import torch from basicsr.archs.rrdbnet_arch import RRDBNet from typing import Union import itertools import numpy as np def load_satlas_sr(device: Union[str, torch.device] = "cuda") -> RRDBNet: # Load the weights weights_file = "weights/esrgan_1S2.pth" device = "cuda" if torch.cuda.is_available() else "cpu" # Create the model model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4 ).to(device) # Setup the weights state_dict = torch.load(weights_file) model.load_state_dict(state_dict['params_ema']) model.eval() # no gradients for param in model.parameters(): param.requires_grad = False return model def run_satlas( model: RRDBNet, lr: torch.Tensor, hr: torch.Tensor, cropsize: int = 32, overlap: int = 0, device: Union[str, torch.device] = "cuda" ) -> torch.Tensor: # Load the LR image lr = torch.from_numpy(lr[[3, 2, 1]]/3558).float().to(device).clamp(0, 1) # Select the raster with the lowest resolution tshp = lr.shape # if the image is too small, return (0, 0) if (tshp[1] < cropsize) and (tshp[2] < cropsize): return [(0, 0)] # Define relative coordinates. xmn, xmx, ymn, ymx = (0, tshp[1], 0, tshp[2]) if overlap > cropsize: raise ValueError("The overlap must be smaller than the cropsize") xrange = np.arange(xmn, xmx, (cropsize - overlap)) yrange = np.arange(ymn, ymx, (cropsize - overlap)) # If there is negative values in the range, change them by zero. xrange[xrange < 0] = 0 yrange[yrange < 0] = 0 # Remove the last element if it is outside the tensor xrange = xrange[xrange - (tshp[1] - cropsize) <= 0] yrange = yrange[yrange - (tshp[2] - cropsize) <= 0] # If the last element is not (tshp[1] - cropsize) add it! if xrange[-1] != (tshp[1] - cropsize): xrange = np.append(xrange, tshp[1] - cropsize) if yrange[-1] != (tshp[2] - cropsize): yrange = np.append(yrange, tshp[2] - cropsize) # Create all the relative coordinates mrs = list(itertools.product(xrange, yrange)) # Predict the image sr = torch.zeros(3, tshp[1]*4, tshp[2]*4) for x, y in mrs: crop = lr[:, x:x+cropsize, y:y+cropsize] sr_crop = model(crop[None])[0] sr[:, x*4:(x+cropsize)*4, y*4:(y+cropsize)*4] = sr_crop # Save the result results = { "lr": (lr.cpu().numpy() * 10000).astype(np.uint16), "sr": (sr.cpu().numpy() * 10000).astype(np.uint16), "hr": hr[0:3] } return results