VoiceRestore / inference_long.py
jadechoghari's picture
add initial files
96e64e9 verified
raw
history blame
6.98 kB
import sys
sys.path.append('./BigVGAN')
import time
import torch
import torchaudio
import argparse
from tqdm import tqdm
import librosa
from BigVGAN import bigvgan
from BigVGAN.meldataset import get_mel_spectrogram
from model import OptimizedAudioRestorationModel
# Set the device handle macbooks with M1 chip
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Initialize BigVGAN model
bigvgan_model = bigvgan.BigVGAN.from_pretrained(
'nvidia/bigvgan_v2_24khz_100band_256x',
use_cuda_kernel=False,
force_download=False
).to(device)
bigvgan_model.remove_weight_norm()
def measure_gpu_memory():
if device == 'cuda':
torch.cuda.synchronize()
return torch.cuda.max_memory_allocated() / (1024 ** 2) # Convert to MB
return 0
def apply_overlap_windowing_waveform(waveform, window_size_samples, overlap):
step_size = int(window_size_samples * (1 - overlap))
num_chunks = (waveform.shape[-1] - window_size_samples) // step_size + 1
windows = []
for i in range(num_chunks):
start_idx = i * step_size
end_idx = start_idx + window_size_samples
chunk = waveform[..., start_idx:end_idx]
windows.append(chunk)
return torch.stack(windows)
def reconstruct_waveform_from_windows(windows, window_size_samples, overlap):
step_size = int(window_size_samples * (1 - overlap))
shape = windows.shape
if len(shape) == 2:
# windows.shape == (num_windows, window_len)
num_windows, window_len = shape
channels = 1
windows = windows.unsqueeze(1) # Now windows.shape == (num_windows, 1, window_len)
elif len(shape) == 3:
num_windows, channels, window_len = shape
else:
raise ValueError(f"Unexpected windows.shape: {windows.shape}")
output_length = (num_windows - 1) * step_size + window_size_samples
reconstructed = torch.zeros((channels, output_length))
window_sums = torch.zeros((channels, output_length))
for i in range(num_windows):
start_idx = i * step_size
end_idx = start_idx + window_len
reconstructed[:, start_idx:end_idx] += windows[i]
window_sums[:, start_idx:end_idx] += 1
reconstructed = reconstructed / window_sums.clamp(min=1e-6)
if channels == 1:
reconstructed = reconstructed.squeeze(0) # Remove channel dimension if single channel
return reconstructed
def load_model(save_path):
"""
Load the optimized audio restoration model.
Parameters:
- save_path: Path to the checkpoint file.
"""
optimized_model = OptimizedAudioRestorationModel(device=device, bigvgan_model=bigvgan_model)
state_dict = torch.load(save_path, map_location=device)
if 'model_state_dict' in state_dict:
state_dict = state_dict['model_state_dict']
optimized_model.voice_restore.load_state_dict(state_dict, strict=True)
return optimized_model
def restore_audio(model, input_path, output_path, steps=16, cfg_strength=0.5, window_size_sec=5.0, overlap=0.5):
# Load the audio file
start_time = time.time()
initial_gpu_memory = measure_gpu_memory()
wav, sr = librosa.load(input_path, sr=24000, mono=True)
wav = torch.FloatTensor(wav).unsqueeze(0) # Shape: [1, num_samples]
window_size_samples = int(window_size_sec * sr)
step_size = int(window_size_samples * (1 - overlap))
# Apply overlapping windowing to the waveform
wav_windows = apply_overlap_windowing_waveform(wav, window_size_samples, overlap)
restored_wav_windows = []
for wav_window in tqdm(wav_windows):
wav_window = wav_window.to(device) # Shape: [1, window_size_samples]
# Convert to Mel-spectrogram
processed_mel = get_mel_spectrogram(wav_window, bigvgan_model.h).to(device)
# Restore audio
with torch.no_grad():
with torch.autocast(device):
restored_mel = model.voice_restore.sample(processed_mel.transpose(1, 2), steps=steps, cfg_strength=cfg_strength)
restored_mel = restored_mel.squeeze(0).transpose(0, 1)
# Convert restored mel-spectrogram to waveform
with torch.no_grad():
with torch.autocast(device):
restored_wav = bigvgan_model(restored_mel.unsqueeze(0)).squeeze(0).float().cpu() # Shape: [num_samples]
# Debug: Print shapes
# print(f"restored_wav.shape: {restored_wav.shape}")
restored_wav_windows.append(restored_wav)
del wav_window, processed_mel, restored_mel, restored_wav
torch.cuda.empty_cache()
restored_wav_windows = torch.stack(restored_wav_windows) # Shape: [num_windows, num_samples]
# Debug: Print shapes
# print(f"restored_wav_windows.shape: {restored_wav_windows.shape}")
# Reconstruct the full waveform from the processed windows
restored_wav = reconstruct_waveform_from_windows(restored_wav_windows, window_size_samples, overlap)
# Ensure the restored_wav has correct dimensions for saving
if restored_wav.dim() == 1:
restored_wav = restored_wav.unsqueeze(0) # Shape: [1, num_samples]
# Save the restored audio
torchaudio.save(output_path, restored_wav, 24000)
end_time = time.time()
total_time = end_time - start_time
peak_gpu_memory = measure_gpu_memory()
gpu_memory_used = peak_gpu_memory - initial_gpu_memory
print(f"Total inference time: {total_time:.2f} seconds")
print(f"Peak GPU memory usage: {peak_gpu_memory:.2f} MB")
print(f"GPU memory used: {gpu_memory_used:.2f} MB")
if __name__ == "__main__":
# Argument parser setup
parser = argparse.ArgumentParser(description="Audio restoration using OptimizedAudioRestorationModel for long-form audio.")
parser.add_argument('--checkpoint', type=str, required=True, help="Path to the checkpoint file")
parser.add_argument('--input', type=str, required=True, help="Path to the input audio file")
parser.add_argument('--output', type=str, required=True, help="Path to save the restored audio file")
parser.add_argument('--steps', type=int, default=16, help="Number of sampling steps")
parser.add_argument('--cfg_strength', type=float, default=0.5, help="CFG strength value")
parser.add_argument('--window_size_sec', type=float, default=5.0, help="Window size in seconds for overlapping")
parser.add_argument('--overlap', type=float, default=0.5, help="Overlap ratio for windowing")
# Parse arguments
args = parser.parse_args()
# Load the optimized model
optimized_model = load_model(args.checkpoint)
if device == 'cuda':
optimized_model.bfloat16()
optimized_model.eval()
optimized_model.to(device)
# Use the model to restore audio
restore_audio(
optimized_model,
args.input,
args.output,
steps=args.steps,
cfg_strength=args.cfg_strength,
window_size_sec=args.window_size_sec,
overlap=args.overlap
)