--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-Adapter-en-ar-mlm-0.15-large-29OCT results: [] --- # xlm-roberta-base-finetuned-Adapter-en-ar-mlm-0.15-large-29OCT This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2667 - Model Preparation Time: 0.0044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | |:-------------:|:------:|:----:|:---------------:|:----------------------:| | 3.9064 | 0.2498 | 1000 | 3.2366 | 0.0044 | | 3.0641 | 0.4995 | 2000 | 2.7403 | 0.0044 | | 2.8162 | 0.7493 | 3000 | 2.5485 | 0.0044 | | 2.7054 | 0.9990 | 4000 | 2.4384 | 0.0044 | | 2.6108 | 1.2488 | 5000 | 2.3627 | 0.0044 | | 2.5357 | 1.4985 | 6000 | 2.3141 | 0.0044 | | 2.5089 | 1.7483 | 7000 | 2.2847 | 0.0044 | | 2.4931 | 1.9980 | 8000 | 2.2667 | 0.0044 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.1.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1