File size: 1,538 Bytes
092a428 7a76c4f 092a428 ada1ec8 092a428 75b9a09 80a6c9d 75b9a09 04392f3 75b9a09 f7dc7cd c1f87b8 f7dc7cd c1f87b8 80a6c9d 93618c7 5a9e9a6 155a92b f8e9430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
language: "en"
tags:
- sentiment
- emotion
- twitter
widget:
- text: "Oh wow. I didn't know that."
- text: "This movie always makes me cry.."
---
## Description
With this model, you can classify emotions in English text data. The model was trained on diverse datasets and predicts 7 emotions:
1) anger
2) disgust
3) fear
4) joy
5) neutral
6) sadness
7) surprise
The model is a fine-tuned checkpoint of DistilRoBERTa-base.
## Application
a) Run emotion model with 3 lines of code on single text example using Hugging Face's pipeline command on Google Colab:
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/j-hartmann/emotion-english-distilroberta-base/blob/main/simple_emotion_pipeline.ipynb)
b) Run emotion model on multiple examples and full datasets (e.g., .csv files) on Google Colab:
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/j-hartmann/emotion-english-distilroberta-base/blob/main/emotion_prediction_example.ipynb)
## Contact
Please reach out to jochen.hartmann@uni-hamburg.de if you have any questions or feedback.
Thanks to Samuel Domdey and chrsiebert for their support in making this model available.
## Appendix
Please find an overview of the datasets used for training below:
|Name|anger|disgust|fear|joy|neutral|sadness|surprise|
|---|---|---|---|---|---|---|---|
|Crowdflower (2016)|Yes|No|No|Yes|Yes|Yes|Yes|
|Elvis et al. (2018)|Yes|Yes|Yes|Yes|No|Yes|Yes| |