File size: 2,268 Bytes
dda8f71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: xlm-roberta-base-finetuned-Adapter-ar-mlm-0.15-large-29OCT
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-Adapter-ar-mlm-0.15-large-29OCT
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0107
- Model Preparation Time: 0.0044
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
|:-------------:|:------:|:-----:|:---------------:|:----------------------:|
| 3.5857 | 0.4703 | 1000 | 2.9678 | 0.0044 |
| 2.8254 | 0.9407 | 2000 | 2.5072 | 0.0044 |
| 2.5882 | 1.4110 | 3000 | 2.3254 | 0.0044 |
| 2.4612 | 1.8814 | 4000 | 2.2290 | 0.0044 |
| 2.3731 | 2.3517 | 5000 | 2.1540 | 0.0044 |
| 2.316 | 2.8221 | 6000 | 2.1089 | 0.0044 |
| 2.2806 | 3.2924 | 7000 | 2.0712 | 0.0044 |
| 2.2416 | 3.7628 | 8000 | 2.0418 | 0.0044 |
| 2.21 | 4.2331 | 9000 | 2.0209 | 0.0044 |
| 2.1977 | 4.7035 | 10000 | 2.0107 | 0.0044 |
### Framework versions
- Transformers 4.43.4
- Pytorch 2.1.1+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
|