Update README.md
Browse files
README.md
CHANGED
@@ -3,27 +3,8 @@ tags:
|
|
3 |
- image-to-text
|
4 |
- image-captioning
|
5 |
license: apache-2.0
|
6 |
-
widget:
|
7 |
-
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
|
8 |
-
example_title: Savanna
|
9 |
-
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
|
10 |
-
example_title: Football Match
|
11 |
-
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
|
12 |
-
example_title: Airport
|
13 |
---
|
14 |
|
15 |
-
# nlpconnect/vit-gpt2-image-captioning
|
16 |
-
|
17 |
-
This is an image captioning model trained by @ydshieh in [flax ](https://github.com/huggingface/transformers/tree/main/examples/flax/image-captioning) this is pytorch version of [this](https://huggingface.co/ydshieh/vit-gpt2-coco-en-ckpts).
|
18 |
-
|
19 |
-
|
20 |
-
# The Illustrated Image Captioning using transformers
|
21 |
-
|
22 |
-
![](https://ankur3107.github.io/assets/images/vision-encoder-decoder.png)
|
23 |
-
|
24 |
-
* https://ankur3107.github.io/blogs/the-illustrated-image-captioning-using-transformers/
|
25 |
-
|
26 |
-
|
27 |
# Sample running code
|
28 |
|
29 |
```python
|
@@ -32,9 +13,9 @@ from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTok
|
|
32 |
import torch
|
33 |
from PIL import Image
|
34 |
|
35 |
-
model = VisionEncoderDecoderModel.from_pretrained("
|
36 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained("
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
38 |
|
39 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
model.to(device)
|
@@ -63,8 +44,6 @@ def predict_step(image_paths):
|
|
63 |
return preds
|
64 |
|
65 |
|
66 |
-
predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman in a hospital bed']
|
67 |
-
|
68 |
```
|
69 |
|
70 |
# Sample running code using transformers pipeline
|
@@ -73,18 +52,9 @@ predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman
|
|
73 |
|
74 |
from transformers import pipeline
|
75 |
|
76 |
-
image_to_text = pipeline("image-to-text", model="
|
77 |
-
|
78 |
-
image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png")
|
79 |
|
80 |
-
# [{'generated_text': 'a soccer game with a player jumping to catch the ball '}]
|
81 |
|
82 |
|
83 |
-
```
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
* https://huggingface.co/ankur310794
|
88 |
-
* https://twitter.com/ankur310794
|
89 |
-
* http://github.com/ankur3107
|
90 |
-
* https://www.linkedin.com/in/ankur310794
|
|
|
3 |
- image-to-text
|
4 |
- image-captioning
|
5 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Sample running code
|
9 |
|
10 |
```python
|
|
|
13 |
import torch
|
14 |
from PIL import Image
|
15 |
|
16 |
+
model = VisionEncoderDecoderModel.from_pretrained("jaimin/image_caption")
|
17 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("jaimin/image_caption")
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("jaimin/image_caption")
|
19 |
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
model.to(device)
|
|
|
44 |
return preds
|
45 |
|
46 |
|
|
|
|
|
47 |
```
|
48 |
|
49 |
# Sample running code using transformers pipeline
|
|
|
52 |
|
53 |
from transformers import pipeline
|
54 |
|
55 |
+
image_to_text = pipeline("image-to-text", model="jaimin/image_caption")
|
|
|
|
|
56 |
|
|
|
57 |
|
58 |
|
|
|
|
|
59 |
|
60 |
+
```
|
|
|
|
|
|
|
|