Merge branch 'main' of https://huggingface.co/isp-uv-es/superXI
Browse files- ldm-baseline/metadata.json +0 -10
- ldm-baseline/run.py +0 -30
- ldm-baseline/utils.py +0 -81
ldm-baseline/metadata.json
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"name": "ldm-baseline",
|
3 |
-
"authors": ["CompVis team"],
|
4 |
-
"affiliations": ["None"],
|
5 |
-
"description": "A baseline of LDM models trained on the Open Images dataset.",
|
6 |
-
"code": "open-source",
|
7 |
-
"scale": "x4",
|
8 |
-
"url": "https://huggingface.co/CompVis/ldm-super-resolution-4x-openimages",
|
9 |
-
"license": "apache-2.0"
|
10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ldm-baseline/run.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
from diffuser.utils import create_stable_diffusion_model, run_diffuser
|
2 |
-
import opensr_test
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
|
5 |
-
# Load the model
|
6 |
-
model = create_stable_diffusion_model(device="cuda")
|
7 |
-
|
8 |
-
# Load the dataset
|
9 |
-
dataset = opensr_test.load("naip")
|
10 |
-
lr_dataset, hr_dataset = dataset["L2A"], dataset["HRharm"]
|
11 |
-
|
12 |
-
# Run the model
|
13 |
-
results = run_diffuser(
|
14 |
-
model=model,
|
15 |
-
lr=lr_dataset[5][:,0:64, 0:64],
|
16 |
-
hr=hr_dataset[5][:,0:256, 0:256],
|
17 |
-
device="cuda"
|
18 |
-
)
|
19 |
-
|
20 |
-
# Display the results
|
21 |
-
fig, ax = plt.subplots(1, 3, figsize=(10, 5))
|
22 |
-
ax[0].imshow(results["lr"].transpose(1, 2, 0)/3000)
|
23 |
-
ax[0].set_title("LR")
|
24 |
-
ax[0].axis("off")
|
25 |
-
ax[1].imshow(results["sr"].transpose(1, 2, 0)/3000)
|
26 |
-
ax[1].set_title("SR")
|
27 |
-
ax[1].axis("off")
|
28 |
-
ax[2].imshow(results["hr"].transpose(1, 2, 0) / 3000)
|
29 |
-
ax[2].set_title("HR")
|
30 |
-
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ldm-baseline/utils.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
from diffusers import LDMSuperResolutionPipeline
|
2 |
-
import numpy as np
|
3 |
-
import opensr_test
|
4 |
-
import torch
|
5 |
-
import pickle
|
6 |
-
from typing import Union
|
7 |
-
|
8 |
-
|
9 |
-
def create_stable_diffusion_model(
|
10 |
-
device: Union[str, torch.device] = "cuda"
|
11 |
-
) -> LDMSuperResolutionPipeline:
|
12 |
-
""" Create the stable diffusion model
|
13 |
-
|
14 |
-
Returns:
|
15 |
-
LDMSuperResolutionPipeline: The model to use for
|
16 |
-
super resolution.
|
17 |
-
"""
|
18 |
-
model_id = "CompVis/ldm-super-resolution-4x-openimages"
|
19 |
-
pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id)
|
20 |
-
pipeline = pipeline.to(device)
|
21 |
-
return pipeline
|
22 |
-
|
23 |
-
def run_diffuser(
|
24 |
-
model: LDMSuperResolutionPipeline,
|
25 |
-
lr: torch.Tensor,
|
26 |
-
hr: torch.Tensor,
|
27 |
-
device: Union[str, torch.device] = "cuda"
|
28 |
-
) -> dict:
|
29 |
-
""" Run the model on the low resolution image
|
30 |
-
|
31 |
-
Args:
|
32 |
-
model (LDMSuperResolutionPipeline): The model to use
|
33 |
-
lr (torch.Tensor): The low resolution image
|
34 |
-
hr (torch.Tensor): The high resolution image
|
35 |
-
device (Union[str, torch.device], optional): The device
|
36 |
-
to use. Defaults to "cuda".
|
37 |
-
|
38 |
-
Returns:
|
39 |
-
dict: The results of the model
|
40 |
-
"""
|
41 |
-
|
42 |
-
# move the images to the device
|
43 |
-
lr = (torch.from_numpy(lr[[3, 2, 1]]) / 2000).to(device).clamp(0, 1)
|
44 |
-
|
45 |
-
if lr.shape[1] == 121:
|
46 |
-
# add padding
|
47 |
-
lr = torch.nn.functional.pad(
|
48 |
-
lr[None],
|
49 |
-
pad=(3, 4, 3, 4),
|
50 |
-
mode='reflect'
|
51 |
-
).squeeze()
|
52 |
-
|
53 |
-
# run the model
|
54 |
-
with torch.no_grad():
|
55 |
-
sr = model(lr[None], num_inference_steps=100, eta=1)
|
56 |
-
sr = torch.from_numpy(
|
57 |
-
np.array(sr.images[0])/255
|
58 |
-
).permute(2,0,1).float()
|
59 |
-
|
60 |
-
# remove padding
|
61 |
-
sr = sr[:, 3*4:-4*4, 3*4:-4*4]
|
62 |
-
lr = lr[:, 3:-4, 3:-4]
|
63 |
-
else:
|
64 |
-
# run the model
|
65 |
-
with torch.no_grad():
|
66 |
-
sr = model(lr[None], num_inference_steps=100, eta=1)
|
67 |
-
sr = torch.from_numpy(
|
68 |
-
np.array(sr.images[0])/255
|
69 |
-
).permute(2,0,1).float()
|
70 |
-
|
71 |
-
lr = (lr.cpu().numpy() * 2000).astype(np.uint16)
|
72 |
-
hr = ((hr[0:3] / 2000).clip(0, 1) * 2000).astype(np.uint16)
|
73 |
-
sr = (sr.cpu().numpy() * 2000).astype(np.uint16)
|
74 |
-
|
75 |
-
results = {
|
76 |
-
"lr": lr,
|
77 |
-
"hr": hr,
|
78 |
-
"sr": sr
|
79 |
-
}
|
80 |
-
|
81 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|