Upload 5 files
Browse files- swin2_mose/model.py +1157 -0
- swin2_mose/moe.py +323 -0
- swin2_mose/run.py +20 -0
- swin2_mose/utils.py +56 -0
- swin2_mose/weights/model-70.pt +3 -0
swin2_mose/model.py
ADDED
@@ -0,0 +1,1157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Source code: https://github.com/mv-lab/swin2sr
|
3 |
+
#
|
4 |
+
# -----------------------------------------------------------------------------------
|
5 |
+
# Swin2SR: Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration, https://arxiv.org/abs/2209.11345
|
6 |
+
# Written by Conde and Choi et al.
|
7 |
+
# -----------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
import math
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import torch.utils.checkpoint as checkpoint
|
15 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
16 |
+
|
17 |
+
from utils import window_reverse, Mlp, window_partition
|
18 |
+
from moe import MoE
|
19 |
+
|
20 |
+
|
21 |
+
class WindowAttention(nn.Module):
|
22 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
23 |
+
It supports both of shifted and non-shifted window.
|
24 |
+
Args:
|
25 |
+
dim (int): Number of input channels.
|
26 |
+
window_size (tuple[int]): The height and width of the window.
|
27 |
+
num_heads (int): Number of attention heads.
|
28 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
29 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
30 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
31 |
+
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
35 |
+
pretrained_window_size=[0, 0],
|
36 |
+
use_lepe=False,
|
37 |
+
use_cpb_bias=True,
|
38 |
+
use_rpe_bias=False):
|
39 |
+
|
40 |
+
super().__init__()
|
41 |
+
self.dim = dim
|
42 |
+
self.window_size = window_size # Wh, Ww
|
43 |
+
self.pretrained_window_size = pretrained_window_size
|
44 |
+
self.num_heads = num_heads
|
45 |
+
|
46 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
47 |
+
|
48 |
+
self.use_cpb_bias = use_cpb_bias
|
49 |
+
|
50 |
+
if self.use_cpb_bias:
|
51 |
+
print('positional encoder: CPB')
|
52 |
+
# mlp to generate continuous relative position bias
|
53 |
+
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
54 |
+
nn.ReLU(inplace=True),
|
55 |
+
nn.Linear(512, num_heads, bias=False))
|
56 |
+
|
57 |
+
# get relative_coords_table
|
58 |
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
59 |
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
60 |
+
relative_coords_table = torch.stack(
|
61 |
+
torch.meshgrid([relative_coords_h,
|
62 |
+
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
63 |
+
if pretrained_window_size[0] > 0:
|
64 |
+
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
65 |
+
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
66 |
+
else:
|
67 |
+
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
68 |
+
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
69 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
70 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
71 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
72 |
+
|
73 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
74 |
+
|
75 |
+
# get pair-wise relative position index for each token inside the window
|
76 |
+
coords_h = torch.arange(self.window_size[0])
|
77 |
+
coords_w = torch.arange(self.window_size[1])
|
78 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
79 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
80 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
81 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
82 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
83 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
84 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
85 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
86 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
87 |
+
|
88 |
+
self.use_rpe_bias = use_rpe_bias
|
89 |
+
if self.use_rpe_bias:
|
90 |
+
print('positional encoder: RPE')
|
91 |
+
# define a parameter table of relative position bias
|
92 |
+
self.relative_position_bias_table = nn.Parameter(
|
93 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
94 |
+
|
95 |
+
# get pair-wise relative position index for each token inside the window
|
96 |
+
coords_h = torch.arange(self.window_size[0])
|
97 |
+
coords_w = torch.arange(self.window_size[1])
|
98 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
99 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
100 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
101 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
102 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
103 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
104 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
105 |
+
rpe_relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
106 |
+
self.register_buffer("rpe_relative_position_index", rpe_relative_position_index)
|
107 |
+
|
108 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
109 |
+
|
110 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
111 |
+
if qkv_bias:
|
112 |
+
self.q_bias = nn.Parameter(torch.zeros(dim))
|
113 |
+
self.v_bias = nn.Parameter(torch.zeros(dim))
|
114 |
+
else:
|
115 |
+
self.q_bias = None
|
116 |
+
self.v_bias = None
|
117 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
118 |
+
self.proj = nn.Linear(dim, dim)
|
119 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
120 |
+
self.softmax = nn.Softmax(dim=-1)
|
121 |
+
|
122 |
+
self.use_lepe = use_lepe
|
123 |
+
if self.use_lepe:
|
124 |
+
print('positional encoder: LEPE')
|
125 |
+
self.get_v = nn.Conv2d(
|
126 |
+
dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)
|
127 |
+
|
128 |
+
def forward(self, x, mask=None):
|
129 |
+
"""
|
130 |
+
Args:
|
131 |
+
x: input features with shape of (num_windows*B, N, C)
|
132 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
133 |
+
"""
|
134 |
+
B_, N, C = x.shape
|
135 |
+
qkv_bias = None
|
136 |
+
if self.q_bias is not None:
|
137 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
138 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
139 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
140 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
141 |
+
|
142 |
+
if self.use_lepe:
|
143 |
+
lepe = self.lepe_pos(v)
|
144 |
+
|
145 |
+
# cosine attention
|
146 |
+
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
147 |
+
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)).exp()
|
148 |
+
attn = attn * logit_scale
|
149 |
+
|
150 |
+
if self.use_cpb_bias:
|
151 |
+
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
152 |
+
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
153 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
154 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
155 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
156 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
157 |
+
|
158 |
+
if self.use_rpe_bias:
|
159 |
+
relative_position_bias = self.relative_position_bias_table[self.rpe_relative_position_index.view(-1)].view(
|
160 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
161 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
162 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
163 |
+
|
164 |
+
if mask is not None:
|
165 |
+
nW = mask.shape[0]
|
166 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
167 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
168 |
+
attn = self.softmax(attn)
|
169 |
+
else:
|
170 |
+
attn = self.softmax(attn)
|
171 |
+
|
172 |
+
attn = self.attn_drop(attn)
|
173 |
+
|
174 |
+
x = (attn @ v)
|
175 |
+
|
176 |
+
if self.use_lepe:
|
177 |
+
x = x + lepe
|
178 |
+
|
179 |
+
x = x.transpose(1, 2).reshape(B_, N, C)
|
180 |
+
x = self.proj(x)
|
181 |
+
x = self.proj_drop(x)
|
182 |
+
return x
|
183 |
+
|
184 |
+
def lepe_pos(self, v):
|
185 |
+
B, NH, HW, NW = v.shape
|
186 |
+
C = NH * NW
|
187 |
+
H = W = int(math.sqrt(HW))
|
188 |
+
v = v.transpose(-2, -1).contiguous().view(B, C, H, W)
|
189 |
+
lepe = self.get_v(v)
|
190 |
+
lepe = lepe.reshape(-1, self.num_heads, NW, HW)
|
191 |
+
lepe = lepe.permute(0, 1, 3, 2).contiguous()
|
192 |
+
return lepe
|
193 |
+
|
194 |
+
def extra_repr(self) -> str:
|
195 |
+
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
196 |
+
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
197 |
+
|
198 |
+
def flops(self, N):
|
199 |
+
# calculate flops for 1 window with token length of N
|
200 |
+
flops = 0
|
201 |
+
# qkv = self.qkv(x)
|
202 |
+
flops += N * self.dim * 3 * self.dim
|
203 |
+
# attn = (q @ k.transpose(-2, -1))
|
204 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
205 |
+
# x = (attn @ v)
|
206 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
207 |
+
# x = self.proj(x)
|
208 |
+
flops += N * self.dim * self.dim
|
209 |
+
return flops
|
210 |
+
|
211 |
+
|
212 |
+
class SwinTransformerBlock(nn.Module):
|
213 |
+
r""" Swin Transformer Block.
|
214 |
+
Args:
|
215 |
+
dim (int): Number of input channels.
|
216 |
+
input_resolution (tuple[int]): Input resulotion.
|
217 |
+
num_heads (int): Number of attention heads.
|
218 |
+
window_size (int): Window size.
|
219 |
+
shift_size (int): Shift size for SW-MSA.
|
220 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
221 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
222 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
223 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
224 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
225 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
226 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
227 |
+
pretrained_window_size (int): Window size in pre-training.
|
228 |
+
"""
|
229 |
+
|
230 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
231 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
|
232 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0,
|
233 |
+
use_lepe=False,
|
234 |
+
use_cpb_bias=True,
|
235 |
+
MoE_config=None,
|
236 |
+
use_rpe_bias=False):
|
237 |
+
super().__init__()
|
238 |
+
self.dim = dim
|
239 |
+
self.input_resolution = input_resolution
|
240 |
+
self.num_heads = num_heads
|
241 |
+
self.window_size = window_size
|
242 |
+
self.shift_size = shift_size
|
243 |
+
self.mlp_ratio = mlp_ratio
|
244 |
+
if min(self.input_resolution) <= self.window_size:
|
245 |
+
# if window size is larger than input resolution, we don't partition windows
|
246 |
+
self.shift_size = 0
|
247 |
+
self.window_size = min(self.input_resolution)
|
248 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
249 |
+
|
250 |
+
self.norm1 = norm_layer(dim)
|
251 |
+
self.attn = WindowAttention(
|
252 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
253 |
+
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
254 |
+
pretrained_window_size=to_2tuple(pretrained_window_size),
|
255 |
+
use_lepe=use_lepe,
|
256 |
+
use_cpb_bias=use_cpb_bias,
|
257 |
+
use_rpe_bias=use_rpe_bias)
|
258 |
+
|
259 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
260 |
+
self.norm2 = norm_layer(dim)
|
261 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
262 |
+
|
263 |
+
if MoE_config is None:
|
264 |
+
print('-->>> MLP')
|
265 |
+
self.mlp = Mlp(
|
266 |
+
in_features=dim, hidden_features=mlp_hidden_dim,
|
267 |
+
act_layer=act_layer, drop=drop)
|
268 |
+
else:
|
269 |
+
print('-->>> MOE')
|
270 |
+
print(MoE_config)
|
271 |
+
self.mlp = MoE(
|
272 |
+
input_size=dim, output_size=dim, hidden_size=mlp_hidden_dim,
|
273 |
+
**MoE_config)
|
274 |
+
|
275 |
+
if self.shift_size > 0:
|
276 |
+
attn_mask = self.calculate_mask(self.input_resolution)
|
277 |
+
else:
|
278 |
+
attn_mask = None
|
279 |
+
|
280 |
+
self.register_buffer("attn_mask", attn_mask)
|
281 |
+
|
282 |
+
def calculate_mask(self, x_size):
|
283 |
+
# calculate attention mask for SW-MSA
|
284 |
+
H, W = x_size
|
285 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
286 |
+
h_slices = (slice(0, -self.window_size),
|
287 |
+
slice(-self.window_size, -self.shift_size),
|
288 |
+
slice(-self.shift_size, None))
|
289 |
+
w_slices = (slice(0, -self.window_size),
|
290 |
+
slice(-self.window_size, -self.shift_size),
|
291 |
+
slice(-self.shift_size, None))
|
292 |
+
cnt = 0
|
293 |
+
for h in h_slices:
|
294 |
+
for w in w_slices:
|
295 |
+
img_mask[:, h, w, :] = cnt
|
296 |
+
cnt += 1
|
297 |
+
|
298 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
299 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
300 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
301 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
302 |
+
|
303 |
+
return attn_mask
|
304 |
+
|
305 |
+
def forward(self, x, x_size):
|
306 |
+
H, W = x_size
|
307 |
+
B, L, C = x.shape
|
308 |
+
|
309 |
+
shortcut = x
|
310 |
+
x = x.view(B, H, W, C)
|
311 |
+
|
312 |
+
# cyclic shift
|
313 |
+
if self.shift_size > 0:
|
314 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
315 |
+
else:
|
316 |
+
shifted_x = x
|
317 |
+
|
318 |
+
# partition windows
|
319 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
320 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
321 |
+
|
322 |
+
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
|
323 |
+
if self.input_resolution == x_size:
|
324 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
325 |
+
else:
|
326 |
+
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
|
327 |
+
|
328 |
+
# merge windows
|
329 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
330 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
331 |
+
|
332 |
+
# reverse cyclic shift
|
333 |
+
if self.shift_size > 0:
|
334 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
335 |
+
else:
|
336 |
+
x = shifted_x
|
337 |
+
x = x.view(B, H * W, C)
|
338 |
+
x = shortcut + self.drop_path(self.norm1(x))
|
339 |
+
|
340 |
+
# FFN
|
341 |
+
|
342 |
+
loss_moe = None
|
343 |
+
res = self.mlp(x)
|
344 |
+
if not torch.is_tensor(res):
|
345 |
+
res, loss_moe = res
|
346 |
+
|
347 |
+
x = x + self.drop_path(self.norm2(res))
|
348 |
+
|
349 |
+
return x, loss_moe
|
350 |
+
|
351 |
+
def extra_repr(self) -> str:
|
352 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
353 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
354 |
+
|
355 |
+
def flops(self):
|
356 |
+
flops = 0
|
357 |
+
H, W = self.input_resolution
|
358 |
+
# norm1
|
359 |
+
flops += self.dim * H * W
|
360 |
+
# W-MSA/SW-MSA
|
361 |
+
nW = H * W / self.window_size / self.window_size
|
362 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
363 |
+
# mlp
|
364 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
365 |
+
# norm2
|
366 |
+
flops += self.dim * H * W
|
367 |
+
return flops
|
368 |
+
|
369 |
+
|
370 |
+
class PatchMerging(nn.Module):
|
371 |
+
r""" Patch Merging Layer.
|
372 |
+
Args:
|
373 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
374 |
+
dim (int): Number of input channels.
|
375 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
376 |
+
"""
|
377 |
+
|
378 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
379 |
+
super().__init__()
|
380 |
+
self.input_resolution = input_resolution
|
381 |
+
self.dim = dim
|
382 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
383 |
+
self.norm = norm_layer(2 * dim)
|
384 |
+
|
385 |
+
def forward(self, x):
|
386 |
+
"""
|
387 |
+
x: B, H*W, C
|
388 |
+
"""
|
389 |
+
H, W = self.input_resolution
|
390 |
+
B, L, C = x.shape
|
391 |
+
assert L == H * W, "input feature has wrong size"
|
392 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
393 |
+
|
394 |
+
x = x.view(B, H, W, C)
|
395 |
+
|
396 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
397 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
398 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
399 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
400 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
401 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
402 |
+
|
403 |
+
x = self.reduction(x)
|
404 |
+
x = self.norm(x)
|
405 |
+
|
406 |
+
return x
|
407 |
+
|
408 |
+
def extra_repr(self) -> str:
|
409 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
410 |
+
|
411 |
+
def flops(self):
|
412 |
+
H, W = self.input_resolution
|
413 |
+
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
414 |
+
flops += H * W * self.dim // 2
|
415 |
+
return flops
|
416 |
+
|
417 |
+
|
418 |
+
class BasicLayer(nn.Module):
|
419 |
+
""" A basic Swin Transformer layer for one stage.
|
420 |
+
Args:
|
421 |
+
dim (int): Number of input channels.
|
422 |
+
input_resolution (tuple[int]): Input resolution.
|
423 |
+
depth (int): Number of blocks.
|
424 |
+
num_heads (int): Number of attention heads.
|
425 |
+
window_size (int): Local window size.
|
426 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
427 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
428 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
429 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
430 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
431 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
432 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
433 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
434 |
+
pretrained_window_size (int): Local window size in pre-training.
|
435 |
+
"""
|
436 |
+
|
437 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
438 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
|
439 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
440 |
+
pretrained_window_size=0,
|
441 |
+
use_lepe=False,
|
442 |
+
use_cpb_bias=True,
|
443 |
+
MoE_config=None,
|
444 |
+
use_rpe_bias=False):
|
445 |
+
|
446 |
+
super().__init__()
|
447 |
+
self.dim = dim
|
448 |
+
self.input_resolution = input_resolution
|
449 |
+
self.depth = depth
|
450 |
+
self.use_checkpoint = use_checkpoint
|
451 |
+
|
452 |
+
# build blocks
|
453 |
+
self.blocks = nn.ModuleList([
|
454 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
455 |
+
num_heads=num_heads, window_size=window_size,
|
456 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
457 |
+
mlp_ratio=mlp_ratio,
|
458 |
+
qkv_bias=qkv_bias,
|
459 |
+
drop=drop, attn_drop=attn_drop,
|
460 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
461 |
+
norm_layer=norm_layer,
|
462 |
+
pretrained_window_size=pretrained_window_size,
|
463 |
+
use_lepe=use_lepe,
|
464 |
+
use_cpb_bias=use_cpb_bias,
|
465 |
+
MoE_config=MoE_config,
|
466 |
+
use_rpe_bias=use_rpe_bias)
|
467 |
+
for i in range(depth)])
|
468 |
+
|
469 |
+
# patch merging layer
|
470 |
+
if downsample is not None:
|
471 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
472 |
+
else:
|
473 |
+
self.downsample = None
|
474 |
+
|
475 |
+
def forward(self, x, x_size):
|
476 |
+
loss_moe_all = 0
|
477 |
+
for blk in self.blocks:
|
478 |
+
if self.use_checkpoint:
|
479 |
+
x = checkpoint.checkpoint(blk, x, x_size)
|
480 |
+
else:
|
481 |
+
x = blk(x, x_size)
|
482 |
+
|
483 |
+
if not torch.is_tensor(x):
|
484 |
+
x, loss_moe = x
|
485 |
+
loss_moe_all += loss_moe or 0
|
486 |
+
|
487 |
+
if self.downsample is not None:
|
488 |
+
x = self.downsample(x)
|
489 |
+
return x, loss_moe_all
|
490 |
+
|
491 |
+
def extra_repr(self) -> str:
|
492 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
493 |
+
|
494 |
+
def flops(self):
|
495 |
+
flops = 0
|
496 |
+
for blk in self.blocks:
|
497 |
+
flops += blk.flops()
|
498 |
+
if self.downsample is not None:
|
499 |
+
flops += self.downsample.flops()
|
500 |
+
return flops
|
501 |
+
|
502 |
+
def _init_respostnorm(self):
|
503 |
+
for blk in self.blocks:
|
504 |
+
nn.init.constant_(blk.norm1.bias, 0)
|
505 |
+
nn.init.constant_(blk.norm1.weight, 0)
|
506 |
+
nn.init.constant_(blk.norm2.bias, 0)
|
507 |
+
nn.init.constant_(blk.norm2.weight, 0)
|
508 |
+
|
509 |
+
class PatchEmbed(nn.Module):
|
510 |
+
r""" Image to Patch Embedding
|
511 |
+
Args:
|
512 |
+
img_size (int): Image size. Default: 224.
|
513 |
+
patch_size (int): Patch token size. Default: 4.
|
514 |
+
in_chans (int): Number of input image channels. Default: 3.
|
515 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
516 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
517 |
+
"""
|
518 |
+
|
519 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
520 |
+
super().__init__()
|
521 |
+
img_size = to_2tuple(img_size)
|
522 |
+
patch_size = to_2tuple(patch_size)
|
523 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
524 |
+
self.img_size = img_size
|
525 |
+
self.patch_size = patch_size
|
526 |
+
self.patches_resolution = patches_resolution
|
527 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
528 |
+
|
529 |
+
self.in_chans = in_chans
|
530 |
+
self.embed_dim = embed_dim
|
531 |
+
|
532 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
533 |
+
if norm_layer is not None:
|
534 |
+
self.norm = norm_layer(embed_dim)
|
535 |
+
else:
|
536 |
+
self.norm = None
|
537 |
+
|
538 |
+
def forward(self, x):
|
539 |
+
B, C, H, W = x.shape
|
540 |
+
# FIXME look at relaxing size constraints
|
541 |
+
# assert H == self.img_size[0] and W == self.img_size[1],
|
542 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
543 |
+
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
|
544 |
+
if self.norm is not None:
|
545 |
+
x = self.norm(x)
|
546 |
+
return x
|
547 |
+
|
548 |
+
def flops(self):
|
549 |
+
Ho, Wo = self.patches_resolution
|
550 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
551 |
+
if self.norm is not None:
|
552 |
+
flops += Ho * Wo * self.embed_dim
|
553 |
+
return flops
|
554 |
+
|
555 |
+
|
556 |
+
class RSTB(nn.Module):
|
557 |
+
"""Residual Swin Transformer Block (RSTB).
|
558 |
+
|
559 |
+
Args:
|
560 |
+
dim (int): Number of input channels.
|
561 |
+
input_resolution (tuple[int]): Input resolution.
|
562 |
+
depth (int): Number of blocks.
|
563 |
+
num_heads (int): Number of attention heads.
|
564 |
+
window_size (int): Local window size.
|
565 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
566 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
567 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
568 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
569 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
570 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
571 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
572 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
573 |
+
img_size: Input image size.
|
574 |
+
patch_size: Patch size.
|
575 |
+
resi_connection: The convolutional block before residual connection.
|
576 |
+
"""
|
577 |
+
|
578 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
579 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
|
580 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
581 |
+
img_size=224, patch_size=4, resi_connection='1conv',
|
582 |
+
use_lepe=False,
|
583 |
+
use_cpb_bias=True,
|
584 |
+
MoE_config=None,
|
585 |
+
use_rpe_bias=False):
|
586 |
+
super(RSTB, self).__init__()
|
587 |
+
|
588 |
+
self.dim = dim
|
589 |
+
self.input_resolution = input_resolution
|
590 |
+
|
591 |
+
self.residual_group = BasicLayer(dim=dim,
|
592 |
+
input_resolution=input_resolution,
|
593 |
+
depth=depth,
|
594 |
+
num_heads=num_heads,
|
595 |
+
window_size=window_size,
|
596 |
+
mlp_ratio=mlp_ratio,
|
597 |
+
qkv_bias=qkv_bias,
|
598 |
+
drop=drop, attn_drop=attn_drop,
|
599 |
+
drop_path=drop_path,
|
600 |
+
norm_layer=norm_layer,
|
601 |
+
downsample=downsample,
|
602 |
+
use_checkpoint=use_checkpoint,
|
603 |
+
use_lepe=use_lepe,
|
604 |
+
use_cpb_bias=use_cpb_bias,
|
605 |
+
MoE_config=MoE_config,
|
606 |
+
use_rpe_bias=use_rpe_bias
|
607 |
+
)
|
608 |
+
|
609 |
+
if resi_connection == '1conv':
|
610 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
611 |
+
elif resi_connection == '3conv':
|
612 |
+
# to save parameters and memory
|
613 |
+
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
614 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
615 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
616 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
617 |
+
|
618 |
+
self.patch_embed = PatchEmbed(
|
619 |
+
img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
|
620 |
+
norm_layer=None)
|
621 |
+
|
622 |
+
self.patch_unembed = PatchUnEmbed(
|
623 |
+
img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
|
624 |
+
norm_layer=None)
|
625 |
+
|
626 |
+
def forward(self, x, x_size):
|
627 |
+
loss_moe = None
|
628 |
+
res = self.residual_group(x, x_size)
|
629 |
+
|
630 |
+
if not torch.is_tensor(res):
|
631 |
+
res, loss_moe = res
|
632 |
+
|
633 |
+
res = self.patch_embed(self.conv(self.patch_unembed(res, x_size)))
|
634 |
+
return res + x, loss_moe
|
635 |
+
|
636 |
+
def flops(self):
|
637 |
+
flops = 0
|
638 |
+
flops += self.residual_group.flops()
|
639 |
+
H, W = self.input_resolution
|
640 |
+
flops += H * W * self.dim * self.dim * 9
|
641 |
+
flops += self.patch_embed.flops()
|
642 |
+
flops += self.patch_unembed.flops()
|
643 |
+
|
644 |
+
return flops
|
645 |
+
|
646 |
+
|
647 |
+
class PatchUnEmbed(nn.Module):
|
648 |
+
r""" Image to Patch Unembedding
|
649 |
+
|
650 |
+
Args:
|
651 |
+
img_size (int): Image size. Default: 224.
|
652 |
+
patch_size (int): Patch token size. Default: 4.
|
653 |
+
in_chans (int): Number of input image channels. Default: 3.
|
654 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
655 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
656 |
+
"""
|
657 |
+
|
658 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
659 |
+
super().__init__()
|
660 |
+
img_size = to_2tuple(img_size)
|
661 |
+
patch_size = to_2tuple(patch_size)
|
662 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
663 |
+
self.img_size = img_size
|
664 |
+
self.patch_size = patch_size
|
665 |
+
self.patches_resolution = patches_resolution
|
666 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
667 |
+
|
668 |
+
self.in_chans = in_chans
|
669 |
+
self.embed_dim = embed_dim
|
670 |
+
|
671 |
+
def forward(self, x, x_size):
|
672 |
+
B, HW, C = x.shape
|
673 |
+
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
674 |
+
return x
|
675 |
+
|
676 |
+
def flops(self):
|
677 |
+
flops = 0
|
678 |
+
return flops
|
679 |
+
|
680 |
+
|
681 |
+
class Upsample(nn.Sequential):
|
682 |
+
"""Upsample module.
|
683 |
+
|
684 |
+
Args:
|
685 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
686 |
+
num_feat (int): Channel number of intermediate features.
|
687 |
+
"""
|
688 |
+
|
689 |
+
def __init__(self, scale, num_feat):
|
690 |
+
m = []
|
691 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
692 |
+
for _ in range(int(math.log(scale, 2))):
|
693 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
694 |
+
m.append(nn.PixelShuffle(2))
|
695 |
+
elif scale == 3:
|
696 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
697 |
+
m.append(nn.PixelShuffle(3))
|
698 |
+
else:
|
699 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
700 |
+
super(Upsample, self).__init__(*m)
|
701 |
+
|
702 |
+
class Upsample_hf(nn.Sequential):
|
703 |
+
"""Upsample module.
|
704 |
+
|
705 |
+
Args:
|
706 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
707 |
+
num_feat (int): Channel number of intermediate features.
|
708 |
+
"""
|
709 |
+
|
710 |
+
def __init__(self, scale, num_feat):
|
711 |
+
m = []
|
712 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
713 |
+
for _ in range(int(math.log(scale, 2))):
|
714 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
715 |
+
m.append(nn.PixelShuffle(2))
|
716 |
+
elif scale == 3:
|
717 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
718 |
+
m.append(nn.PixelShuffle(3))
|
719 |
+
else:
|
720 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
721 |
+
super(Upsample_hf, self).__init__(*m)
|
722 |
+
|
723 |
+
|
724 |
+
class UpsampleOneStep(nn.Sequential):
|
725 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
726 |
+
Used in lightweight SR to save parameters.
|
727 |
+
|
728 |
+
Args:
|
729 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
730 |
+
num_feat (int): Channel number of intermediate features.
|
731 |
+
|
732 |
+
"""
|
733 |
+
|
734 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
735 |
+
self.num_feat = num_feat
|
736 |
+
self.input_resolution = input_resolution
|
737 |
+
m = []
|
738 |
+
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
739 |
+
m.append(nn.PixelShuffle(scale))
|
740 |
+
super(UpsampleOneStep, self).__init__(*m)
|
741 |
+
|
742 |
+
def flops(self):
|
743 |
+
H, W = self.input_resolution
|
744 |
+
flops = H * W * self.num_feat * 3 * 9
|
745 |
+
return flops
|
746 |
+
|
747 |
+
|
748 |
+
|
749 |
+
class Swin2SR(nn.Module):
|
750 |
+
r""" Swin2SR
|
751 |
+
A PyTorch impl of : `Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration`.
|
752 |
+
|
753 |
+
Args:
|
754 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
755 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
756 |
+
in_chans (int): Number of input image channels. Default: 3
|
757 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
758 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
759 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
760 |
+
window_size (int): Window size. Default: 7
|
761 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
762 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
763 |
+
drop_rate (float): Dropout rate. Default: 0
|
764 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
765 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
766 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
767 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
768 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
769 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
770 |
+
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
771 |
+
img_range: Image range. 1. or 255.
|
772 |
+
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
773 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
774 |
+
"""
|
775 |
+
|
776 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
777 |
+
embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
|
778 |
+
window_size=7, mlp_ratio=4., qkv_bias=True,
|
779 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
780 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
781 |
+
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
|
782 |
+
use_lepe=False,
|
783 |
+
use_cpb_bias=True,
|
784 |
+
MoE_config=None,
|
785 |
+
use_rpe_bias=False,
|
786 |
+
**kwargs):
|
787 |
+
super(Swin2SR, self).__init__()
|
788 |
+
print('==== SWIN 2SR')
|
789 |
+
num_in_ch = in_chans
|
790 |
+
num_out_ch = in_chans
|
791 |
+
num_feat = 64
|
792 |
+
self.img_range = img_range
|
793 |
+
if in_chans == 3:
|
794 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
795 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
796 |
+
else:
|
797 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
798 |
+
self.upscale = upscale
|
799 |
+
self.upsampler = upsampler
|
800 |
+
self.window_size = window_size
|
801 |
+
|
802 |
+
#####################################################################################################
|
803 |
+
################################### 1, shallow feature extraction ###################################
|
804 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
805 |
+
|
806 |
+
#####################################################################################################
|
807 |
+
################################### 2, deep feature extraction ######################################
|
808 |
+
self.num_layers = len(depths)
|
809 |
+
self.embed_dim = embed_dim
|
810 |
+
self.ape = ape
|
811 |
+
self.patch_norm = patch_norm
|
812 |
+
self.num_features = embed_dim
|
813 |
+
self.mlp_ratio = mlp_ratio
|
814 |
+
|
815 |
+
# split image into non-overlapping patches
|
816 |
+
self.patch_embed = PatchEmbed(
|
817 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
818 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
819 |
+
num_patches = self.patch_embed.num_patches
|
820 |
+
patches_resolution = self.patch_embed.patches_resolution
|
821 |
+
self.patches_resolution = patches_resolution
|
822 |
+
|
823 |
+
# merge non-overlapping patches into image
|
824 |
+
self.patch_unembed = PatchUnEmbed(
|
825 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
826 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
827 |
+
|
828 |
+
# absolute position embedding
|
829 |
+
if self.ape:
|
830 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
831 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
832 |
+
|
833 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
834 |
+
|
835 |
+
# stochastic depth
|
836 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
837 |
+
|
838 |
+
# build Residual Swin Transformer blocks (RSTB)
|
839 |
+
self.layers = nn.ModuleList()
|
840 |
+
for i_layer in range(self.num_layers):
|
841 |
+
layer = RSTB(dim=embed_dim,
|
842 |
+
input_resolution=(patches_resolution[0],
|
843 |
+
patches_resolution[1]),
|
844 |
+
depth=depths[i_layer],
|
845 |
+
num_heads=num_heads[i_layer],
|
846 |
+
window_size=window_size,
|
847 |
+
mlp_ratio=self.mlp_ratio,
|
848 |
+
qkv_bias=qkv_bias,
|
849 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
850 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
851 |
+
norm_layer=norm_layer,
|
852 |
+
downsample=None,
|
853 |
+
use_checkpoint=use_checkpoint,
|
854 |
+
img_size=img_size,
|
855 |
+
patch_size=patch_size,
|
856 |
+
resi_connection=resi_connection,
|
857 |
+
use_lepe=use_lepe,
|
858 |
+
use_cpb_bias=use_cpb_bias,
|
859 |
+
MoE_config=MoE_config,
|
860 |
+
use_rpe_bias=use_rpe_bias,
|
861 |
+
)
|
862 |
+
self.layers.append(layer)
|
863 |
+
|
864 |
+
if self.upsampler == 'pixelshuffle_hf':
|
865 |
+
self.layers_hf = nn.ModuleList()
|
866 |
+
for i_layer in range(self.num_layers):
|
867 |
+
layer = RSTB(dim=embed_dim,
|
868 |
+
input_resolution=(patches_resolution[0],
|
869 |
+
patches_resolution[1]),
|
870 |
+
depth=depths[i_layer],
|
871 |
+
num_heads=num_heads[i_layer],
|
872 |
+
window_size=window_size,
|
873 |
+
mlp_ratio=self.mlp_ratio,
|
874 |
+
qkv_bias=qkv_bias,
|
875 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
876 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
877 |
+
norm_layer=norm_layer,
|
878 |
+
downsample=None,
|
879 |
+
use_checkpoint=use_checkpoint,
|
880 |
+
img_size=img_size,
|
881 |
+
patch_size=patch_size,
|
882 |
+
resi_connection=resi_connection,
|
883 |
+
use_lepe=use_lepe,
|
884 |
+
use_cpb_bias=use_cpb_bias,
|
885 |
+
MoE_config=MoE_config,
|
886 |
+
use_rpe_bias=use_rpe_bias
|
887 |
+
)
|
888 |
+
self.layers_hf.append(layer)
|
889 |
+
|
890 |
+
self.norm = norm_layer(self.num_features)
|
891 |
+
|
892 |
+
# build the last conv layer in deep feature extraction
|
893 |
+
if resi_connection == '1conv':
|
894 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
895 |
+
elif resi_connection == '3conv':
|
896 |
+
# to save parameters and memory
|
897 |
+
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
898 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
899 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
900 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
901 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
902 |
+
|
903 |
+
#####################################################################################################
|
904 |
+
################################ 3, high quality image reconstruction ################################
|
905 |
+
if self.upsampler == 'pixelshuffle':
|
906 |
+
# for classical SR
|
907 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
908 |
+
nn.LeakyReLU(inplace=True))
|
909 |
+
self.upsample = Upsample(upscale, num_feat)
|
910 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
911 |
+
elif self.upsampler == 'pixelshuffle_aux':
|
912 |
+
self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
913 |
+
self.conv_before_upsample = nn.Sequential(
|
914 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
915 |
+
nn.LeakyReLU(inplace=True))
|
916 |
+
self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
917 |
+
self.conv_after_aux = nn.Sequential(
|
918 |
+
nn.Conv2d(3, num_feat, 3, 1, 1),
|
919 |
+
nn.LeakyReLU(inplace=True))
|
920 |
+
self.upsample = Upsample(upscale, num_feat)
|
921 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
922 |
+
|
923 |
+
elif self.upsampler == 'pixelshuffle_hf':
|
924 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
925 |
+
nn.LeakyReLU(inplace=True))
|
926 |
+
self.upsample = Upsample(upscale, num_feat)
|
927 |
+
self.upsample_hf = Upsample_hf(upscale, num_feat)
|
928 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
929 |
+
self.conv_first_hf = nn.Sequential(nn.Conv2d(num_feat, embed_dim, 3, 1, 1),
|
930 |
+
nn.LeakyReLU(inplace=True))
|
931 |
+
self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
932 |
+
self.conv_before_upsample_hf = nn.Sequential(
|
933 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
934 |
+
nn.LeakyReLU(inplace=True))
|
935 |
+
self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
936 |
+
|
937 |
+
elif self.upsampler == 'pixelshuffledirect':
|
938 |
+
# for lightweight SR (to save parameters)
|
939 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
940 |
+
(patches_resolution[0], patches_resolution[1]))
|
941 |
+
elif self.upsampler == 'nearest+conv':
|
942 |
+
# for real-world SR (less artifacts)
|
943 |
+
assert self.upscale == 4, 'only support x4 now.'
|
944 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
945 |
+
nn.LeakyReLU(inplace=True))
|
946 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
947 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
948 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
949 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
950 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
951 |
+
else:
|
952 |
+
# for image denoising and JPEG compression artifact reduction
|
953 |
+
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
954 |
+
|
955 |
+
self.apply(self._init_weights)
|
956 |
+
|
957 |
+
def _init_weights(self, m):
|
958 |
+
if isinstance(m, nn.Linear):
|
959 |
+
trunc_normal_(m.weight, std=.02)
|
960 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
961 |
+
nn.init.constant_(m.bias, 0)
|
962 |
+
elif isinstance(m, nn.LayerNorm):
|
963 |
+
nn.init.constant_(m.bias, 0)
|
964 |
+
nn.init.constant_(m.weight, 1.0)
|
965 |
+
|
966 |
+
@torch.jit.ignore
|
967 |
+
def no_weight_decay(self):
|
968 |
+
return {'absolute_pos_embed'}
|
969 |
+
|
970 |
+
@torch.jit.ignore
|
971 |
+
def no_weight_decay_keywords(self):
|
972 |
+
return {'relative_position_bias_table'}
|
973 |
+
|
974 |
+
def check_image_size(self, x):
|
975 |
+
_, _, h, w = x.size()
|
976 |
+
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
|
977 |
+
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
|
978 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
979 |
+
return x
|
980 |
+
|
981 |
+
def forward_features(self, x):
|
982 |
+
x_size = (x.shape[2], x.shape[3])
|
983 |
+
x = self.patch_embed(x)
|
984 |
+
if self.ape:
|
985 |
+
x = x + self.absolute_pos_embed
|
986 |
+
x = self.pos_drop(x)
|
987 |
+
|
988 |
+
loss_moe_all = 0
|
989 |
+
for layer in self.layers:
|
990 |
+
x = layer(x, x_size)
|
991 |
+
|
992 |
+
if not torch.is_tensor(x):
|
993 |
+
x, loss_moe = x
|
994 |
+
loss_moe_all += loss_moe or 0
|
995 |
+
|
996 |
+
x = self.norm(x) # B L C
|
997 |
+
x = self.patch_unembed(x, x_size)
|
998 |
+
|
999 |
+
return x, loss_moe_all
|
1000 |
+
|
1001 |
+
def forward_features_hf(self, x):
|
1002 |
+
x_size = (x.shape[2], x.shape[3])
|
1003 |
+
x = self.patch_embed(x)
|
1004 |
+
if self.ape:
|
1005 |
+
x = x + self.absolute_pos_embed
|
1006 |
+
x = self.pos_drop(x)
|
1007 |
+
|
1008 |
+
loss_moe_all = 0
|
1009 |
+
for layer in self.layers_hf:
|
1010 |
+
x = layer(x, x_size)
|
1011 |
+
|
1012 |
+
if not torch.is_tensor(x):
|
1013 |
+
x, loss_moe = x
|
1014 |
+
loss_moe_all += loss_moe or 0
|
1015 |
+
|
1016 |
+
x = self.norm(x) # B L C
|
1017 |
+
x = self.patch_unembed(x, x_size)
|
1018 |
+
|
1019 |
+
return x, loss_moe_all
|
1020 |
+
|
1021 |
+
def forward_backbone(self, x):
|
1022 |
+
H, W = x.shape[2:]
|
1023 |
+
x = self.check_image_size(x)
|
1024 |
+
|
1025 |
+
self.mean = self.mean.type_as(x)
|
1026 |
+
x = (x - self.mean) * self.img_range
|
1027 |
+
|
1028 |
+
if self.upsampler == 'pixelshuffledirect':
|
1029 |
+
# for lightweight SR
|
1030 |
+
x = self.conv_first(x)
|
1031 |
+
|
1032 |
+
res = self.forward_features(x)
|
1033 |
+
if not torch.is_tensor(res):
|
1034 |
+
res, loss_moe = res
|
1035 |
+
|
1036 |
+
x = self.conv_after_body(res) + x
|
1037 |
+
else:
|
1038 |
+
raise Exception('not implemented yet')
|
1039 |
+
|
1040 |
+
x = x / self.img_range + self.mean
|
1041 |
+
return x
|
1042 |
+
|
1043 |
+
def forward(self, x):
|
1044 |
+
H, W = x.shape[2:]
|
1045 |
+
x = self.check_image_size(x)
|
1046 |
+
|
1047 |
+
self.mean = self.mean.type_as(x)
|
1048 |
+
x = (x - self.mean) * self.img_range
|
1049 |
+
|
1050 |
+
loss_moe = 0
|
1051 |
+
if self.upsampler == 'pixelshuffle':
|
1052 |
+
# for classical SR
|
1053 |
+
x = self.conv_first(x)
|
1054 |
+
|
1055 |
+
res = self.forward_features(x)
|
1056 |
+
if not torch.is_tensor(res):
|
1057 |
+
res, loss_moe = res
|
1058 |
+
|
1059 |
+
x = self.conv_after_body(res) + x
|
1060 |
+
x = self.conv_before_upsample(x)
|
1061 |
+
x = self.conv_last(self.upsample(x))
|
1062 |
+
elif self.upsampler == 'pixelshuffle_aux':
|
1063 |
+
bicubic = F.interpolate(x, size=(H * self.upscale, W * self.upscale), mode='bicubic', align_corners=False)
|
1064 |
+
bicubic = self.conv_bicubic(bicubic)
|
1065 |
+
x = self.conv_first(x)
|
1066 |
+
|
1067 |
+
res = self.forward_features(x)
|
1068 |
+
if not torch.is_tensor(res):
|
1069 |
+
res, loss_moe = res
|
1070 |
+
|
1071 |
+
x = self.conv_after_body(res) + x
|
1072 |
+
x = self.conv_before_upsample(x)
|
1073 |
+
aux = self.conv_aux(x) # b, 3, LR_H, LR_W
|
1074 |
+
x = self.conv_after_aux(aux)
|
1075 |
+
x = self.upsample(x)[:, :, :H * self.upscale, :W * self.upscale] + bicubic[:, :, :H * self.upscale, :W * self.upscale]
|
1076 |
+
x = self.conv_last(x)
|
1077 |
+
aux = aux / self.img_range + self.mean
|
1078 |
+
elif self.upsampler == 'pixelshuffle_hf':
|
1079 |
+
# for classical SR with HF
|
1080 |
+
x = self.conv_first(x)
|
1081 |
+
|
1082 |
+
res = self.forward_features(x)
|
1083 |
+
if not torch.is_tensor(res):
|
1084 |
+
res, loss_moe = res
|
1085 |
+
|
1086 |
+
x = self.conv_after_body(res) + x
|
1087 |
+
x_before = self.conv_before_upsample(x)
|
1088 |
+
x_out = self.conv_last(self.upsample(x_before))
|
1089 |
+
|
1090 |
+
x_hf = self.conv_first_hf(x_before)
|
1091 |
+
|
1092 |
+
res_hf = self.forward_features_hf(x_hf)
|
1093 |
+
if not torch.is_tensor(res_hf):
|
1094 |
+
res_hf, loss_moe_hf = res_hf
|
1095 |
+
loss_moe += loss_moe_hf
|
1096 |
+
|
1097 |
+
x_hf = self.conv_after_body_hf(res_hf) + x_hf
|
1098 |
+
x_hf = self.conv_before_upsample_hf(x_hf)
|
1099 |
+
x_hf = self.conv_last_hf(self.upsample_hf(x_hf))
|
1100 |
+
x = x_out + x_hf
|
1101 |
+
x_hf = x_hf / self.img_range + self.mean
|
1102 |
+
|
1103 |
+
elif self.upsampler == 'pixelshuffledirect':
|
1104 |
+
# for lightweight SR
|
1105 |
+
x = self.conv_first(x)
|
1106 |
+
|
1107 |
+
res = self.forward_features(x)
|
1108 |
+
if not torch.is_tensor(res):
|
1109 |
+
res, loss_moe = res
|
1110 |
+
|
1111 |
+
x = self.conv_after_body(res) + x
|
1112 |
+
x = self.upsample(x)
|
1113 |
+
elif self.upsampler == 'nearest+conv':
|
1114 |
+
# for real-world SR
|
1115 |
+
x = self.conv_first(x)
|
1116 |
+
|
1117 |
+
res = self.forward_features(x)
|
1118 |
+
if not torch.is_tensor(res):
|
1119 |
+
res, loss_moe = res
|
1120 |
+
|
1121 |
+
x = self.conv_after_body(res) + x
|
1122 |
+
x = self.conv_before_upsample(x)
|
1123 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
1124 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
1125 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
1126 |
+
else:
|
1127 |
+
# for image denoising and JPEG compression artifact reduction
|
1128 |
+
x_first = self.conv_first(x)
|
1129 |
+
|
1130 |
+
res = self.forward_features(x_first)
|
1131 |
+
if not torch.is_tensor(res):
|
1132 |
+
res, loss_moe = res
|
1133 |
+
|
1134 |
+
res = self.conv_after_body(res) + x_first
|
1135 |
+
x = x + self.conv_last(res)
|
1136 |
+
|
1137 |
+
x = x / self.img_range + self.mean
|
1138 |
+
if self.upsampler == "pixelshuffle_aux":
|
1139 |
+
return x[:, :, :H*self.upscale, :W*self.upscale], aux, loss_moe
|
1140 |
+
|
1141 |
+
elif self.upsampler == "pixelshuffle_hf":
|
1142 |
+
x_out = x_out / self.img_range + self.mean
|
1143 |
+
return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale], loss_moe
|
1144 |
+
|
1145 |
+
else:
|
1146 |
+
return x[:, :, :H*self.upscale, :W*self.upscale], loss_moe
|
1147 |
+
|
1148 |
+
def flops(self):
|
1149 |
+
flops = 0
|
1150 |
+
H, W = self.patches_resolution
|
1151 |
+
flops += H * W * 3 * self.embed_dim * 9
|
1152 |
+
flops += self.patch_embed.flops()
|
1153 |
+
for i, layer in enumerate(self.layers):
|
1154 |
+
flops += layer.flops()
|
1155 |
+
flops += H * W * 3 * self.embed_dim * self.embed_dim
|
1156 |
+
flops += self.upsample.flops()
|
1157 |
+
return flops
|
swin2_mose/moe.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Source code: https://github.com/davidmrau/mixture-of-experts
|
3 |
+
#
|
4 |
+
|
5 |
+
# Sparsely-Gated Mixture-of-Experts Layers.
|
6 |
+
# See "Outrageously Large Neural Networks"
|
7 |
+
# https://arxiv.org/abs/1701.06538
|
8 |
+
#
|
9 |
+
# Author: David Rau
|
10 |
+
#
|
11 |
+
# The code is based on the TensorFlow implementation:
|
12 |
+
# https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/expert_utils.py
|
13 |
+
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
from torch.distributions.normal import Normal
|
18 |
+
from copy import deepcopy
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from utils import Mlp as MLP
|
22 |
+
|
23 |
+
class SparseDispatcher(object):
|
24 |
+
"""Helper for implementing a mixture of experts.
|
25 |
+
The purpose of this class is to create input minibatches for the
|
26 |
+
experts and to combine the results of the experts to form a unified
|
27 |
+
output tensor.
|
28 |
+
There are two functions:
|
29 |
+
dispatch - take an input Tensor and create input Tensors for each expert.
|
30 |
+
combine - take output Tensors from each expert and form a combined output
|
31 |
+
Tensor. Outputs from different experts for the same batch element are
|
32 |
+
summed together, weighted by the provided "gates".
|
33 |
+
The class is initialized with a "gates" Tensor, which specifies which
|
34 |
+
batch elements go to which experts, and the weights to use when combining
|
35 |
+
the outputs. Batch element b is sent to expert e iff gates[b, e] != 0.
|
36 |
+
The inputs and outputs are all two-dimensional [batch, depth].
|
37 |
+
Caller is responsible for collapsing additional dimensions prior to
|
38 |
+
calling this class and reshaping the output to the original shape.
|
39 |
+
See common_layers.reshape_like().
|
40 |
+
Example use:
|
41 |
+
gates: a float32 `Tensor` with shape `[batch_size, num_experts]`
|
42 |
+
inputs: a float32 `Tensor` with shape `[batch_size, input_size]`
|
43 |
+
experts: a list of length `num_experts` containing sub-networks.
|
44 |
+
dispatcher = SparseDispatcher(num_experts, gates)
|
45 |
+
expert_inputs = dispatcher.dispatch(inputs)
|
46 |
+
expert_outputs = [experts[i](expert_inputs[i]) for i in range(num_experts)]
|
47 |
+
outputs = dispatcher.combine(expert_outputs)
|
48 |
+
The preceding code sets the output for a particular example b to:
|
49 |
+
output[b] = Sum_i(gates[b, i] * experts[i](inputs[b]))
|
50 |
+
This class takes advantage of sparsity in the gate matrix by including in the
|
51 |
+
`Tensor`s for expert i only the batch elements for which `gates[b, i] > 0`.
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(self, num_experts, gates):
|
55 |
+
"""Create a SparseDispatcher."""
|
56 |
+
|
57 |
+
self._gates = gates
|
58 |
+
self._num_experts = num_experts
|
59 |
+
# sort experts
|
60 |
+
sorted_experts, index_sorted_experts = torch.nonzero(gates).sort(0)
|
61 |
+
# drop indices
|
62 |
+
_, self._expert_index = sorted_experts.split(1, dim=1)
|
63 |
+
# get according batch index for each expert
|
64 |
+
self._batch_index = torch.nonzero(gates)[index_sorted_experts[:, 1], 0]
|
65 |
+
# calculate num samples that each expert gets
|
66 |
+
self._part_sizes = (gates > 0).sum(0).tolist()
|
67 |
+
# expand gates to match with self._batch_index
|
68 |
+
gates_exp = gates[self._batch_index.flatten()]
|
69 |
+
self._nonzero_gates = torch.gather(gates_exp, 1, self._expert_index)
|
70 |
+
|
71 |
+
def dispatch(self, inp):
|
72 |
+
"""Create one input Tensor for each expert.
|
73 |
+
The `Tensor` for a expert `i` contains the slices of `inp` corresponding
|
74 |
+
to the batch elements `b` where `gates[b, i] > 0`.
|
75 |
+
Args:
|
76 |
+
inp: a `Tensor` of shape "[batch_size, <extra_input_dims>]`
|
77 |
+
Returns:
|
78 |
+
a list of `num_experts` `Tensor`s with shapes
|
79 |
+
`[expert_batch_size_i, <extra_input_dims>]`.
|
80 |
+
"""
|
81 |
+
|
82 |
+
# assigns samples to experts whose gate is nonzero
|
83 |
+
|
84 |
+
# expand according to batch index so we can just split by _part_sizes
|
85 |
+
inp_exp = inp[self._batch_index].squeeze(1)
|
86 |
+
return torch.split(inp_exp, self._part_sizes, dim=0)
|
87 |
+
|
88 |
+
def combine(self, expert_out, multiply_by_gates=True, cnn_combine=None):
|
89 |
+
"""Sum together the expert output, weighted by the gates.
|
90 |
+
The slice corresponding to a particular batch element `b` is computed
|
91 |
+
as the sum over all experts `i` of the expert output, weighted by the
|
92 |
+
corresponding gate values. If `multiply_by_gates` is set to False, the
|
93 |
+
gate values are ignored.
|
94 |
+
Args:
|
95 |
+
expert_out: a list of `num_experts` `Tensor`s, each with shape
|
96 |
+
`[expert_batch_size_i, <extra_output_dims>]`.
|
97 |
+
multiply_by_gates: a boolean
|
98 |
+
Returns:
|
99 |
+
a `Tensor` with shape `[batch_size, <extra_output_dims>]`.
|
100 |
+
"""
|
101 |
+
# apply exp to expert outputs, so we are not longer in log space
|
102 |
+
stitched = torch.cat(expert_out, 0)
|
103 |
+
|
104 |
+
if multiply_by_gates:
|
105 |
+
stitched = stitched.mul(self._nonzero_gates.unsqueeze(1))
|
106 |
+
zeros = torch.zeros((self._gates.size(0),) + expert_out[-1].shape[1:],
|
107 |
+
requires_grad=True, device=stitched.device)
|
108 |
+
# combine samples that have been processed by the same k experts
|
109 |
+
|
110 |
+
if cnn_combine is not None:
|
111 |
+
return self.smartly_combine(stitched, cnn_combine)
|
112 |
+
|
113 |
+
combined = zeros.index_add(0, self._batch_index, stitched.float())
|
114 |
+
return combined
|
115 |
+
|
116 |
+
def smartly_combine(self, stitched, cnn_combine):
|
117 |
+
idxes = []
|
118 |
+
for i in self._batch_index.unique():
|
119 |
+
idx = (self._batch_index == i).nonzero().squeeze(1)
|
120 |
+
idxes.append(idx)
|
121 |
+
idxes = torch.stack(idxes)
|
122 |
+
return cnn_combine(stitched[idxes]).squeeze(1)
|
123 |
+
|
124 |
+
def expert_to_gates(self):
|
125 |
+
"""Gate values corresponding to the examples in the per-expert `Tensor`s.
|
126 |
+
Returns:
|
127 |
+
a list of `num_experts` one-dimensional `Tensor`s with type `tf.float32`
|
128 |
+
and shapes `[expert_batch_size_i]`
|
129 |
+
"""
|
130 |
+
# split nonzero gates for each expert
|
131 |
+
return torch.split(self._nonzero_gates, self._part_sizes, dim=0)
|
132 |
+
|
133 |
+
|
134 |
+
def build_experts(experts_cfg, default_cfg, num_experts):
|
135 |
+
experts_cfg = deepcopy(experts_cfg)
|
136 |
+
if experts_cfg is None:
|
137 |
+
# old build way
|
138 |
+
return nn.ModuleList([
|
139 |
+
MLP(*default_cfg)
|
140 |
+
for i in range(num_experts)])
|
141 |
+
# new build way: mix mlp with leff
|
142 |
+
experts = []
|
143 |
+
for e_cfg in experts_cfg:
|
144 |
+
type_ = e_cfg.pop('type')
|
145 |
+
if type_ == 'mlp':
|
146 |
+
experts.append(MLP(*default_cfg))
|
147 |
+
return nn.ModuleList(experts)
|
148 |
+
|
149 |
+
|
150 |
+
class MoE(nn.Module):
|
151 |
+
"""Call a Sparsely gated mixture of experts layer with 1-layer
|
152 |
+
Feed-Forward networks as experts.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
input_size: integer - size of the input
|
156 |
+
output_size: integer - size of the input
|
157 |
+
num_experts: an integer - number of experts
|
158 |
+
hidden_size: an integer - hidden size of the experts
|
159 |
+
noisy_gating: a boolean
|
160 |
+
k: an integer - how many experts to use for each batch element
|
161 |
+
"""
|
162 |
+
|
163 |
+
def __init__(self, input_size, output_size, num_experts, hidden_size,
|
164 |
+
experts=None, noisy_gating=True, k=4,
|
165 |
+
x_gating=None, with_noise=True, with_smart_merger=None):
|
166 |
+
super(MoE, self).__init__()
|
167 |
+
self.noisy_gating = noisy_gating
|
168 |
+
self.num_experts = num_experts
|
169 |
+
self.output_size = output_size
|
170 |
+
self.input_size = input_size
|
171 |
+
self.hidden_size = hidden_size
|
172 |
+
self.k = k
|
173 |
+
self.with_noise = with_noise
|
174 |
+
# instantiate experts
|
175 |
+
self.experts = build_experts(
|
176 |
+
experts,
|
177 |
+
(self.input_size, self.hidden_size, self.output_size),
|
178 |
+
num_experts)
|
179 |
+
self.w_gate = nn.Parameter(torch.zeros(input_size, num_experts), requires_grad=True)
|
180 |
+
self.w_noise = nn.Parameter(torch.zeros(input_size, num_experts), requires_grad=True)
|
181 |
+
|
182 |
+
self.x_gating = x_gating
|
183 |
+
if self.x_gating == 'conv1d':
|
184 |
+
self.x_gate = nn.Conv1d(4096, 1, kernel_size=3, padding=1)
|
185 |
+
|
186 |
+
self.softplus = nn.Softplus()
|
187 |
+
self.softmax = nn.Softmax(1)
|
188 |
+
self.register_buffer("mean", torch.tensor([0.0]))
|
189 |
+
self.register_buffer("std", torch.tensor([1.0]))
|
190 |
+
assert(self.k <= self.num_experts)
|
191 |
+
|
192 |
+
self.cnn_combine = None
|
193 |
+
if with_smart_merger == 'v1':
|
194 |
+
print('with SMART MERGER')
|
195 |
+
self.cnn_combine = nn.Conv2d(self.k, 1, kernel_size=3, padding=1)
|
196 |
+
|
197 |
+
def cv_squared(self, x):
|
198 |
+
"""The squared coefficient of variation of a sample.
|
199 |
+
Useful as a loss to encourage a positive distribution to be more uniform.
|
200 |
+
Epsilons added for numerical stability.
|
201 |
+
Returns 0 for an empty Tensor.
|
202 |
+
Args:
|
203 |
+
x: a `Tensor`.
|
204 |
+
Returns:
|
205 |
+
a `Scalar`.
|
206 |
+
"""
|
207 |
+
eps = 1e-10
|
208 |
+
# if only num_experts = 1
|
209 |
+
|
210 |
+
if x.shape[0] == 1:
|
211 |
+
return torch.tensor([0], device=x.device, dtype=x.dtype)
|
212 |
+
return x.float().var() / (x.float().mean()**2 + eps)
|
213 |
+
|
214 |
+
def _gates_to_load(self, gates):
|
215 |
+
"""Compute the true load per expert, given the gates.
|
216 |
+
The load is the number of examples for which the corresponding gate is >0.
|
217 |
+
Args:
|
218 |
+
gates: a `Tensor` of shape [batch_size, n]
|
219 |
+
Returns:
|
220 |
+
a float32 `Tensor` of shape [n]
|
221 |
+
"""
|
222 |
+
return (gates > 0).sum(0)
|
223 |
+
|
224 |
+
def _prob_in_top_k(self, clean_values, noisy_values, noise_stddev, noisy_top_values):
|
225 |
+
"""Helper function to NoisyTopKGating.
|
226 |
+
Computes the probability that value is in top k, given different random noise.
|
227 |
+
This gives us a way of backpropagating from a loss that balances the number
|
228 |
+
of times each expert is in the top k experts per example.
|
229 |
+
In the case of no noise, pass in None for noise_stddev, and the result will
|
230 |
+
not be differentiable.
|
231 |
+
Args:
|
232 |
+
clean_values: a `Tensor` of shape [batch, n].
|
233 |
+
noisy_values: a `Tensor` of shape [batch, n]. Equal to clean values plus
|
234 |
+
normally distributed noise with standard deviation noise_stddev.
|
235 |
+
noise_stddev: a `Tensor` of shape [batch, n], or None
|
236 |
+
noisy_top_values: a `Tensor` of shape [batch, m].
|
237 |
+
"values" Output of tf.top_k(noisy_top_values, m). m >= k+1
|
238 |
+
Returns:
|
239 |
+
a `Tensor` of shape [batch, n].
|
240 |
+
"""
|
241 |
+
batch = clean_values.size(0)
|
242 |
+
m = noisy_top_values.size(1)
|
243 |
+
top_values_flat = noisy_top_values.flatten()
|
244 |
+
|
245 |
+
threshold_positions_if_in = torch.arange(batch, device=clean_values.device) * m + self.k
|
246 |
+
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
|
247 |
+
is_in = torch.gt(noisy_values, threshold_if_in)
|
248 |
+
threshold_positions_if_out = threshold_positions_if_in - 1
|
249 |
+
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
|
250 |
+
# is each value currently in the top k.
|
251 |
+
normal = Normal(self.mean, self.std)
|
252 |
+
prob_if_in = normal.cdf((clean_values - threshold_if_in)/noise_stddev)
|
253 |
+
prob_if_out = normal.cdf((clean_values - threshold_if_out)/noise_stddev)
|
254 |
+
prob = torch.where(is_in, prob_if_in, prob_if_out)
|
255 |
+
return prob
|
256 |
+
|
257 |
+
def noisy_top_k_gating(self, x, train, noise_epsilon=1e-2):
|
258 |
+
"""Noisy top-k gating.
|
259 |
+
See paper: https://arxiv.org/abs/1701.06538.
|
260 |
+
Args:
|
261 |
+
x: input Tensor with shape [batch_size, input_size]
|
262 |
+
train: a boolean - we only add noise at training time.
|
263 |
+
noise_epsilon: a float
|
264 |
+
Returns:
|
265 |
+
gates: a Tensor with shape [batch_size, num_experts]
|
266 |
+
load: a Tensor with shape [num_experts]
|
267 |
+
"""
|
268 |
+
clean_logits = x @ self.w_gate
|
269 |
+
if self.noisy_gating and train:
|
270 |
+
raw_noise_stddev = x @ self.w_noise
|
271 |
+
noise_stddev = ((self.softplus(raw_noise_stddev) + noise_epsilon))
|
272 |
+
noisy_logits = clean_logits + (torch.randn_like(clean_logits) * noise_stddev)
|
273 |
+
logits = noisy_logits
|
274 |
+
else:
|
275 |
+
logits = clean_logits
|
276 |
+
|
277 |
+
# calculate topk + 1 that will be needed for the noisy gates
|
278 |
+
top_logits, top_indices = logits.topk(min(self.k + 1, self.num_experts), dim=1)
|
279 |
+
top_k_logits = top_logits[:, :self.k]
|
280 |
+
top_k_indices = top_indices[:, :self.k]
|
281 |
+
top_k_gates = self.softmax(top_k_logits)
|
282 |
+
|
283 |
+
zeros = torch.zeros_like(logits, requires_grad=True)
|
284 |
+
gates = zeros.scatter(1, top_k_indices, top_k_gates)
|
285 |
+
|
286 |
+
if self.noisy_gating and self.k < self.num_experts and train:
|
287 |
+
load = (self._prob_in_top_k(clean_logits, noisy_logits, noise_stddev, top_logits)).sum(0)
|
288 |
+
else:
|
289 |
+
load = self._gates_to_load(gates)
|
290 |
+
return gates, load
|
291 |
+
|
292 |
+
def forward(self, x, loss_coef=1e-2):
|
293 |
+
"""Args:
|
294 |
+
x: tensor shape [batch_size, input_size]
|
295 |
+
train: a boolean scalar.
|
296 |
+
loss_coef: a scalar - multiplier on load-balancing losses
|
297 |
+
|
298 |
+
Returns:
|
299 |
+
y: a tensor with shape [batch_size, output_size].
|
300 |
+
extra_training_loss: a scalar. This should be added into the overall
|
301 |
+
training loss of the model. The backpropagation of this loss
|
302 |
+
encourages all experts to be approximately equally used across a batch.
|
303 |
+
"""
|
304 |
+
if self.x_gating is not None:
|
305 |
+
xg = self.x_gate(x).squeeze(1)
|
306 |
+
else:
|
307 |
+
xg = x.mean(1)
|
308 |
+
|
309 |
+
gates, load = self.noisy_top_k_gating(
|
310 |
+
xg, self.training and self.with_noise)
|
311 |
+
# calculate importance loss
|
312 |
+
importance = gates.sum(0)
|
313 |
+
#
|
314 |
+
loss = self.cv_squared(importance) + self.cv_squared(load)
|
315 |
+
loss *= loss_coef
|
316 |
+
|
317 |
+
dispatcher = SparseDispatcher(self.num_experts, gates)
|
318 |
+
expert_inputs = dispatcher.dispatch(x)
|
319 |
+
gates = dispatcher.expert_to_gates()
|
320 |
+
expert_outputs = [self.experts[i](expert_inputs[i])
|
321 |
+
for i in range(self.num_experts)]
|
322 |
+
y = dispatcher.combine(expert_outputs, cnn_combine=self.cnn_combine)
|
323 |
+
return y, loss
|
swin2_mose/run.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from model import Swin2SR
|
3 |
+
|
4 |
+
model_weights = "model-70.pt"
|
5 |
+
model_params = {
|
6 |
+
"upscale": 2,
|
7 |
+
"in_chans": 4,
|
8 |
+
"img_size": 64,
|
9 |
+
"window_size": 16,
|
10 |
+
"img_range": 1.,
|
11 |
+
"depths": [6, 6, 6, 6],
|
12 |
+
"embed_dim": 90,
|
13 |
+
"num_heads": [6, 6, 6, 6],
|
14 |
+
"mlp_ratio": 2,
|
15 |
+
"upsampler": "pixelshuffledirect",
|
16 |
+
"resi_connection": "1conv"
|
17 |
+
}
|
18 |
+
|
19 |
+
sr_model = Swin2SR(**model_params)
|
20 |
+
sr_model.load_state_dict(torch.load(model_weights))
|
swin2_mose/utils.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
|
3 |
+
|
4 |
+
def window_reverse(windows, window_size, H, W):
|
5 |
+
"""
|
6 |
+
Args:
|
7 |
+
windows: (num_windows*B, window_size, window_size, C)
|
8 |
+
window_size (int): Window size
|
9 |
+
H (int): Height of image
|
10 |
+
W (int): Width of image
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
x: (B, H, W, C)
|
14 |
+
"""
|
15 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
16 |
+
x = windows.view(B, H // window_size, W // window_size, window_size,
|
17 |
+
window_size, -1)
|
18 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
19 |
+
return x
|
20 |
+
|
21 |
+
|
22 |
+
class Mlp(nn.Module):
|
23 |
+
def __init__(self, in_features, hidden_features=None, out_features=None,
|
24 |
+
act_layer=nn.GELU, drop=0.):
|
25 |
+
super().__init__()
|
26 |
+
out_features = out_features or in_features
|
27 |
+
hidden_features = hidden_features or in_features
|
28 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
29 |
+
self.act = act_layer()
|
30 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
31 |
+
self.drop = nn.Dropout(drop)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
x = self.fc1(x)
|
35 |
+
x = self.act(x)
|
36 |
+
x = self.drop(x)
|
37 |
+
x = self.fc2(x)
|
38 |
+
x = self.drop(x)
|
39 |
+
return x
|
40 |
+
|
41 |
+
|
42 |
+
def window_partition(x, window_size):
|
43 |
+
"""
|
44 |
+
Args:
|
45 |
+
x: (B, H, W, C)
|
46 |
+
window_size (int): window size
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
windows: (num_windows*B, window_size, window_size, C)
|
50 |
+
"""
|
51 |
+
B, H, W, C = x.shape
|
52 |
+
x = x.view(B, H // window_size, window_size,
|
53 |
+
W // window_size, window_size, C)
|
54 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(
|
55 |
+
-1, window_size, window_size, C)
|
56 |
+
return windows
|
swin2_mose/weights/model-70.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9f1229521879af2c8162f7a32fe278e487d0bc0826dddccc87a4e22294aa067
|
3 |
+
size 118890958
|