File size: 2,323 Bytes
7eb69da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
### This is example of the script that will be run in the test environment.
### Some parts of the code are compulsory and you should NOT CHANGE THEM.
### They are between '''---compulsory---''' comments.
### You can change the rest of the code to define and test your solution.
### However, you should not change the signature of the provided function.
### The script would save "submission.parquet" file in the current directory.
### You can use any additional files and subdirectories to organize your code.
'''---compulsory---'''
import hoho; hoho.setup() # YOU MUST CALL hoho.setup() BEFORE ANYTHING ELSE
'''---compulsory---'''
from pathlib import Path
from tqdm import tqdm
import pandas as pd
import numpy as np
def empty_solution(sample):
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
return np.zeros((2,3)), [(0, 1)]
if __name__ == "__main__":
print ("------------ Loading dataset------------ ")
params = hoho.get_params()
# by default it is usually better to use `get_dataset()` like this
#
# dataset = hoho.get_dataset(split='all')
#
# but in this case (because we don't do anything with the sample
# anyway) we set `decode=None`. We can set the `split` argument
# to 'train' or 'val' ('all' defaults back to 'train') if we are
# testing ourselves locally.
#
# dataset = hoho.get_dataset(split='val', decode=None)
#
# On the test server *`split` must be set to 'all'*
# to compute both the public and private leaderboards.
#
dataset = hoho.get_dataset(split='all', decode=None)
print('------------ Now you can do your solution ---------------')
solution = []
for i, sample in enumerate(tqdm(dataset)):
# replace this with your solution
pred_vertices, pred_edges = empty_solution(sample)
solution.append({
'__key__': sample['__key__'],
'wf_vertices': pred_vertices.tolist(),
'wf_edges': pred_edges
})
print('------------ Saving results ---------------')
sub = pd.DataFrame(solution, columns=["__key__", "wf_vertices", "wf_edges"])
sub.to_parquet(Path(params['output_path']) / "submission.parquet")
print("------------ Done ------------ ") |