jadechoghari commited on
Commit
93ae000
·
verified ·
1 Parent(s): 744d366

add trust_remote_code = True

Browse files
Files changed (1) hide show
  1. builder.py +11 -11
builder.py CHANGED
@@ -71,10 +71,10 @@ def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, l
71
  if 'llava' in model_name.lower() or 'ferret' in model_name.lower():
72
  # Load LLaVA/FERRET model
73
  if 'lora' in model_name.lower() and model_base is not None:
74
- lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
75
- tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
76
  print('Loading LLaVA/FERRET from base model...')
77
- model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
78
  token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
79
  if model.lm_head.weight.shape[0] != token_num:
80
  model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
@@ -100,7 +100,7 @@ def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, l
100
 
101
  from peft import PeftModel
102
  print('Loading LoRA weights...')
103
- model = PeftModel.from_pretrained(model, model_path)
104
  print('Merging LoRA weights...')
105
  model = model.merge_and_unload()
106
  print('Model is loaded...')
@@ -109,31 +109,31 @@ def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, l
109
  print('Loading LLaVA/FERRET from base model...')
110
  tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
111
  cfg_pretrained = AutoConfig.from_pretrained(model_path)
112
- model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
113
 
114
  mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
115
  mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
116
  model.load_state_dict(mm_projector_weights, strict=False)
117
  else:
118
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
119
- model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
120
  else:
121
  # Load language model
122
  if model_base is not None:
123
  # PEFT model
124
  from peft import PeftModel
125
  tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
126
- model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
127
  print(f"Loading LoRA weights from {model_path}")
128
- model = PeftModel.from_pretrained(model, model_path)
129
  print(f"Merging weights")
130
  model = model.merge_and_unload()
131
  print('Convert to FP16...')
132
  model.to(torch.float16)
133
  else:
134
  use_fast = False
135
- tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
136
- model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
137
 
138
  image_processor = None
139
 
 
71
  if 'llava' in model_name.lower() or 'ferret' in model_name.lower():
72
  # Load LLaVA/FERRET model
73
  if 'lora' in model_name.lower() and model_base is not None:
74
+ lora_cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
75
+ tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, trust_remote_code=True)
76
  print('Loading LLaVA/FERRET from base model...')
77
+ model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs, trust_remote_code=True)
78
  token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
79
  if model.lm_head.weight.shape[0] != token_num:
80
  model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
 
100
 
101
  from peft import PeftModel
102
  print('Loading LoRA weights...')
103
+ model = PeftModel.from_pretrained(model, model_path, trust_remote_code=True)
104
  print('Merging LoRA weights...')
105
  model = model.merge_and_unload()
106
  print('Model is loaded...')
 
109
  print('Loading LLaVA/FERRET from base model...')
110
  tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
111
  cfg_pretrained = AutoConfig.from_pretrained(model_path)
112
+ model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs, trust_remote_code=True)
113
 
114
  mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
115
  mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
116
  model.load_state_dict(mm_projector_weights, strict=False)
117
  else:
118
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)
119
+ model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs, trust_remote_code=True)
120
  else:
121
  # Load language model
122
  if model_base is not None:
123
  # PEFT model
124
  from peft import PeftModel
125
  tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
126
+ model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True)
127
  print(f"Loading LoRA weights from {model_path}")
128
+ model = PeftModel.from_pretrained(model, model_path, trust_remote_code=True)
129
  print(f"Merging weights")
130
  model = model.merge_and_unload()
131
  print('Convert to FP16...')
132
  model.to(torch.float16)
133
  else:
134
  use_fast = False
135
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)
136
+ model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs, trust_remote_code=True)
137
 
138
  image_processor = None
139