jadechoghari
commited on
Create modeling.py
Browse files- modeling.py +129 -0
modeling.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import PreTrainedModel
|
4 |
+
import torch
|
5 |
+
from safetensors.torch import save_file
|
6 |
+
import os
|
7 |
+
from timm.models.vision_transformer import Block
|
8 |
+
from .mar import MAR
|
9 |
+
|
10 |
+
class MARConfig(PretrainedConfig):
|
11 |
+
model_type = "mar"
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
img_size=256,
|
15 |
+
vae_stride=16,
|
16 |
+
patch_size=1,
|
17 |
+
encoder_embed_dim=1024,
|
18 |
+
encoder_depth=16,
|
19 |
+
encoder_num_heads=16,
|
20 |
+
decoder_embed_dim=1024,
|
21 |
+
decoder_depth=16,
|
22 |
+
decoder_num_heads=16,
|
23 |
+
mlp_ratio=4.,
|
24 |
+
norm_layer="LayerNorm",
|
25 |
+
vae_embed_dim=16,
|
26 |
+
mask_ratio_min=0.7,
|
27 |
+
label_drop_prob=0.1,
|
28 |
+
class_num=1000,
|
29 |
+
attn_dropout=0.1,
|
30 |
+
proj_dropout=0.1,
|
31 |
+
buffer_size=64,
|
32 |
+
diffloss_d=3,
|
33 |
+
diffloss_w=1024,
|
34 |
+
num_sampling_steps='100',
|
35 |
+
diffusion_batch_mul=4,
|
36 |
+
grad_checkpointing=False,
|
37 |
+
**kwargs):
|
38 |
+
super().__init__(**kwargs)
|
39 |
+
|
40 |
+
# store parameters in the config
|
41 |
+
self.img_size = img_size
|
42 |
+
self.vae_stride = vae_stride
|
43 |
+
self.patch_size = patch_size
|
44 |
+
self.encoder_embed_dim = encoder_embed_dim
|
45 |
+
self.encoder_depth = encoder_depth
|
46 |
+
self.encoder_num_heads = encoder_num_heads
|
47 |
+
self.decoder_embed_dim = decoder_embed_dim
|
48 |
+
self.decoder_depth = decoder_depth
|
49 |
+
self.decoder_num_heads = decoder_num_heads
|
50 |
+
self.mlp_ratio = mlp_ratio
|
51 |
+
self.norm_layer = norm_layer
|
52 |
+
self.vae_embed_dim = vae_embed_dim
|
53 |
+
self.mask_ratio_min = mask_ratio_min
|
54 |
+
self.label_drop_prob = label_drop_prob
|
55 |
+
self.class_num = class_num
|
56 |
+
self.attn_dropout = attn_dropout
|
57 |
+
self.proj_dropout = proj_dropout
|
58 |
+
self.buffer_size = buffer_size
|
59 |
+
self.diffloss_d = diffloss_d
|
60 |
+
self.diffloss_w = diffloss_w
|
61 |
+
self.num_sampling_steps = num_sampling_steps
|
62 |
+
self.diffusion_batch_mul = diffusion_batch_mul
|
63 |
+
self.grad_checkpointing = grad_checkpointing
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
class MARModel(PreTrainedModel):
|
68 |
+
# links to MARConfig class
|
69 |
+
config_class = MARConfig
|
70 |
+
|
71 |
+
def __init__(self, config):
|
72 |
+
super().__init__(config)
|
73 |
+
self.config = config
|
74 |
+
|
75 |
+
# convert norm_layer from string to class
|
76 |
+
norm_layer = getattr(nn, config.norm_layer)
|
77 |
+
|
78 |
+
# init the mar model using the parameters from config
|
79 |
+
self.model = MAR(
|
80 |
+
img_size=config.img_size,
|
81 |
+
vae_stride=config.vae_stride,
|
82 |
+
patch_size=config.patch_size,
|
83 |
+
encoder_embed_dim=config.encoder_embed_dim,
|
84 |
+
encoder_depth=config.encoder_depth,
|
85 |
+
encoder_num_heads=config.encoder_num_heads,
|
86 |
+
decoder_embed_dim=config.decoder_embed_dim,
|
87 |
+
decoder_depth=config.decoder_depth,
|
88 |
+
decoder_num_heads=config.decoder_num_heads,
|
89 |
+
mlp_ratio=config.mlp_ratio,
|
90 |
+
norm_layer=norm_layer, # use the actual class for the layer
|
91 |
+
vae_embed_dim=config.vae_embed_dim,
|
92 |
+
mask_ratio_min=config.mask_ratio_min,
|
93 |
+
label_drop_prob=config.label_drop_prob,
|
94 |
+
class_num=config.class_num,
|
95 |
+
attn_dropout=config.attn_dropout,
|
96 |
+
proj_dropout=config.proj_dropout,
|
97 |
+
buffer_size=config.buffer_size,
|
98 |
+
diffloss_d=config.diffloss_d,
|
99 |
+
diffloss_w=config.diffloss_w,
|
100 |
+
num_sampling_steps=config.num_sampling_steps,
|
101 |
+
diffusion_batch_mul=config.diffusion_batch_mul,
|
102 |
+
grad_checkpointing=config.grad_checkpointing,
|
103 |
+
)
|
104 |
+
|
105 |
+
def forward(self, imgs, labels):
|
106 |
+
# calls the forward method from the mar class - passing imgs & labels
|
107 |
+
return self.model(imgs, labels)
|
108 |
+
|
109 |
+
def sample_tokens(self, bsz, num_iter=64, cfg=1.0, cfg_schedule="linear", labels=None, temperature=1.0, progress=False):
|
110 |
+
# call the sample_tokens method from the MAR class
|
111 |
+
return self.model.sample_tokens(bsz, num_iter, cfg, cfg_schedule, labels, temperature, progress)
|
112 |
+
|
113 |
+
@classmethod
|
114 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
115 |
+
config = MARConfig.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
116 |
+
model = cls(config)
|
117 |
+
state_dict = torch.load('./checkpoint-last.safetensors')
|
118 |
+
model.model.load_state_dict(state_dict)
|
119 |
+
return model
|
120 |
+
|
121 |
+
def save_pretrained(self, save_directory):
|
122 |
+
# we will save to safetensors
|
123 |
+
os.makedirs(save_directory, exist_ok=True)
|
124 |
+
state_dict = self.model.state_dict()
|
125 |
+
safetensors_path = os.path.join(save_directory, "pytorch_model.safetensors")
|
126 |
+
save_file(state_dict, safetensors_path)
|
127 |
+
|
128 |
+
# save the configuration as usual
|
129 |
+
self.config.save_pretrained(save_directory)
|