File size: 2,371 Bytes
e8e536b
 
 
 
19fb693
2a534b4
19fb693
2a534b4
19fb693
2a534b4
19fb693
 
 
 
2a534b4
 
19fb693
2a534b4
19fb693
2a534b4
 
 
a0788d8
2a534b4
a0788d8
2a534b4
a0788d8
 
 
2a534b4
a0788d8
19fb693
2a534b4
307486a
2a534b4
a0788d8
2a534b4
a0788d8
 
2a534b4
a0788d8
2a534b4
a0788d8
 
2a534b4
 
 
19fb693
2a534b4
19fb693
2a534b4
19fb693
2a534b4
19fb693
2a534b4
 
19fb693
 
 
 
 
 
 
 
2a534b4
19fb693
2a534b4
19fb693
e8e536b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
pipeline_tag: image-to-3d
---
# [ECCV 2024] VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models

[Porject page](https://junlinhan.github.io/projects/vfusion3d.html), [Paper link](https://arxiv.org/abs/2403.12034)

VFusion3D is a large, feed-forward 3D generative model trained with a small amount of 3D data and a large volume of synthetic multi-view data. It is the first work exploring scalable 3D generative/reconstruction models as a step towards a 3D foundation.

[VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models](https://junlinhan.github.io/projects/vfusion3d.html)<br>
[Junlin Han](https://junlinhan.github.io/), [Filippos Kokkinos](https://www.fkokkinos.com/), [Philip Torr](https://www.robots.ox.ac.uk/~phst/)<br>
GenAI, Meta and TVG, University of Oxford<br>
European Conference on Computer Vision (ECCV), 2024


## News

- [25.07.2024] Release weights and inference code for VFusion3D.



## Quick Start

Getting started with VFusion3D is super easy! 🤗 Here’s how you can use the model with Hugging Face:

### Load model directly
```python
from transformers import AutoModel

model = AutoModel.from_pretrained("jadechoghari/vfusion3d", trust_remote_code=True)
```

Check out our [demo app](https://huggingface.co/spaces/jadechoghari/vfusion3d-app) to see VFusion3D in action! 🤗

## Results and Comparisons

### 3D Generation Results
<img src='assets/gif1.gif' width=950>

<img src='assets/gif2.gif' width=950>

### User Study Results
<img src='assets/user.png' width=950>



## Acknowledgement

- This inference code of VFusion3D heavily borrows from [OpenLRM](https://github.com/3DTopia/OpenLRM).  

## Citation

If you find this work useful, please cite us:


```
@article{han2024vfusion3d,
  title={VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models},
  author={Junlin Han and Filippos Kokkinos and Philip Torr},
  journal={European Conference on Computer Vision (ECCV)},
  year={2024}
}
```

## License

- The majority of VFusion3D is licensed under CC-BY-NC, however portions of the project are available under separate license terms: OpenLRM as a whole is licensed under the Apache License, Version 2.0, while certain components are covered by NVIDIA's proprietary license.
- The model weights of VFusion3D is also licensed under CC-BY-NC.