos(v) |
|
|
|
|
|
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) |
|
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)).exp() |
|
attn = attn * logit_scale |
|
|
|
if self.use_cpb_bias: |
|
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) |
|
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
relative_position_bias = 16 * torch.sigmoid(relative_position_bias) |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if self.use_rpe_bias: |
|
relative_position_bias = self.relative_position_bias_table[self.rpe_relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v) |
|
|
|
if self.use_lepe: |
|
x = x + lepe |
|
|
|
x = x.transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def lepe_pos(self, v): |
|
B, NH, HW, NW = v.shape |
|
C = NH * NW |
|
H = W = int(math.sqrt(HW)) |
|
v = v.transpose(-2, -1).contiguous().view(B, C, H, W) |
|
lepe = self.get_v(v) |
|
lepe = lepe.reshape(-1, self.num_heads, NW, HW) |
|
lepe = lepe.permute(0, 1, 3, 2).contiguous() |
|
return lepe |
|
|
|
def extra_repr(self) -> str: |
|
return f'dim={self.dim}, window_size={self.window_size}, ' \ |
|
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}' |
|
|
|
def flops(self, N): |
|
|
|
flops = 0 |
|
|
|
flops += N * self.dim * 3 * self.dim |
|
|
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
|
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
|
|
flops += N * self.dim * self.dim |
|
return flops |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
r""" Swin Transformer Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
pretrained_window_size (int): Window size in pre-training. |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, |
|
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0, |
|
use_lepe=False, |
|
use_cpb_bias=True, |
|
MoE_config=None, |
|
use_rpe_bias=False): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
if min(self.input_resolution) <= self.window_size: |
|
|
|
self.shift_size = 0 |
|
self.window_size = min(self.input_resolution) |
|
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention( |
|
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, |
|
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, |
|
pretrained_window_size=to_2tuple(pretrained_window_size), |
|
use_lepe=use_lepe, |
|
use_cpb_bias=use_cpb_bias, |
|
use_rpe_bias=use_rpe_bias) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
|
if MoE_config is None: |
|
print('-->>> MLP') |
|
self.mlp = Mlp( |
|
in_features=dim, hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, drop=drop) |
|
else: |
|
print('-->>> MOE') |
|
print(MoE_config) |
|
self.mlp = MoE( |
|
input_size=dim, output_size=dim, hidden_size=mlp_hidden_dim, |
|
**MoE_config) |
|
|
|
if self.shift_size > 0: |
|
attn_mask = self.calculate_mask(self.input_resolution) |
|
else: |
|
attn_mask = None |
|
|
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
def calculate_mask(self, x_size): |
|
|
|
H, W = x_size |
|
img_mask = torch.zeros((1, H, W, 1)) |
|
h_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
w_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
|
|
return attn_mask |
|
|
|
def forward(self, x, x_size): |
|
H, W = x_size |
|
B, L, C = x.shape |
|
|
|
shortcut = x |
|
x = x.view(B, H, W, C) |
|
|
|
|
|
if self.shift_size > 0: |
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
else: |
|
shifted_x = x |
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |
|
|
|
|
|
if self.input_resolution == x_size: |
|
attn_windows = self.attn(x_windows, mask=self.attn_mask) |
|
else: |
|
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device)) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, H, W) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
else: |
|
x = shifted_x |
|
x = x.view(B, H * W, C) |
|
x = shortcut + self.drop_path(self.norm1(x)) |
|
|
|
|
|
|
|
loss_moe = None |
|
res = self.mlp(x) |
|
if not torch.is_tensor(res): |
|
res, loss_moe = res |
|
|
|
x = x + self.drop_path(self.norm2(res)) |
|
|
|
return x, loss_moe |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ |
|
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.input_resolution |
|
|
|
flops += self.dim * H * W |
|
|
|
nW = H * W / self.window_size / self.window_size |
|
flops += nW * self.attn.flops(self.window_size * self.window_size) |
|
|
|
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio |
|
|
|
flops += self.dim * H * W |
|
return flops |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
r""" Patch Merging Layer. |
|
Args: |
|
input_resolution (tuple[int]): Resolution of input feature. |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(2 * dim) |
|
|
|
def forward(self, x): |
|
""" |
|
x: B, H*W, C |
|
""" |
|
H, W = self.input_resolution |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
x1 = x[:, 1::2, 0::2, :] |
|
x2 = x[:, 0::2, 1::2, :] |
|
x3 = x[:, 1::2, 1::2, :] |
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
x = x.view(B, -1, 4 * C) |
|
|
|
x = self.reduction(x) |
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"input_resolution={self.input_resolution}, dim={self.dim}" |
|
|
|
def flops(self): |
|
H, W = self.input_resolution |
|
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim |
|
flops += H * W * self.dim // 2 |
|
return flops |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic Swin Transformer layer for one stage. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
pretrained_window_size (int): Local window size in pre-training. |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, depth, num_heads, window_size, |
|
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., |
|
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, |
|
pretrained_window_size=0, |
|
use_lepe=False, |
|
use_cpb_bias=True, |
|
MoE_config=None, |
|
use_rpe_bias=False): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
SwinTransformerBlock(dim=dim, input_resolution=input_resolution, |
|
num_heads=num_heads, window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop, attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=norm_layer, |
|
pretrained_window_size=pretrained_window_size, |
|
use_lepe=use_lepe, |
|
use_cpb_bias=use_cpb_bias, |
|
MoE_config=MoE_config, |
|
use_rpe_bias=use_rpe_bias) |
|
for i in range(depth)]) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, x_size): |
|
loss_moe_all = 0 |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x, x_size) |
|
else: |
|
x = blk(x, x_size) |
|
|
|
if not torch.is_tensor(x): |
|
x, loss_moe = x |
|
loss_moe_all += loss_moe or 0 |
|
|
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
return x, loss_moe_all |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" |
|
|
|
def flops(self): |
|
flops = 0 |
|
for blk in self.blocks: |
|
flops += blk.flops() |
|
if self.downsample is not None: |
|
flops += self.downsample.flops() |
|
return flops |
|
|
|
def _init_respostnorm(self): |
|
for blk in self.blocks: |
|
nn.init.constant_(blk.norm1.bias, 0) |
|
nn.init.constant_(blk.norm1.weight, 0) |
|
nn.init.constant_(blk.norm2.bias, 0) |
|
nn.init.constant_(blk.norm2.weight, 0) |
|
|
|
class PatchEmbed(nn.Module): |
|
r""" Image to Patch Embedding |
|
Args: |
|
img_size (int): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
|
|
|
|
|
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
return x |
|
|
|
def flops(self): |
|
Ho, Wo = self.patches_resolution |
|
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) |
|
if self.norm is not None: |
|
flops += Ho * Wo * self.embed_dim |
|
return flops |
|
|
|
|
|
class RSTB(nn.Module): |
|
"""Residual Swin Transformer Block (RSTB). |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
img_size: Input image size. |
|
patch_size: Patch size. |
|
resi_connection: The convolutional block before residual connection. |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, depth, num_heads, window_size, |
|
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., |
|
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, |
|
img_size=224, patch_size=4, resi_connection='1conv', |
|
use_lepe=False, |
|
use_cpb_bias=True, |
|
MoE_config=None, |
|
use_rpe_bias=False): |
|
super(RSTB, self).__init__() |
|
|
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
|
|
self.residual_group = BasicLayer(dim=dim, |
|
input_resolution=input_resolution, |
|
depth=depth, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop, attn_drop=attn_drop, |
|
drop_path=drop_path, |
|
norm_layer=norm_layer, |
|
downsample=downsample, |
|
use_checkpoint=use_checkpoint, |
|
use_lepe=use_lepe, |
|
use_cpb_bias=use_cpb_bias, |
|
MoE_config=MoE_config, |
|
use_rpe_bias=use_rpe_bias |
|
) |
|
|
|
if resi_connection == '1conv': |
|
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) |
|
elif resi_connection == '3conv': |
|
|
|
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(dim // 4, dim, 3, 1, 1)) |
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim, |
|
norm_layer=None) |
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim, |
|
norm_layer=None) |
|
|
|
def forward(self, x, x_size): |
|
loss_moe = None |
|
res = self.residual_group(x, x_size) |
|
|
|
if not torch.is_tensor(res): |
|
res, loss_moe = res |
|
|
|
res = self.patch_embed(self.conv(self.patch_unembed(res, x_size))) |
|
return res + x, loss_moe |
|
|
|
def flops(self): |
|
flops = 0 |
|
flops += self.residual_group.flops() |
|
H, W = self.input_resolution |
|
flops += H * W * self.dim * self.dim * 9 |
|
flops += self.patch_embed.flops() |
|
flops += self.patch_unembed.flops() |
|
|
|
return flops |
|
|
|
|
|
class PatchUnEmbed(nn.Module): |
|
r""" Image to Patch Unembedding |
|
|
|
Args: |
|
img_size (int): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
def forward(self, x, x_size): |
|
B, HW, C = x.shape |
|
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) |
|
return x |
|
|
|
def flops(self): |
|
flops = 0 |
|
return flops |
|
|
|
|
|
class Upsample(nn.Sequential): |
|
"""Upsample module. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
""" |
|
|
|
def __init__(self, scale, num_feat): |
|
m = [] |
|
if (scale & (scale - 1)) == 0: |
|
for _ in range(int(math.log(scale, 2))): |
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(2)) |
|
elif scale == 3: |
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(3)) |
|
else: |
|
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') |
|
super(Upsample, self).__init__(*m) |
|
|
|
class Upsample_hf(nn.Sequential): |
|
"""Upsample module. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
""" |
|
|
|
def __init__(self, scale, num_feat): |
|
m = [] |
|
if (scale & (scale - 1)) == 0: |
|
for _ in range(int(math.log(scale, 2))): |
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(2)) |
|
elif scale == 3: |
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(3)) |
|
else: |
|
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') |
|
super(Upsample_hf, self).__init__(*m) |
|
|
|
|
|
class UpsampleOneStep(nn.Sequential): |
|
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) |
|
Used in lightweight SR to save parameters. |
|
|
|
Args: |
|
scale (int): Scale factor. Supported scales: 2^n and 3. |
|
num_feat (int): Channel number of intermediate features. |
|
|
|
""" |
|
|
|
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): |
|
self.num_feat = num_feat |
|
self.input_resolution = input_resolution |
|
m = [] |
|
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1)) |
|
m.append(nn.PixelShuffle(scale)) |
|
super(UpsampleOneStep, self).__init__(*m) |
|
|
|
def flops(self): |
|
H, W = self.input_resolution |
|
flops = H * W * self.num_feat * 3 * 9 |
|
return flops |
|
|
|
|
|
|
|
class Swin2MoSE(nn.Module): |
|
r""" Swin2-MoSE |
|
|
|
Args: |
|
img_size (int | tuple(int)): Input image size. Default 64 |
|
patch_size (int | tuple(int)): Patch size. Default: 1 |
|
in_chans (int): Number of input image channels. Default: 3 |
|
embed_dim (int): Patch embedding dimension. Default: 96 |
|
depths (tuple(int)): Depth of each Swin Transformer layer. |
|
num_heads (tuple(int)): Number of attention heads in different layers. |
|
window_size (int): Window size. Default: 7 |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
drop_rate (float): Dropout rate. Default: 0 |
|
attn_drop_rate (float): Attention dropout rate. Default: 0 |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1 |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False |
|
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction |
|
img_range: Image range. 1. or 255. |
|
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None |
|
resi_connection: The convolutional block before residual connection. '1conv'/'3conv' |
|
""" |
|
|
|
def __init__(self, img_size=64, patch_size=1, in_chans=3, |
|
embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], |
|
window_size=7, mlp_ratio=4., qkv_bias=True, |
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, |
|
norm_layer=nn.LayerNorm, ape=False, patch_norm=True, |
|
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', |
|
use_lepe=False, |
|
use_cpb_bias=True, |
|
MoE_config=None, |
|
use_rpe_bias=False, |
|
**kwargs): |
|
super(Swin2MoSE, self).__init__() |
|
num_in_ch = in_chans |
|
num_out_ch = in_chans |
|
num_feat = 64 |
|
self.img_range = img_range |
|
if in_chans == 3: |
|
rgb_mean = (0.4488, 0.4371, 0.4040) |
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) |
|
else: |
|
self.mean = torch.zeros(1, 1, 1, 1) |
|
self.upscale = upscale |
|
self.upsampler = upsampler |
|
self.window_size = window_size |
|
|
|
|
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) |
|
|
|
|
|
|
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.ape = ape |
|
self.patch_norm = patch_norm |
|
self.num_features = embed_dim |
|
self.mlp_ratio = mlp_ratio |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
num_patches = self.patch_embed.num_patches |
|
patches_resolution = self.patch_embed.patches_resolution |
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
|
|
if self.ape: |
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) |
|
trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = RSTB(dim=embed_dim, |
|
input_resolution=(patches_resolution[0], |
|
patches_resolution[1]), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=self.mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=None, |
|
use_checkpoint=use_checkpoint, |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
resi_connection=resi_connection, |
|
use_lepe=use_lepe, |
|
use_cpb_bias=use_cpb_bias, |
|
MoE_config=MoE_config, |
|
use_rpe_bias=use_rpe_bias, |
|
) |
|
self.layers.append(layer) |
|
|
|
if self.upsampler == 'pixelshuffle_hf': |
|
self.layers_hf = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = RSTB(dim=embed_dim, |
|
input_resolution=(patches_resolution[0], |
|
patches_resolution[1]), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=self.mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=None, |
|
use_checkpoint=use_checkpoint, |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
resi_connection=resi_connection, |
|
use_lepe=use_lepe, |
|
use_cpb_bias=use_cpb_bias, |
|
MoE_config=MoE_config, |
|
use_rpe_bias=use_rpe_bias |
|
) |
|
self.layers_hf.append(layer) |
|
|
|
self.norm = norm_layer(self.num_features) |
|
|
|
|
|
if resi_connection == '1conv': |
|
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) |
|
elif resi_connection == '3conv': |
|
|
|
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) |
|
|
|
|
|
|
|
if self.upsampler == 'pixelshuffle': |
|
|
|
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), |
|
nn.LeakyReLU(inplace=True)) |
|
self.upsample = Upsample(upscale, num_feat) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
elif self.upsampler == 'pixelshuffle_aux': |
|
self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) |
|
self.conv_before_upsample = nn.Sequential( |
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), |
|
nn.LeakyReLU(inplace=True)) |
|
self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
self.conv_after_aux = nn.Sequential( |
|
nn.Conv2d(3, num_feat, 3, 1, 1), |
|
nn.LeakyReLU(inplace=True)) |
|
self.upsample = Upsample(upscale, num_feat) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
elif self.upsampler == 'pixelshuffle_hf': |
|
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), |
|
nn.LeakyReLU(inplace=True)) |
|
self.upsample = Upsample(upscale, num_feat) |
|
self.upsample_hf = Upsample_hf(upscale, num_feat) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
self.conv_first_hf = nn.Sequential(nn.Conv2d(num_feat, embed_dim, 3, 1, 1), |
|
nn.LeakyReLU(inplace=True)) |
|
self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) |
|
self.conv_before_upsample_hf = nn.Sequential( |
|
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), |
|
nn.LeakyReLU(inplace=True)) |
|
self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
elif self.upsampler == 'pixelshuffledirect': |
|
|
|
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, |
|
(patches_resolution[0], patches_resolution[1])) |
|
elif self.upsampler == 'nearest+conv': |
|
|
|
assert self.upscale == 4, 'only support x4 now.' |
|
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), |
|
nn.LeakyReLU(inplace=True)) |
|
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) |
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
else: |
|
|
|
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'absolute_pos_embed'} |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
return {'relative_position_bias_table'} |
|
|
|
def check_image_size(self, x): |
|
_, _, h, w = x.size() |
|
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size |
|
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size |
|
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') |
|
return x |
|
|
|
def forward_features(self, x): |
|
x_size = (x.shape[2], x.shape[3]) |
|
x = self.patch_embed(x) |
|
if self.ape: |
|
x = x + self.absolute_pos_embed |
|
x = self.pos_drop(x) |
|
|
|
loss_moe_all = 0 |
|
for layer in self.layers: |
|
x = layer(x, x_size) |
|
|
|
if not torch.is_tensor(x): |
|
x, loss_moe = x |
|
loss_moe_all += loss_moe or 0 |
|
|
|
x = self.norm(x) |
|
x = self.patch_unembed(x, x_size) |
|
|
|
return x, loss_moe_all |
|
|
|
def forward_features_hf(self, x): |
|
x_size = (x.shape[2], x.shape[3]) |
|
x = self.patch_embed(x) |
|
if self.ape: |
|
x = x + self.absolute_pos_embed |
|
x = self.pos_drop(x) |
|
|
|
loss_moe_all = 0 |
|
for layer in self.layers_hf: |
|
x = layer(x, x_size) |
|
|
|
if not torch.is_tensor(x): |
|
x, loss_moe = x |
|
loss_moe_all += loss_moe or 0 |
|
|
|
x = self.norm(x) |
|
x = self.patch_unembed(x, x_size) |
|
|
|
return x, loss_moe_all |
|
|
|
def forward_backbone(self, x): |
|
H, W = x.shape[2:] |
|
x = self.check_image_size(x) |
|
|
|
self.mean = self.mean.type_as(x) |
|
x = (x - self.mean) * self.img_range |
|
|
|
if self.upsampler == 'pixelshuffledirect': |
|
|
|
x = self.conv_first(x) |
|
|
|
res = self.forward_features(x) |
|
if not torch.is_tensor(res): |
|
res, loss_moe = res |
|
|
|
x = self.conv_after_body(res) + x |
|
else: |
|
raise Exception('not implemented yet') |
|
|
|
x = x / self.img_range + self.mean |
|
return x |
|
|
|
def forward(self, x): |
|
H, W = x.shape[2:] |
|
x = self.check_image_size(x) |
|
|
|
self.mean = self.mean.type_as(x) |
|
x = (x - self.mean) * self.img_range |
|
|
|
loss_moe = 0 |
|
if self.upsampler == 'pixelshuffle': |
|
|
|
x = self.conv_first(x) |
|
|
|
res = self.forward_features(x) |
|
if not torch.is_tensor(res): |
|
res, loss_moe = res |
|
|
|
x = self.conv_after_body(res) + x |
|
x = self.conv_before_upsample(x) |
|
x = self.conv_last(self.upsample(x)) |
|
elif self.upsampler == 'pixelshuffle_aux': |
|
bicubic = F.interpolate(x, size=(H * self.upscale, W * self.upscale), mode='bicubic', align_corners=False) |
|
bicubic = self.conv_bicubic(bicubic) |
|
x = self.conv_first(x) |
|
|
|
res = self.forward_features(x) |
|
if not torch.is_tensor(res): |
|
res, loss_moe = res |
|
|
|
x = self.conv_after_body(res) + x |
|
x = self.conv_before_upsample(x) |
|
aux = self.conv_aux(x) |
|
x = self.conv_after_aux(aux) |
|
x = self.upsample(x)[:, :, :H * self.upscale, :W * self.upscale] + bicubic[:, :, :H * self.upscale, :W * self.upscale] |
|
x = self.conv_last(x) |
|
aux = aux / self.img_range + self.mean |
|
elif self.upsampler == 'pixelshuffle_hf': |
|
|
|
x = self.conv_first(x) |
|
|
|
res = self.forward_features(x) |
|
if not torch.is_tensor(res): |
|
res, loss_moe = res |
|
|
|
x = self.conv_after_body(res) + x |
|
x_before = self.conv_before_upsample(x) |
|
x_out = self.conv_last(self.upsample(x_before)) |
|
|
|
x_hf = self.conv_first_hf(x_before) |
|
|
|
res_hf = self.forward_features_hf(x_hf) |
|
if not torch.is_tensor(res_hf): |
|
res_hf, loss_moe_hf = res_hf |
|
loss_moe += loss_moe_hf |
|
|
|
x_hf = self.conv_after_body_hf(res_hf) + x_hf |
|
x_hf = self.conv_before_upsample_hf(x_hf) |
|
x_hf = self.conv_last_hf(self.upsample_hf(x_hf)) |
|
x = x_out + x_hf |
|
x_hf = x_hf / self.img_range + self.mean |
|
|
|
elif self.upsampler == 'pixelshuffledirect': |
|
|
|
x = self.conv_first(x) |
|
|
|
res = self.forward_features(x) |
|
if not torch.is_tensor(res): |
|
res, loss_moe = res |
|
|
|
x = self.conv_after_body(res) + x |
|
x = self.upsample(x) |
|
elif self.upsampler == 'nearest+conv': |
|
|
|
x = self.conv_first(x) |
|
|
|
res = self.forward_features(x) |
|
if not torch.is_tensor(res): |
|
res, loss_moe = res |
|
|
|
x = self.conv_after_body(res) + x |
|
x = self.conv_before_upsample(x) |
|
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) |
|
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) |
|
x = self.conv_last(self.lrelu(self.conv_hr(x))) |
|
else: |
|
|
|
x_first = self.conv_first(x) |
|
|
|
res = self.forward_features(x_first) |
|
if not torch.is_tensor(res): |
|
res, loss_moe = res |
|
|
|
res = self.conv_after_body(res) + x_first |
|
x = x + self.conv_last(res) |
|
|
|
x = x / self.img_range + self.mean |
|
if self.upsampler == "pixelshuffle_aux": |
|
return x[:, :, :H*self.upscale, :W*self.upscale], aux, loss_moe |
|
|
|
elif self.upsampler == "pixelshuffle_hf": |
|
x_out = x_out / self.img_range + self.mean |
|
return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale], loss_moe |
|
|
|
else: |
|
return x[:, :, :H*self.upscale, :W*self.upscale], loss_moe |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.patches_resolution |
|
flops += H * W * 3 * self.embed_dim * 9 |
|
flops += self.patch_embed.flops() |
|
for i, layer in enumerate(self.layers): |
|
flops += layer.flops() |
|
flops += H * W * 3 * self.embed_dim * self.embed_dim |
|
flops += self.upsample.flops() |
|
return flops |
|
|