--- license: mit base_model: DTAI-KULeuven/robbert-2023-dutch-large tags: - generated_from_trainer datasets: - universal_dependencies metrics: - precision - recall - f1 - accuracy model-index: - name: robbert-2023-dutch-large-upos results: - task: name: Token Classification type: token-classification dataset: name: universal_dependencies type: universal_dependencies config: nl_alpino split: validation args: nl_alpino metrics: - name: Precision type: precision value: 0.8288342749653388 - name: Recall type: recall value: 0.7844121660589751 - name: F1 type: f1 value: 0.7968496038696615 - name: Accuracy type: accuracy value: 0.8897894458638006 --- # robbert-2023-dutch-large-upos This model is a fine-tuned version of [DTAI-KULeuven/robbert-2023-dutch-large](https://huggingface.co/DTAI-KULeuven/robbert-2023-dutch-large) on the universal_dependencies dataset. It achieves the following results on the evaluation set: - Loss: 0.3606 - Precision: 0.8288 - Recall: 0.7844 - F1: 0.7968 - Accuracy: 0.8898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 438 | 0.6318 | 0.7041 | 0.6544 | 0.6603 | 0.7663 | | No log | 2.0 | 876 | 0.5374 | 0.7741 | 0.6827 | 0.7090 | 0.8075 | | No log | 3.0 | 1314 | 0.4318 | 0.8544 | 0.7431 | 0.7527 | 0.8595 | | No log | 4.0 | 1752 | 0.4009 | 0.8254 | 0.7677 | 0.7796 | 0.8771 | | No log | 5.0 | 2190 | 0.3606 | 0.8288 | 0.7844 | 0.7968 | 0.8898 | | No log | 6.0 | 2628 | 0.3700 | 0.8318 | 0.8002 | 0.8108 | 0.9037 | | No log | 7.0 | 3066 | 0.3733 | 0.8522 | 0.8024 | 0.8163 | 0.9071 | | No log | 8.0 | 3504 | 0.3711 | 0.8659 | 0.8203 | 0.8333 | 0.9189 | | No log | 9.0 | 3942 | 0.3846 | 0.8599 | 0.8222 | 0.8343 | 0.9235 | | No log | 10.0 | 4380 | 0.3920 | 0.8657 | 0.8263 | 0.8397 | 0.9284 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1