jaimevera1107
commited on
Commit
•
49f82d5
1
Parent(s):
fc85089
Update README.md
Browse files
README.md
CHANGED
@@ -4,12 +4,18 @@ tags:
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a
|
13 |
|
14 |
<!--- Describe your model here -->
|
15 |
|
@@ -25,20 +31,58 @@ Then you can use the model like this:
|
|
25 |
|
26 |
```python
|
27 |
from sentence_transformers import SentenceTransformer
|
28 |
-
sentences = ["
|
29 |
|
30 |
-
model = SentenceTransformer('
|
31 |
embeddings = model.encode(sentences)
|
32 |
print(embeddings)
|
33 |
```
|
34 |
|
35 |
|
36 |
|
37 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
<!--- Describe how your model was evaluated -->
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
## Training
|
@@ -51,6 +95,8 @@ The model was trained with the parameters:
|
|
51 |
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
52 |
```
|
53 |
|
|
|
|
|
54 |
**Loss**:
|
55 |
|
56 |
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
@@ -77,12 +123,7 @@ Parameters of the fit()-Method:
|
|
77 |
## Full Model Architecture
|
78 |
```
|
79 |
SentenceTransformer(
|
80 |
-
(0): Transformer({'max_seq_length':
|
81 |
-
(1): Pooling({'word_embedding_dimension':
|
82 |
-
(2): Normalize()
|
83 |
)
|
84 |
-
```
|
85 |
-
|
86 |
-
## Citing & Authors
|
87 |
-
|
88 |
-
<!--- Describe where people can find more information -->
|
|
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
license: mit
|
9 |
+
datasets:
|
10 |
+
- jaimevera1107/similarity-sentences-spanish
|
11 |
+
language:
|
12 |
+
- es
|
13 |
+
library_name: sentence-transformers
|
14 |
---
|
15 |
|
16 |
+
# All-MiniLM-L6-v2 Fine Tuned - Sentence Transformers - Embedding Model (Spanish-Español)
|
17 |
|
18 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
19 |
|
20 |
<!--- Describe your model here -->
|
21 |
|
|
|
31 |
|
32 |
```python
|
33 |
from sentence_transformers import SentenceTransformer
|
34 |
+
sentences = ["Esta es una frase para ser comparada", "Esta es otra oración"]
|
35 |
|
36 |
+
model = SentenceTransformer('jaimevera1107/roberta-similarity-es')
|
37 |
embeddings = model.encode(sentences)
|
38 |
print(embeddings)
|
39 |
```
|
40 |
|
41 |
|
42 |
|
43 |
+
## Usage (HuggingFace Transformers)
|
44 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoTokenizer, AutoModel
|
48 |
+
import torch
|
49 |
+
|
50 |
+
|
51 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
52 |
+
def mean_pooling(model_output, attention_mask):
|
53 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
54 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
55 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
56 |
|
|
|
57 |
|
58 |
+
# Sentences we want sentence embeddings for
|
59 |
+
sentences = ["Esta es una frase para ser comparada", "Esta es otra oración"]
|
60 |
+
|
61 |
+
# Load model from HuggingFace Hub
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained('jaimevera1107/roberta-similarity-es')
|
63 |
+
model = AutoModel.from_pretrained('jaimevera1107/roberta-similarity-es')
|
64 |
+
|
65 |
+
# Tokenize sentences
|
66 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
67 |
+
|
68 |
+
# Compute token embeddings
|
69 |
+
with torch.no_grad():
|
70 |
+
model_output = model(**encoded_input)
|
71 |
+
|
72 |
+
# Perform pooling. In this case, mean pooling.
|
73 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
74 |
+
|
75 |
+
print("Sentence embeddings:")
|
76 |
+
print(sentence_embeddings)
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
## Evaluation Results
|
82 |
+
|
83 |
+
| Model | R squared | Spearman Correlation |
|
84 |
+
|----------------------------|--------------|-------------------------|
|
85 |
+
| Roberta Fine tuned | 70.67 % | 83.41 % |
|
86 |
|
87 |
|
88 |
## Training
|
|
|
95 |
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
96 |
```
|
97 |
|
98 |
+
The data used was the one in the [Similarity Sentences Spanish Dataset](https://huggingface.co/datasets/jaimevera1107/similarity-sentences-spanish)
|
99 |
+
|
100 |
**Loss**:
|
101 |
|
102 |
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
|
|
123 |
## Full Model Architecture
|
124 |
```
|
125 |
SentenceTransformer(
|
126 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
|
127 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
|
|
128 |
)
|
129 |
+
```
|
|
|
|
|
|
|
|