--- license: apache-2.0 base_model: dima806/deepfake_vs_real_image_detection tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: realFake-img results: - task: name: Image Classification type: image-classification dataset: name: ai_real_images type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8518181818181818 --- # realFake-img This model is a fine-tuned version of [dima806/deepfake_vs_real_image_detection](https://huggingface.co/dima806/deepfake_vs_real_image_detection) on the ai_real_images dataset. It achieves the following results on the evaluation set: - Loss: 0.3329 - Accuracy: 0.8518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4892 | 0.2564 | 100 | 0.5756 | 0.7227 | | 0.683 | 0.5128 | 200 | 0.6742 | 0.6373 | | 0.3737 | 0.7692 | 300 | 0.5462 | 0.7555 | | 0.3554 | 1.0256 | 400 | 0.4354 | 0.8009 | | 0.2368 | 1.2821 | 500 | 0.4046 | 0.8309 | | 0.3696 | 1.5385 | 600 | 0.5547 | 0.7809 | | 0.2824 | 1.7949 | 700 | 0.3329 | 0.8518 | | 0.2366 | 2.0513 | 800 | 0.4582 | 0.8255 | | 0.2212 | 2.3077 | 900 | 0.4885 | 0.8255 | | 0.2031 | 2.5641 | 1000 | 0.4282 | 0.8564 | | 0.1717 | 2.8205 | 1100 | 0.4373 | 0.85 | | 0.1303 | 3.0769 | 1200 | 0.3659 | 0.8718 | | 0.0889 | 3.3333 | 1300 | 0.3663 | 0.8736 | | 0.1157 | 3.5897 | 1400 | 0.4588 | 0.8436 | | 0.1215 | 3.8462 | 1500 | 0.4350 | 0.8655 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1