izaitova commited on
Commit
f84deb2
1 Parent(s): 182b267

End of training

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ai-forever/ruBert-large
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - universal_dependencies
7
+ model-index:
8
+ - name: ruBert-large_deprel
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # ruBert-large_deprel
16
+
17
+ This model is a fine-tuned version of [ai-forever/ruBert-large](https://huggingface.co/ai-forever/ruBert-large) on the universal_dependencies dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.7246
20
+ - : {'precision': 0.6857142857142857, 'recall': 0.6486486486486487, 'f1': 0.6666666666666667, 'number': 37}
21
+ - Arataxis: {'precision': 0.7638190954773869, 'recall': 0.6816143497757847, 'f1': 0.7203791469194313, 'number': 446}
22
+ - Ark: {'precision': 0.916923076923077, 'recall': 0.884272997032641, 'f1': 0.9003021148036254, 'number': 337}
23
+ - Ase: {'precision': 0.9278455284552846, 'recall': 0.9330608073582013, 'f1': 0.9304458598726114, 'number': 1957}
24
+ - Bj: {'precision': 0.9047619047619048, 'recall': 0.9114391143911439, 'f1': 0.9080882352941176, 'number': 542}
25
+ - Bl: {'precision': 0.8643478260869565, 'recall': 0.8603577611079054, 'f1': 0.8623481781376519, 'number': 1733}
26
+ - C: {'precision': 0.9087248322147651, 'recall': 0.8978779840848806, 'f1': 0.9032688458972647, 'number': 754}
27
+ - Cl: {'precision': 0.8141263940520446, 'recall': 0.8171641791044776, 'f1': 0.8156424581005587, 'number': 268}
28
+ - Cl:relcl: {'precision': 0.8129496402877698, 'recall': 0.889763779527559, 'f1': 0.849624060150376, 'number': 127}
29
+ - Comp: {'precision': 0.9117647058823529, 'recall': 0.9004149377593361, 'f1': 0.906054279749478, 'number': 241}
30
+ - Dvcl: {'precision': 0.8235294117647058, 'recall': 0.8324324324324325, 'f1': 0.8279569892473118, 'number': 185}
31
+ - Dvmod: {'precision': 0.8639744952178533, 'recall': 0.8648936170212767, 'f1': 0.864433811802233, 'number': 940}
32
+ - Et: {'precision': 0.9315673289183223, 'recall': 0.9274725274725275, 'f1': 0.9295154185022025, 'number': 455}
33
+ - Iscourse: {'precision': 1.0, 'recall': 0.7333333333333333, 'f1': 0.846153846153846, 'number': 15}
34
+ - Ixed: {'precision': 0.872093023255814, 'recall': 0.8571428571428571, 'f1': 0.8645533141210374, 'number': 175}
35
+ - Lat: {'precision': 1.0, 'recall': 0.7777777777777778, 'f1': 0.8750000000000001, 'number': 9}
36
+ - Lat:foreign: {'precision': 0.6363636363636364, 'recall': 0.6422018348623854, 'f1': 0.6392694063926941, 'number': 109}
37
+ - Lat:name: {'precision': 0.6060606060606061, 'recall': 0.5714285714285714, 'f1': 0.588235294117647, 'number': 140}
38
+ - Mod: {'precision': 0.8624740843123704, 'recall': 0.8553803975325566, 'f1': 0.8589125946317961, 'number': 2918}
39
+ - Obj: {'precision': 0.9107142857142857, 'recall': 0.8571428571428571, 'f1': 0.8831168831168831, 'number': 119}
40
+ - Ompound: {'precision': 0.6666666666666666, 'recall': 0.42105263157894735, 'f1': 0.5161290322580646, 'number': 38}
41
+ - Onj: {'precision': 0.8317349607672189, 'recall': 0.8361086765994742, 'f1': 0.8339160839160839, 'number': 1141}
42
+ - Oot: {'precision': 0.8993963782696177, 'recall': 0.8948948948948949, 'f1': 0.8971399899648771, 'number': 999}
43
+ - Op: {'precision': 0.9117647058823529, 'recall': 0.8303571428571429, 'f1': 0.8691588785046729, 'number': 112}
44
+ - Ppos: {'precision': 0.5403225806451613, 'recall': 0.6600985221674877, 'f1': 0.5942350332594235, 'number': 203}
45
+ - Rphan: {'precision': 0.5, 'recall': 0.3103448275862069, 'f1': 0.3829787234042554, 'number': 29}
46
+ - Subj: {'precision': 0.903305785123967, 'recall': 0.9078073089700996, 'f1': 0.9055509527754764, 'number': 1204}
47
+ - Subj:pass: {'precision': 0.8978494623655914, 'recall': 0.8391959798994975, 'f1': 0.8675324675324676, 'number': 199}
48
+ - Ummod: {'precision': 0.7381615598885793, 'recall': 0.8412698412698413, 'f1': 0.7863501483679525, 'number': 315}
49
+ - Ummod:gov: {'precision': 0.7625, 'recall': 0.8026315789473685, 'f1': 0.7820512820512822, 'number': 76}
50
+ - Unct: {'precision': 0.9231651376146789, 'recall': 0.911406736484574, 'f1': 0.9172482552342971, 'number': 3533}
51
+ - Ux: {'precision': 0.9230769230769231, 'recall': 0.6, 'f1': 0.7272727272727274, 'number': 20}
52
+ - Ux:pass: {'precision': 0.9393939393939394, 'recall': 0.9253731343283582, 'f1': 0.9323308270676692, 'number': 67}
53
+ - Overall Precision: 0.8762
54
+ - Overall Recall: 0.8717
55
+ - Overall F1: 0.8739
56
+ - Overall Accuracy: 0.8881
57
+
58
+ ## Model description
59
+
60
+ More information needed
61
+
62
+ ## Intended uses & limitations
63
+
64
+ More information needed
65
+
66
+ ## Training and evaluation data
67
+
68
+ More information needed
69
+
70
+ ## Training procedure
71
+
72
+ ### Training hyperparameters
73
+
74
+ The following hyperparameters were used during training:
75
+ - learning_rate: 5e-05
76
+ - train_batch_size: 16
77
+ - eval_batch_size: 8
78
+ - seed: 42
79
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
80
+ - lr_scheduler_type: linear
81
+ - num_epochs: 10
82
+
83
+ ### Training results
84
+
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.42.4
90
+ - Pytorch 2.3.1+cu121
91
+ - Datasets 2.20.0
92
+ - Tokenizers 0.19.1