File size: 1,538 Bytes
092a428
7a76c4f
 
 
 
 
092a428
 
ada1ec8
092a428
 
 
 
75b9a09
 
80a6c9d
75b9a09
 
 
 
 
 
 
 
 
04392f3
 
75b9a09
 
f7dc7cd
c1f87b8
 
 
f7dc7cd
c1f87b8
80a6c9d
 
 
 
93618c7
 
5a9e9a6
 
 
 
 
 
155a92b
 
 
f8e9430
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
language: "en"
tags:
- sentiment
- emotion
- twitter

widget:
- text: "Oh wow. I didn't know that."
- text: "This movie always makes me cry.."

---

## Description

With this model, you can classify emotions in English text data. The model was trained on diverse datasets and predicts 7 emotions:

1) anger
2) disgust
3) fear
4) joy
5) neutral
6) sadness
7) surprise

The model is a fine-tuned checkpoint of DistilRoBERTa-base.

## Application

a) Run emotion model with 3 lines of code on single text example using Hugging Face's pipeline command on Google Colab:

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/j-hartmann/emotion-english-distilroberta-base/blob/main/simple_emotion_pipeline.ipynb)

b) Run emotion model on multiple examples and full datasets (e.g., .csv files) on Google Colab:

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/j-hartmann/emotion-english-distilroberta-base/blob/main/emotion_prediction_example.ipynb)

## Contact

Please reach out to jochen.hartmann@uni-hamburg.de if you have any questions or feedback.

Thanks to Samuel Domdey and chrsiebert for their support in making this model available.

## Appendix

Please find an overview of the datasets used for training below:

|Name|anger|disgust|fear|joy|neutral|sadness|surprise|
|---|---|---|---|---|---|---|---|
|Crowdflower (2016)|Yes|No|No|Yes|Yes|Yes|Yes|
|Elvis et al. (2018)|Yes|Yes|Yes|Yes|No|Yes|Yes|