File size: 2,323 Bytes
7eb69da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
### This is example of the script that will be run in the test environment.
### Some parts of the code are compulsory and you should NOT CHANGE THEM.
### They are between '''---compulsory---''' comments.
### You can change the rest of the code to define and test your solution.
### However, you should not change the signature of the provided function.
### The script would save "submission.parquet" file in the current directory.
### You can use any additional files and subdirectories to organize your code.

'''---compulsory---'''
import hoho; hoho.setup() # YOU MUST CALL hoho.setup() BEFORE ANYTHING ELSE
'''---compulsory---'''

from pathlib import Path
from tqdm import tqdm
import pandas as pd
import numpy as np


def empty_solution(sample):
    '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
    return np.zeros((2,3)), [(0, 1)]


if __name__ == "__main__":
    print ("------------ Loading dataset------------ ")
    params = hoho.get_params()
    
    # by default it is usually better to use `get_dataset()` like this
    # 
    # dataset = hoho.get_dataset(split='all')
    # 
    # but in this case (because we don't do anything with the sample 
    # anyway) we set `decode=None`. We can set the `split` argument 
    # to 'train' or 'val' ('all' defaults back to 'train') if we are 
    # testing ourselves locally. 
    # 
    # dataset = hoho.get_dataset(split='val', decode=None)
    #
    # On the test server *`split` must be set to 'all'* 
    # to compute both the public and private leaderboards.
    # 
    dataset = hoho.get_dataset(split='all', decode=None)
    
    print('------------ Now you can do your solution ---------------')
    solution = []
    for i, sample in enumerate(tqdm(dataset)):
        # replace this with your solution
        pred_vertices, pred_edges = empty_solution(sample)
        
        solution.append({
                        '__key__': sample['__key__'], 
                        'wf_vertices': pred_vertices.tolist(),
                        'wf_edges': pred_edges
                    })
    print('------------ Saving results ---------------')
    sub = pd.DataFrame(solution, columns=["__key__", "wf_vertices", "wf_edges"])
    sub.to_parquet(Path(params['output_path']) / "submission.parquet")
    print("------------ Done ------------ ")