from diffusers import LDMSuperResolutionPipeline import numpy as np import opensr_test import torch import pickle from typing import Union def create_stable_diffusion_model( device: Union[str, torch.device] = "cuda" ) -> LDMSuperResolutionPipeline: """ Create the stable diffusion model Returns: LDMSuperResolutionPipeline: The model to use for super resolution. """ model_id = "CompVis/ldm-super-resolution-4x-openimages" pipeline = LDMSuperResolutionPipeline.from_pretrained(model_id) pipeline = pipeline.to(device) return pipeline def run_diffuser( model: LDMSuperResolutionPipeline, lr: torch.Tensor, hr: torch.Tensor, device: Union[str, torch.device] = "cuda" ) -> dict: """ Run the model on the low resolution image Args: model (LDMSuperResolutionPipeline): The model to use lr (torch.Tensor): The low resolution image hr (torch.Tensor): The high resolution image device (Union[str, torch.device], optional): The device to use. Defaults to "cuda". Returns: dict: The results of the model """ # move the images to the device lr = (torch.from_numpy(lr[[3, 2, 1]]) / 2000).to(device).clamp(0, 1) if lr.shape[1] == 121: # add padding lr = torch.nn.functional.pad( lr[None], pad=(3, 4, 3, 4), mode='reflect' ).squeeze() # run the model with torch.no_grad(): sr = model(lr[None], num_inference_steps=100, eta=1) sr = torch.from_numpy( np.array(sr.images[0])/255 ).permute(2,0,1).float() # remove padding sr = sr[:, 3*4:-4*4, 3*4:-4*4] lr = lr[:, 3:-4, 3:-4] else: # run the model with torch.no_grad(): sr = model(lr[None], num_inference_steps=100, eta=1) sr = torch.from_numpy( np.array(sr.images[0])/255 ).permute(2,0,1).float() lr = (lr.cpu().numpy() * 2000).astype(np.uint16) hr = ((hr[0:3] / 2000).clip(0, 1) * 2000).astype(np.uint16) sr = (sr.cpu().numpy() * 2000).astype(np.uint16) results = { "lr": lr, "hr": hr, "sr": sr } return results