vfusion3d / renderer.py
jadechoghari's picture
Update renderer.py
ab950f0 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Modified by Zexin He
# The modifications are subject to the same license as the original.
"""
The renderer is a module that takes in rays, decides where to sample along each
ray, and computes pixel colors using the volume rendering equation.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from .ray_marcher import MipRayMarcher2
# Copied from .math_utils.transform_vectors
def transform_vectors(matrix: torch.Tensor, vectors4: torch.Tensor) -> torch.Tensor:
"""
Left-multiplies MxM @ NxM. Returns NxM.
"""
res = torch.matmul(vectors4, matrix.T)
return res
# Copied from .math_utils.normalize_vecs
def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor:
"""
Normalize vector lengths.
"""
return vectors / (torch.norm(vectors, dim=-1, keepdim=True))
# Copied from .math_utils.torch_dot
def torch_dot(x: torch.Tensor, y: torch.Tensor):
"""
Dot product of two tensors.
"""
return (x * y).sum(-1)
# Copied from .math_utils.get_ray_limits_box
def get_ray_limits_box(rays_o: torch.Tensor, rays_d: torch.Tensor, box_side_length):
"""
Author: Petr Kellnhofer
Intersects rays with the [-1, 1] NDC volume.
Returns min and max distance of entry.
Returns -1 for no intersection.
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection
"""
o_shape = rays_o.shape
rays_o = rays_o.detach().reshape(-1, 3)
rays_d = rays_d.detach().reshape(-1, 3)
bb_min = [-1*(box_side_length/2), -1*(box_side_length/2), -1*(box_side_length/2)]
bb_max = [1*(box_side_length/2), 1*(box_side_length/2), 1*(box_side_length/2)]
bounds = torch.tensor([bb_min, bb_max], dtype=rays_o.dtype, device=rays_o.device)
is_valid = torch.ones(rays_o.shape[:-1], dtype=bool, device=rays_o.device)
# Precompute inverse for stability.
invdir = 1 / rays_d
sign = (invdir < 0).long()
# Intersect with YZ plane.
tmin = (bounds.index_select(0, sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0]
tmax = (bounds.index_select(0, 1 - sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0]
# Intersect with XZ plane.
tymin = (bounds.index_select(0, sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1]
tymax = (bounds.index_select(0, 1 - sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1]
# Resolve parallel rays.
is_valid[torch.logical_or(tmin > tymax, tymin > tmax)] = False
# Use the shortest intersection.
tmin = torch.max(tmin, tymin)
tmax = torch.min(tmax, tymax)
# Intersect with XY plane.
tzmin = (bounds.index_select(0, sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2]
tzmax = (bounds.index_select(0, 1 - sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2]
# Resolve parallel rays.
is_valid[torch.logical_or(tmin > tzmax, tzmin > tmax)] = False
# Use the shortest intersection.
tmin = torch.max(tmin, tzmin)
tmax = torch.min(tmax, tzmax)
# Mark invalid.
tmin[torch.logical_not(is_valid)] = -1
tmax[torch.logical_not(is_valid)] = -2
return tmin.reshape(*o_shape[:-1], 1), tmax.reshape(*o_shape[:-1], 1)
# Copied from .math_utils.linspace
def linspace(start: torch.Tensor, stop: torch.Tensor, num: int):
"""
Creates a tensor of shape [num, *start.shape] whose values are evenly spaced from start to end, inclusive.
Replicates but the multi-dimensional bahaviour of numpy.linspace in PyTorch.
"""
# create a tensor of 'num' steps from 0 to 1
steps = torch.arange(num, dtype=torch.float32, device=start.device) / (num - 1)
# reshape the 'steps' tensor to [-1, *([1]*start.ndim)] to allow for broadcastings
# - using 'steps.reshape([-1, *([1]*start.ndim)])' would be nice here but torchscript
# "cannot statically infer the expected size of a list in this contex", hence the code below
for i in range(start.ndim):
steps = steps.unsqueeze(-1)
# the output starts at 'start' and increments until 'stop' in each dimension
out = start[None] + steps * (stop - start)[None]
return out
# Copied from .math_utils.generate_planes
def generate_planes():
"""
Defines planes by the three vectors that form the "axes" of the
plane. Should work with arbitrary number of planes and planes of
arbitrary orientation.
Bugfix reference: https://github.com/NVlabs/eg3d/issues/67
"""
return torch.tensor([[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]],
[[1, 0, 0],
[0, 0, 1],
[0, 1, 0]],
[[0, 0, 1],
[0, 1, 0],
[1, 0, 0]]], dtype=torch.float32)
# Copied from .math_utils.project_onto_planes
def project_onto_planes(planes, coordinates):
"""
Does a projection of a 3D point onto a batch of 2D planes,
returning 2D plane coordinates.
Takes plane axes of shape n_planes, 3, 3
# Takes coordinates of shape N, M, 3
# returns projections of shape N*n_planes, M, 2
"""
N, M, C = coordinates.shape
n_planes, _, _ = planes.shape
coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3)
coordinates = coordinates.to(inv_planes.device)
projections = torch.bmm(coordinates, inv_planes)
return projections[..., :2]
# Copied from .math_utils.sample_from_planes
def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None):
assert padding_mode == 'zeros'
N, n_planes, C, H, W = plane_features.shape
_, M, _ = coordinates.shape
plane_features = plane_features.view(N*n_planes, C, H, W)
coordinates = (2/box_warp) * coordinates # add specific box bounds
# half added here
projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1)
# removed float from projected_coordinates
output_features = torch.nn.functional.grid_sample(plane_features.float(), projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
return output_features
# Copied from .math_utils.sample_from_3dgrid
def sample_from_3dgrid(grid, coordinates):
"""
Expects coordinates in shape (batch_size, num_points_per_batch, 3)
Expects grid in shape (1, channels, H, W, D)
(Also works if grid has batch size)
Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels)
"""
batch_size, n_coords, n_dims = coordinates.shape
sampled_features = torch.nn.functional.grid_sample(grid.expand(batch_size, -1, -1, -1, -1),
coordinates.reshape(batch_size, 1, 1, -1, n_dims),
mode='bilinear', padding_mode='zeros', align_corners=False)
N, C, H, W, D = sampled_features.shape
sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C)
return sampled_features
class ImportanceRenderer(torch.nn.Module):
"""
Modified original version to filter out-of-box samples as TensoRF does.
Reference:
TensoRF: https://github.com/apchenstu/TensoRF/blob/main/models/tensorBase.py#L277
"""
def __init__(self):
super().__init__()
self.activation_factory = self._build_activation_factory()
self.ray_marcher = MipRayMarcher2(self.activation_factory)
self.plane_axes = generate_planes()
def _build_activation_factory(self):
def activation_factory(options: dict):
if options['clamp_mode'] == 'softplus':
return lambda x: F.softplus(x - 1) # activation bias of -1 makes things initialize better
else:
assert False, "Renderer only supports `clamp_mode`=`softplus`!"
return activation_factory
def _forward_pass(self, depths: torch.Tensor, ray_directions: torch.Tensor, ray_origins: torch.Tensor,
planes: torch.Tensor, decoder: nn.Module, rendering_options: dict):
"""
Additional filtering is applied to filter out-of-box samples.
Modifications made by Zexin He.
"""
# context related variables
batch_size, num_rays, samples_per_ray, _ = depths.shape
device = planes.device
depths = depths.to(device)
ray_directions = ray_directions.to(device)
ray_origins = ray_origins.to(device)
# define sample points with depths
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
sample_coordinates = (ray_origins.unsqueeze(-2) + depths * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
# filter out-of-box samples
mask_inbox = \
(rendering_options['sampler_bbox_min'] <= sample_coordinates) & \
(sample_coordinates <= rendering_options['sampler_bbox_max'])
mask_inbox = mask_inbox.all(-1)
# forward model according to all samples
_out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
# set out-of-box samples to zeros(rgb) & -inf(sigma)
SAFE_GUARD = 3
DATA_TYPE = _out['sigma'].dtype
colors_pass = torch.zeros(batch_size, num_rays * samples_per_ray, 3, device=device, dtype=DATA_TYPE)
densities_pass = torch.nan_to_num(torch.full((batch_size, num_rays * samples_per_ray, 1), -float('inf'), device=device, dtype=DATA_TYPE)) / SAFE_GUARD
colors_pass[mask_inbox], densities_pass[mask_inbox] = _out['rgb'][mask_inbox], _out['sigma'][mask_inbox]
# reshape back
colors_pass = colors_pass.reshape(batch_size, num_rays, samples_per_ray, colors_pass.shape[-1])
densities_pass = densities_pass.reshape(batch_size, num_rays, samples_per_ray, densities_pass.shape[-1])
return colors_pass, densities_pass
def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options):
# self.plane_axes = self.plane_axes.to(ray_origins.device)
if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto':
ray_start, ray_end = get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp'])
is_ray_valid = ray_end > ray_start
if torch.any(is_ray_valid).item():
ray_start[~is_ray_valid] = ray_start[is_ray_valid].min()
ray_end[~is_ray_valid] = ray_start[is_ray_valid].max()
depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
else:
# Create stratified depth samples
depths_coarse = self.sample_stratified(ray_origins, rendering_options['ray_start'], rendering_options['ray_end'], rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
depths_coarse = depths_coarse.to(planes.device)
# Coarse Pass
colors_coarse, densities_coarse = self._forward_pass(
depths=depths_coarse, ray_directions=ray_directions, ray_origins=ray_origins,
planes=planes, decoder=decoder, rendering_options=rendering_options)
# Fine Pass
N_importance = rendering_options['depth_resolution_importance']
if N_importance > 0:
_, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
depths_fine = self.sample_importance(depths_coarse, weights, N_importance)
colors_fine, densities_fine = self._forward_pass(
depths=depths_fine, ray_directions=ray_directions, ray_origins=ray_origins,
planes=planes, decoder=decoder, rendering_options=rendering_options)
all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse,
depths_fine, colors_fine, densities_fine)
# Aggregate
rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options)
else:
rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
return rgb_final, depth_final, weights.sum(2)
def run_model(self, planes, decoder, sample_coordinates, sample_directions, options):
plane_axes = self.plane_axes.to(planes.device)
sampled_features = sample_from_planes(plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'])
out = decoder(sampled_features, sample_directions)
if options.get('density_noise', 0) > 0:
out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise']
return out
def run_model_activated(self, planes, decoder, sample_coordinates, sample_directions, options):
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, options)
out['sigma'] = self.activation_factory(options)(out['sigma'])
return out
def sort_samples(self, all_depths, all_colors, all_densities):
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2):
all_depths = torch.cat([depths1, depths2], dim = -2)
all_colors = torch.cat([colors1, colors2], dim = -2)
all_densities = torch.cat([densities1, densities2], dim = -2)
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False):
"""
Return depths of approximately uniformly spaced samples along rays.
"""
N, M, _ = ray_origins.shape
if disparity_space_sampling:
depths_coarse = torch.linspace(0,
1,
depth_resolution,
device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = 1/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse)
else:
if type(ray_start) == torch.Tensor:
depths_coarse = linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3)
depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None]
else:
depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = (ray_end - ray_start)/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
return depths_coarse
def sample_importance(self, z_vals, weights, N_importance):
"""
Return depths of importance sampled points along rays. See NeRF importance sampling for more.
"""
with torch.no_grad():
batch_size, num_rays, samples_per_ray, _ = z_vals.shape
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher
# smooth weights
weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1)
weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
weights = weights + 0.01
z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:])
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
N_importance).detach().reshape(batch_size, num_rays, N_importance, 1)
return importance_z_vals
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
"""
Sample @N_importance samples from @bins with distribution defined by @weights.
Inputs:
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Outputs:
samples: the sampled samples
"""
N_rays, N_samples_ = weights.shape
weights = weights + eps # prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.clamp_min(inds-1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[...,1]-cdf_g[...,0]
denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
# anyway, therefore any value for it is fine (set to 1 here)
samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
return samples