VoiceRestore / inference_short.py
jadechoghari's picture
add initial files
96e64e9 verified
raw
history blame
2.9 kB
import sys
sys.path.append('./BigVGAN')
import torch
import torch.nn as nn
import torchaudio
import argparse
from BigVGAN import bigvgan
from BigVGAN.meldataset import get_mel_spectrogram
from model import OptimizedAudioRestorationModel
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# If running on non-windows system, you can try using cuda kernel for faster processing `use_cuda_kernel=True`
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_24khz_100band_256x', use_cuda_kernel=False).to(device)
bigvgan_model.remove_weight_norm()
example_input = torch.randn(1, 16000) # Example input waveform
example_spec = get_mel_spectrogram(example_input, bigvgan_model.h)
def load_model(save_path):
"""
Load the model.
Parameters:
- save_path: The file path where the optimized model is saved.
"""
optimized_model = OptimizedAudioRestorationModel(device=device, bigvgan_model=bigvgan_model)
state_dict = torch.load(save_path, map_location=torch.device(device))
if 'model_state_dict' in state_dict:
state_dict = state_dict['model_state_dict']
optimized_model.voice_restore.load_state_dict(state_dict, strict=True)
return optimized_model
def restore_audio(model, input_path, output_path, steps=16, cfg_strength=0.5):
audio, sr = torchaudio.load(input_path)
if sr != model.target_sample_rate:
audio = torchaudio.functional.resample(audio, sr, model.target_sample_rate)
audio = audio.mean(dim=0, keepdim=True) if audio.dim() > 1 else audio # Convert to mono if stereo
with torch.inference_mode():
with torch.autocast(device):
restored_wav = model(audio, steps=steps, cfg_strength=cfg_strength)
restored_wav = restored_wav.squeeze(0).float().cpu() # Move to CPU after processing
torchaudio.save(output_path, restored_wav, model.target_sample_rate)
if __name__ == "__main__":
# Argument parser setup
parser = argparse.ArgumentParser(description="Audio restoration using OptimizedAudioRestorationModel")
parser.add_argument('--checkpoint', type=str, required=True, help="Path to the checkpoint file")
parser.add_argument('--input', type=str, required=True, help="Path to the input audio file")
parser.add_argument('--output', type=str, required=True, help="Path to save the restored audio file")
parser.add_argument('--steps', type=int, default=16, help="Number of sampling steps")
parser.add_argument('--cfg_strength', type=float, default=0.5, help="CFG strength value")
# Parse arguments
args = parser.parse_args()
# Load the optimized model
optimized_model = load_model(args.checkpoint)
optimized_model.eval()
optimized_model.to(device)
# Use the model to restore audio
restore_audio(optimized_model, args.input, args.output, steps=args.steps, cfg_strength=args.cfg_strength)